Jeu de Coloration Une stratégie de Bob sur les Cactus

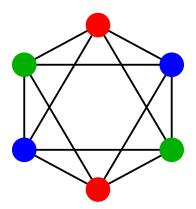
C. Charpentier

Institut Fourier, Université Joseph Fourier, Grenoble DISP, RTI, Université de Lyon 2

Journées Graphes & Algorithmes 2015

Définitions Coloration propre

Une **coloration** d'un graphe est l'attribution d'une couleur à chaque sommet du graphe. Une coloration est dite **propre** si deux voisins adjacents ont des couleurs différentes.

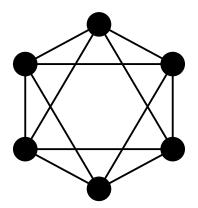


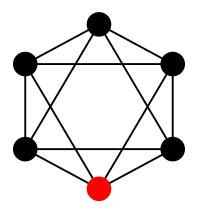
- Données : un graphe G non colorié et un ensemble de couleurs Φ.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils colorient (proprement) un sommet non-colorié avec une couleur de Φ.
- Alice gagne quand tous les sommets de G sont coloriés proprement, et Bob gagne s'il est impossible de finir la coloration.

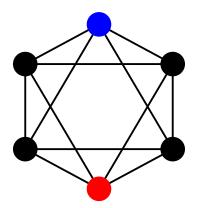
- Données : un graphe G non colorié et un ensemble de couleurs Φ.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils colorient (proprement) un sommet non-colorié avec une couleur de Φ.
- Alice gagne quand tous les sommets de G sont coloriés proprement, et Bob gagne s'il est impossible de finir la coloration.

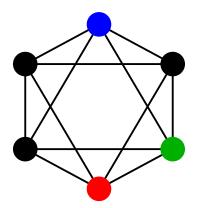
- Données : un graphe G non colorié et un ensemble de couleurs Φ.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils colorient (proprement) un sommet non-colorié avec une couleur de Φ.
- Alice gagne quand tous les sommets de G sont coloriés proprement, et Bob gagne s'il est impossible de finir la coloration.

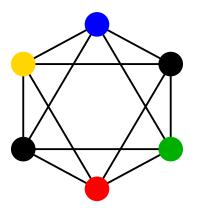
- Données : un graphe G non colorié et un ensemble de couleurs Φ.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils colorient (proprement) un sommet non-colorié avec une couleur de Φ.
- Alice gagne quand tous les sommets de G sont coloriés proprement, et Bob gagne s'il est impossible de finir la coloration.

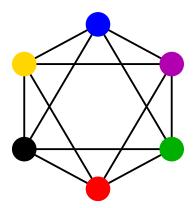


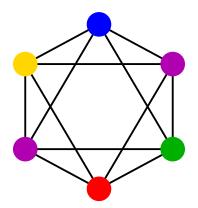












Soit G un graphe tel qu'Alice a une strategie gagnante sur G pour k couleurs.

Soit un nombre de couleurs k' > k.

Soit G un graphe tel qu'Alice a une strategie gagnante sur G pour k couleurs.

Soit un nombre de couleurs k' > k

Soit G un graphe tel qu'Alice a une strategie gagnante sur G pour k couleurs.

Soit un nombre de couleurs k' > k.

Soit G un graphe tel qu'Alice a une strategie gagnante sur G pour k couleurs.

Soit un nombre de couleurs k' > k.

Définitions

Nombre chromatique ludique

Le plus petit nombre de couleurs pour lequel Alice a une stratégie sur G est le **nombre chromatique ludique** de G, noté $\chi_g(G)$.

Bornes triviales

$$\chi(G) \le \chi_g(G) \le \Delta(G) + 1$$

Définitions

Nombre chromatique ludique

Le plus petit nombre de couleurs pour lequel Alice a une stratégie sur G est le **nombre chromatique ludique** de G, noté $\chi_g(G)$.

Bornes triviales

$$\chi(G) \leq \chi_g(G) \leq \Delta(G) + 1$$

Définitions Stratégie d'activation

Théorème

Si F est une forêt, $\chi_g(F) \leq 4$.

[Faigle, Kern, Kierstead, Trotter, 1993]

Via une **Stratégie d'Activation** (voir présentation suivante).

Définitions Stratégie d'activation

Théorème

Si F est une forêt, $\chi_g(F) \leq 4$.

[Faigle, Kern, Kierstead, Trotter, 1993]

Via une **Stratégie d'Activation** (voir présentation suivante).

Le jeu de marquage a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

On nomme **nombre de marquage ludique**, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

Le **jeu de marquage** a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

On nomme **nombre de marquage ludique**, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

Le **jeu de marquage** a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

On nomme nombre de marquage ludique, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

Le jeu de marquage a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

On nomme nombre de marquage ludique, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

Le **jeu de marquage** a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

On nomme nombre de marquage ludique, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

Le jeu de marquage a été introduit par Zhu en 1999.

- Données : un graphe G non colorié et un entier k.
- Alice et Bob jouent à tour de rôle. A chaque tour, ils sélectionnent un sommet qui n'a pas encore été sélectionné.
- Bob gagne si un sommet a au moins k voisins sélectionnés avant lui. Alice gagne si Bob n'a pas gagné quand tous les sommets ont été sélectionnés.

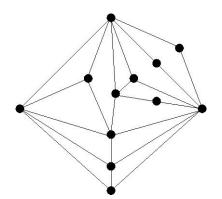
On nomme nombre de marquage ludique, noté $col_g(G)$, le plus petit k pour lequel Alice a une stratégie gagnante sur G.

Propriété

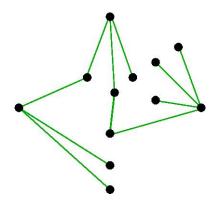
En utilisant des stratégies d'activation, on prouve :

- Si P est un graphe planaire, $col_g(P) \le 19$. [Zhu, 1999]
- Si P est un graphe planaire, $col_g(P) \le 18$. [Kierstead, 2000]
- Si P est un graphe planaire, $col_g(P) \leq 17$. [Zhu, 2007]

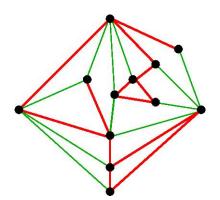
Un graphe est dit (1, k)-décomposable si on peut partionner ses arêtes en une forêt et un sous-graphe de degré borné.



Un graphe est dit (1, k)-décomposable si on peut partionner ses arêtes en une forêt et un sous-graphe de degré borné.



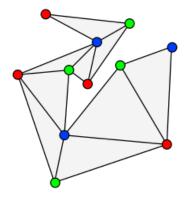
Un graphe est dit (1, k)-décomposable si on peut partionner ses arêtes en une forêt et un sous-graphe de degré borné.



Un graphe est dit (1, k)-décomposable si on peut partionner ses arêtes en une forêt et un sous-graphe de degré borné.

Théorème

Si un graphe est (1, k)-décomposable, alors $col_g(G) \le 4 + k$. [He, Hou, Lih, Shao, Wang et Zhu, 2002]



Si O est un graphe planaire extérieur, alors O est (1,3)-décomposable et $col_g(O) \le 7$. [Guan, Zhu, 1998]

Etat de l'art Graphes planaires de maille g

Théorème : Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors G est (1,4)-décomposable.
- Si $g(G) \ge 7$, alors G est (1,2)-décomposable.
- Si $g(G) \ge 11$, alors G est (1,1)-décomposable.

[He, Hou, Lih, Shao, Wang et Zhu, 2002]

Etat de l'art Graphes planaires de maille g

Théorème: Soit G un graphe planaire avec $\delta(G) \geq 2$ et de maille g:

- Si $g(G) \ge 5$, alors G est (1,4)-décomposable.
- Si $g(G) \le 7$, alors G est (1,2)-décomposable.
- Si $g(G) \ge 10$, alors G est (1,1)-décomposable.

[He, Hou, Lih, Shao, Wang et Zhu, 2002] [Bassa, Burns, Campbell, Deshpande, Farley, Halsey, Michalakis, Persson, Pylyavskyy, Rademacher, Riehl, Rios, Samuel, Tenner, Vijayasaraty, Zhao, Kleitman, 2004]

Etat de l'art Graphes planaires de maille g

Théorème : Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors G est (1,4)-décomposable.
- Si $g(G) \ge 6$, alors G est (1,2)-décomposable.
- Si $g(G) \ge 10$, alors G est (1,1)-décomposable.

```
[He, Hou, Lih, Shao, Wang et Zhu, 2002]
[Bassa, Burns, Campbell, Deshpande, Farley, Halsey, Michalakis,
Persson, Pylyavskyy, Rademacher, Riehl, Rios, Samuel, Tenner,
Vijayasaraty, Zhao, Kleitman, 2004]
[Kleitman, 2006]
```

Etat de l'art Graphes planaires de maille g

Théorème : Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors G est (1,4)-décomposable.
- Si $g(G) \ge 6$, alors G est (1,2)-décomposable.
- Si $g(G) \ge 9$, alors G est (1,1)-décomposable.

```
[He, Hou, Lih, Shao, Wang et Zhu, 2002]
[Bassa, Burns, Campbell, Deshpande, Farley, Halsey, Michalakis, Persson, Pylyavskyy, Rademacher, Riehl, Rios, Samuel, Tenner, Vijayasaraty, Zhao, Kleitman, 2004]
[Kleitman, 2006]
[Borodin, 2007]
```

Etat de l'art

Graphes planaires de maille g

Théorème : Soit G un graphe planaire avec $\delta(G) \geq 2$ et de maille g:

- Si $g(G) \ge 5$, alors G est (1,4)-décomposable.
- Si $g(G) \ge 6$, alors G est (1,2)-décomposable.
- Si $g(G) \ge 8$, alors G est (1,1)-décomposable.

```
[He, Hou, Lih, Shao, Wang et Zhu, 2002]
```

[Bassa, Burns, Campbell, Deshpande, Farley, Halsey, Michalakis,

Persson, Pylyavskyy, Rademacher, Riehl, Rios, Samuel, Tenner,

Vijayasaraty, Zhao, Kleitman, 2004]

[Kleitman, 2006]

[Borodin, 2007]

[Wang, Zhang, 2009] [Montassier, Raspaud, Zhu, 2010]

Etat de l'art Problème

Corollaire

Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors $col_g(G) \le 8$.
- Si $g(G) \ge 6$, alors $col_g(G) \le 6$.
- Si $g(G) \ge 8$, alors $col_g(G) \le 5$.

Etat de l'art Problème

Corollaire

Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors $\chi_g(G) \le 8$.
- Si $g(G) \ge 6$, alors $\chi_g(G) \le 6$.
- Si $g(G) \ge 8$, alors $\chi_g(G) \le 5$.

Problème

Peut-on baisser cette borne de 5.?

Etat de l'art Problème

Corollaire

Soit G un graphe planaire avec $\delta(G) \ge 2$ et de maille g:

- Si $g(G) \ge 5$, alors $\chi_g(G) \le 8$.
- Si $g(G) \ge 6$, alors $\chi_g(G) \le 6$.
- Si $g(G) \ge 8$, alors $\chi_g(G) \le 5$.

Problème

Peut-on baisser cette borne de 5 ?

Etat de l'Art

Définition

Les **cactus** sont des graphes où chaque arête appartient à au plus un cycle.

Etat de l'Art

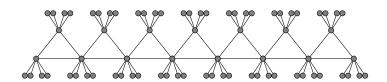
Théorème

Il existe des cactus C avec $\chi_g(C) = 5$. [Sidorowicz, 2007]

Etat de l'Art

Théorème

Il existe des cactus C avec $\chi_g(C) = 5$. [Sidorowicz, 2007]



Que peut-on dire des cactus moins denses ?

Théorème

- de maille *m* et de cycle-distance *d*,
- dont le nombre chromatique ludique est 5.

Que peut-on dire des cactus moins denses ?

Théorème

- de maille *m* et de cycle-distance *d*,
- dont le nombre chromatique ludique est 5.

Que peut-on dire des cactus moins denses ?

Théorème

- de maille *m* et de cycle-distance *d*,
- dont le nombre chromatique ludique est 5.

Que peut-on dire des cactus moins denses ?

Théorème

- de maille *m* et de cycle-distance *d*,
- dont le nombre chromatique ludique est 5.

Preuve

Données du problème

- Alice et Bob jouent sur un cactus C avec les couleurs C.
- Chaque sommet a un nombre arbitrairement grand de feuilles.
- Bob joue uniquement sur les feuilles
- Alice ne joue pas sur les feuilles.
- On cherche des configurations bloquantes:
 - Configurations gagnantes pour Bob quand c'est à Alice de jouer.

- Alice et Bob jouent sur un cactus C avec les couleurs C.
- Chaque sommet a un nombre arbitrairement grand de feuilles.
- Bob joue uniquement sur les feuilles
- Alice ne joue pas sur les feuilles.
- On cherche des configurations bloquantes:
 - Configurations gagnantes pour Bob quand c'est à Alice de jouer.

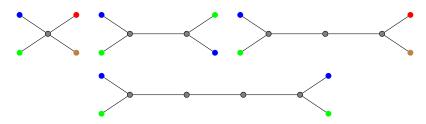
- Alice et Bob jouent sur un cactus C avec les couleurs C.
- Chaque sommet a un nombre arbitrairement grand de feuilles.
- Bob joue uniquement sur les feuilles.
- Alice ne joue pas sur les feuilles
- On cherche des configurations bloquantes:
 - Configurations gagnantes pour Bob quand c'est à Alice de jouer.

- Alice et Bob jouent sur un cactus C avec les couleurs C.
- Chaque sommet a un nombre arbitrairement grand de feuilles.
- Bob joue uniquement sur les feuilles.
- Alice ne joue pas sur les feuilles.
- On cherche des configurations bloquantes:
 - Configurations gagnantes pour Bob quand c'est à Alice de jouer.

- Alice et Bob jouent sur un cactus C avec les couleurs C.
- Chaque sommet a un nombre arbitrairement grand de feuilles.
- Bob joue uniquement sur les feuilles.
- Alice ne joue pas sur les feuilles.
- On cherche des configurations bloquantes:
 - Configurations gagnantes pour Bob quand c'est à Alice de jouer.

Preuve

Chemins bloquants

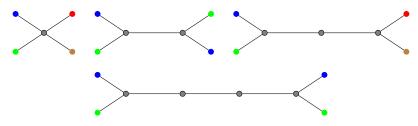


Lemme

Un chemin u_0, \ldots, u_p est bloquant ssi :

- $|C(u_0)| = |C(u_p)| = 2$ et
 - p est pair et $C(u_0) + C(u_p) = C$, ou
 - p est impair et $C(u_0) = C(u_p)$.

Preuve Chemins bloquants



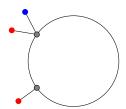
Lemme

Un chemin u_0, \ldots, u_p est bloquant ssi :

- $|C(u_0)| = |C(u_p)| = 2$ et
 - p est pair et $C(u_0) + C(u_p) = C$, ou
 - p est impair et $C(u_0) = C(u_p)$.

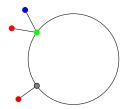
Lemme

- $|C(u_0)| = 2$, $|C(u_1)| = 1$ et
- $C(u_1) \subset C(u_0)$.



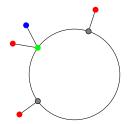
Lemme

- $|C(u_0)| = 2$, $|C(u_1)| = 1$ et
- $C(u_1) \subset C(u_0)$.



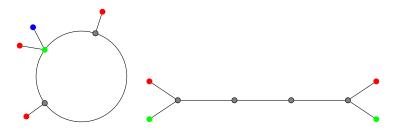
Lemme

- $|C(u_0)| = 2$, $|C(u_1)| = 1$ et
- $C(u_1) \subset C(u_0)$.



Lemme

- $|\mathcal{C}(u_0)| = 2$, $|\mathcal{C}(u_1)| = 1$ et
- $C(u_1) \subset C(u_0)$.



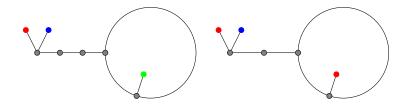
Preuve

Chemin-cycles bloquants

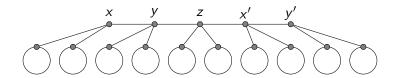
Lemme

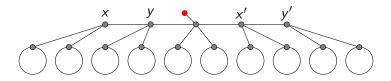
Un chemin-cycle (impair) u_0, \ldots, u_d, w est bloquant ssi

- $|C(u_0)| = 2$, |C(w)| = 1 et
 - d est pair et $C(w) \subset C(u_0)$, ou
 - d est impair et $C(w) \not\subset C(u_0)$.

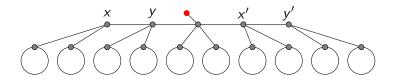


Preuve Construction finale

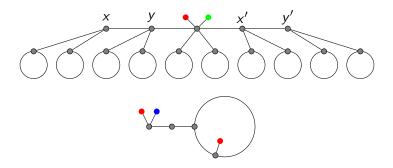




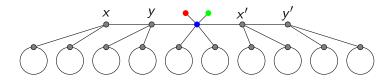
Coup fantôme: 1



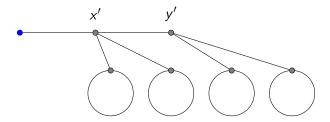
Coup fantôme : 1



Coup fantôme : 1

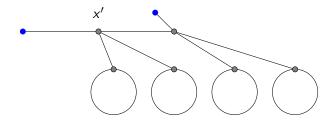


Coup fantôme : 1

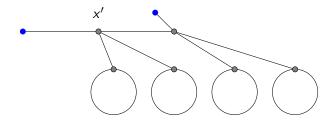


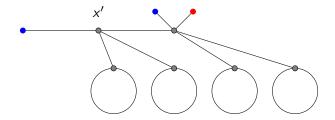
Coup fantôme: 0

Preuve Etape 2

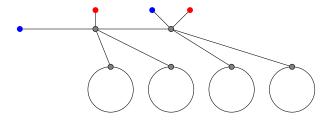


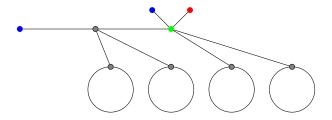
Coup fantôme : 1 (mais pas x').





Preuve Etape 2





Problèmes ouverts

Théorème

Il existe des cactus de maille m et de cycle-distance d avec $\chi_g=5$ pour tout m et d.

- Pour les cactus bipartis ?
- Pour les graphes planaires bipartis de grande maille ?

Problèmes ouverts

Théorème

Il existe des cactus de maille m et de cycle-distance d avec $\chi_g=5$ pour tout m et d.

- Pour les cactus bipartis ?
- Pour les graphes planaires bipartis de grande maille ?

Problèmes ouverts

Théorème

Il existe des cactus de maille m et de cycle-distance d avec $\chi_g=5$ pour tout m et d.

- Pour les cactus bipartis ?
- Pour les graphes planaires bipartis de grande maille ?

Merci!

