Disproving the Normal Graph Conjecture

Ararat Harutyunyan (Inst. Math. Toulouse, U. Toulouse III)

Joint work with
Lucas Pastor (GSCOP Grenoble)
Stéphan Thomassé (LIP, ENS Lyon)

November 5, 2015

Introduction

Normal Graphs

Main Result: Disproving the conjecture

Perfect Graphs

Perfect Graphs

- $\forall G, \chi(G) \geq \omega(G)$.

Perfect Graphs

- $\forall G, \chi(G) \geq \omega(G)$.
- G is perfect if for all induced $H \subset G, \chi(H)=\omega(H)$.

Perfect Graphs

- $\forall G, \chi(G) \geq \omega(G)$.
- G is perfect if for all induced $H \subset G, \chi(H)=\omega(H)$.
- Examples: C_{5} is not perfect $-\chi\left(C_{5}\right)=3, \omega\left(C_{5}\right)=2$.

Perfect Graphs

- $\forall G, \chi(G) \geq \omega(G)$.
- G is perfect if for all induced $H \subset G, \chi(H)=\omega(H)$.
- Examples: C_{5} is not perfect $-\chi\left(C_{5}\right)=3, \omega\left(C_{5}\right)=2$.
- Example: K_{k} is perfect.

The perfect graph theorems

The perfect graph theorems

- Theorem (WPGT, Lovász '72)
G is perfect iff \bar{G} is perfect.

The perfect graph theorems

- Theorem (WPGT, Lovász '72)
G is perfect iff \bar{G} is perfect.
- Theorem (SPGT, Chudnovsky, Robertson, Seymour, Thomas 2006)
G is perfect iff G does not contain an induced odd cycle of length at least 5 or the complement of an induced odd cycle of length at least 5.

Shannon capacity $C(G)$

Shannon capacity $C(G)$

- For a graph $G: C(G)=\lim _{n \rightarrow \infty} \frac{\log \omega\left(G^{n}\right)}{n}$

Shannon capacity $C(G)$

- For a graph $G: C(G)=\lim _{n \rightarrow \infty} \frac{\log \omega\left(G^{n}\right)}{n}$
- $G^{n}: n^{\text {th }}$ co-normal power of G.

Shannon capacity $C(G)$

- For a graph $G: C(G)=\lim _{n \rightarrow \infty} \frac{\log \omega\left(G^{n}\right)}{n}$
- $G^{n}: n^{\text {th }}$ co-normal power of G.
- Co-normal product $G_{1} * G_{2}$: vertices $V_{1} \times V_{2}$, $\left(v_{1}, v_{2}\right) \sim\left(u_{1}, u_{2}\right)$ if $u_{1} \sim v_{1}$ or $v_{2} \sim u_{2}$.

Shannon capacity $C(G)$

- For a graph $G: C(G)=\lim _{n \rightarrow \infty} \frac{\log \omega\left(G^{n}\right)}{n}$
- $G^{n}: n^{\text {th }}$ co-normal power of G.
- Co-normal product $G_{1} * G_{2}$: vertices $V_{1} \times V_{2}$, $\left(v_{1}, v_{2}\right) \sim\left(u_{1}, u_{2}\right)$ if $u_{1} \sim v_{1}$ or $v_{2} \sim u_{2}$.
- For G perfect: $\omega\left(G^{n}\right)=\omega(G)^{n}$

Normal Graphs

Normal Graphs

- Perfect graphs are not closed under co-normal products (Körner, Longo '73)

Normal Graphs

- Perfect graphs are not closed under co-normal products (Körner, Longo '73)
- G normal: \exists two coverings of $V, \mathbb{C}, \mathbb{S}$,, s.t., every $C \in \mathbb{C}$ is a clique, every $S \in \mathbb{S}$ is independent set and $C \cap S \neq \emptyset$.

Normal Graphs

- Perfect graphs are not closed under co-normal products (Körner, Longo '73)
- G normal: \exists two coverings of $V, \mathbb{C}, \mathbb{S}$,, s.t., every $C \in \mathbb{C}$ is a clique, every $S \in \mathbb{S}$ is independent set and $C \cap S \neq \emptyset$.

More facts

More facts

- G is normal iff \bar{G} is normal.

More facts

- G is normal iff \bar{G} is normal.
- Perfect graphs are normal (Körner '73).

More facts

- G is normal iff \bar{G} is normal.
- Perfect graphs are normal (Körner '73).
- Normal graphs are closed under co-normal products.

Cycles

Cycles

Cycles

- C_{5} and C_{7} are NOT normal.
- C_{k} is normal, if $k \neq 5,7$.

Cycles

- C_{5} and C_{7} are NOT normal.
- C_{k} is normal, if $k \neq 5,7$.
- No other minimal non-normal graphs known.

Normal Graph Conjecture

Normal Graph Conjecture

Normal Graph Conjecture

- Conjecture (DeSimone, Körner, '99)

A graph with no $C_{5}, C_{7}, \bar{C}_{7}$ as induced subgraph is normal.

Disproving the normal graph conjecture

Theorem (Pastor, Thomassé, H. 2015+)
There exist graphs G of girth at least 8 which are not normal.

Disproving the normal graph conjecture

Theorem (Pastor, Thomassé, H. 2015+)
There exist graphs G of girth at least 8 which are not normal.

- The value 8 can be replaced by any number g.

Disproving the normal graph conjecture

Theorem (Pastor, Thomassé, H. 2015+)
There exist graphs G of girth at least 8 which are not normal.

- The value 8 can be replaced by any number g.
- The proof is probabilistic.

Random graphs

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.
- We take $p=n^{-0.9}$.

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.
- We take $p=n^{-0.9}$.
- Caution: can have cycles of lenght up to 7 !

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.
- We take $p=n^{-0.9}$.
- Caution: can have cycles of lenght up to 7 !
- X_{k} : number of cycles of length k.

$$
\mathbb{E}\left[X_{k}\right] \leq\binom{ n}{k} \frac{(k-1)!}{2} p^{k}<n^{k} p^{k}=n^{k / 10}<n^{0.7}
$$

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.
- We take $p=n^{-0.9}$.
- Caution: can have cycles of lenght up to 7 !
- X_{k} : number of cycles of length k.

$$
\mathbb{E}\left[X_{k}\right] \leq\binom{ n}{k} \frac{(k-1)!}{2} p^{k}<n^{k} p^{k}=n^{k / 10}<n^{0.7}
$$

- Markov's Inequality: $\operatorname{Pr}\left[X_{k}>2 n^{0.7}\right]<1 / 2$

Random graphs

- Random graph $G_{n, p}: n$ vertices, where any two are connected with probability p, independently.
- We take $p=n^{-0.9}$.
- Caution: can have cycles of lenght up to 7 !
- X_{k} : number of cycles of length k. $\mathbb{E}\left[X_{k}\right] \leq\binom{ n}{k} \frac{(k-1)!}{2} p^{k}<n^{k} p^{k}=n^{k / 10}<n^{0.7}$.
- Markov's Inequality: $\operatorname{Pr}\left[X_{k}>2 n^{0.7}\right]<1 / 2$
- Remove one vertex from each of $2 n^{0.7}$ cycles to destroy all cycles length <8.

Other facts

Other facts

- $\operatorname{Pr}\left[\alpha\left(G_{n, p}\right) \geq x\right] \leq\binom{ n}{x}(1-p)^{\binom{x}{2} .}$

Other facts

- $\operatorname{Pr}\left[\alpha\left(G_{n, p}\right) \geq x\right] \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}$.
- Whp $\alpha\left(G_{n, p}\right)=O\left(n^{0.9} \log n\right)$.

Other facts

- $\operatorname{Pr}\left[\alpha\left(G_{n, p}\right) \geq x\right] \leq\binom{ n}{x}(1-p)^{\binom{x}{2}}$.
- Whp $\alpha\left(G_{n, p}\right)=O\left(n^{0.9} \log n\right)$.
- Degrees: Whp almost every vertex has degree $\Omega\left(n^{0.1}\right)$

Overview of the proof

- G girth 8 and normal, then we may assume the clique cover induces vertex-disjoint stars.

Overview of the proof

- G girth 8 and normal, then we may assume the clique cover induces vertex-disjoint stars.

Obtaining a large independent set

Obtaining a large independent set

Thank You

