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Introduction

Normal Graphs

Main Result: Disproving the conjecture



Perfect Graphs

I ∀G , χ(G ) ≥ ω(G ).

I G is perfect if for all induced H ⊂ G , χ(H) = ω(H).

I Examples: C5 is not perfect - χ(C5) = 3, ω(C5) = 2.

I Example: Kk is perfect.
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The perfect graph theorems

I Theorem (WPGT, Lovász ’72)

G is perfect iff Ḡ is perfect.

I Theorem (SPGT, Chudnovsky, Robertson, Seymour, Thomas
2006)

G is perfect iff G does not contain an induced odd cycle of length
at least 5 or the complement of an induced odd cycle of length at
least 5.
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I Theorem (SPGT, Chudnovsky, Robertson, Seymour, Thomas
2006)

G is perfect iff G does not contain an induced odd cycle of length
at least 5 or the complement of an induced odd cycle of length at
least 5.



The perfect graph theorems

I Theorem (WPGT, Lovász ’72)

G is perfect iff Ḡ is perfect.
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Shannon capacity C (G )

I For a graph G : C (G ) = limn→∞
logω(Gn)

n

I Gn: nth co-normal power of G .

I Co-normal product G1 ∗ G2: vertices V1 × V2,
(v1, v2) ∼ (u1, u2) if u1 ∼ v1 or v2 ∼ u2.

I For G perfect: ω(Gn) = ω(G )n
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Normal Graphs

I Perfect graphs are not closed under co-normal products
(Körner, Longo ’73)

I G normal: ∃ two coverings of V , C,S,, s.t., every C ∈ C is a
clique, every S ∈ S is independent set and C ∩ S 6= ∅.

I 1

2 3

1,3,4 1,2,4

4
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More facts

I G is normal iff Ḡ is normal.

I Perfect graphs are normal (Körner ’73).

I Normal graphs are closed under co-normal products.



More facts

I G is normal iff Ḡ is normal.

I Perfect graphs are normal (Körner ’73).

I Normal graphs are closed under co-normal products.



More facts

I G is normal iff Ḡ is normal.
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I C5 and C7 are NOT normal.

I Ck is normal, if k 6= 5, 7.

I No other minimal non-normal graphs known.
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Normal Graph Conjecture

I Conjecture (DeSimone, Körner, ’99)

A graph with no C5,C7, C̄7 as induced subgraph is normal.
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Disproving the normal graph conjecture

Theorem (Pastor, Thomassé, H. 2015+)

There exist graphs G of girth at least 8 which are not normal.

I The value 8 can be replaced by any number g .

I The proof is probabilistic.
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Random graphs

I Random graph Gn,p: n vertices, where any two are connected
with probability p, independently.

I We take p = n−0.9.

I Caution: can have cycles of lenght up to 7!

I Xk : number of cycles of length k.
E[Xk ] ≤

(n
k

) (k−1)!
2 pk < nkpk = nk/10 < n0.7.

I Markov’s Inequality: Pr [Xk > 2n0.7] < 1/2

I Remove one vertex from each of 2n0.7 cycles to destroy all
cycles length < 8.
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Other facts

I Pr [α(Gn,p) ≥ x ] ≤
(n
x

)
(1− p)(x2).

I Whp α(Gn,p) = O(n0.9 log n).

I Degrees: Whp almost every vertex has degree Ω(n0.1)
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Overview of the proof

I G girth 8 and normal, then we may assume the clique cover
induces vertex-disjoint stars.
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Obtaining a large independent set



Obtaining a large independent set

u ∈ S u1 u2 u3 u4

/∈ S /∈ S /∈ S
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