Subdivision of oriented cycles in oriented graphs

F. Havet, W. Lochet, N. Nisse
I3S (CNRS et Université Nice Sophia Antipolis) \&
Inria Sophia Antipolis Méditerranée

Orientation and colouring

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Orientation and colouring

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

$\chi(D)=k \Rightarrow D$ has a directed path with k vertices.

Orientation and colouring

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

$\chi(D)=k \Rightarrow D$ has a directed path with k vertices.

- Transitive tournaments: high chromatic number but no directed cycle.

Orientation and colouring

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

$\chi(D)=k \Rightarrow D$ has a directed path with k vertices.

- Transitive tournaments: high chromatic number but no directed cycle.

Theorem (Bondy)

D is strong, $\chi(D)=k \Rightarrow D$ has a directed cycle with at least k vertices.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure: A path with 2 blocks.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure: A path with 2 blocks.

Theorem (L.Addario-Berry, F.Havet and S. Thomassé)
If $\chi(D)=k$, then D contains every path with 2 blocks on k vertices.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure: A path with 2 blocks.

Theorem (L.Addario-Berry, F.Havet and S. Thomassé)
If $\chi(D)=k$, then D contains every path with 2 blocks on k vertices.
Lemma (Gyárfás, Thomassen)
There exists oriented graph D_{i} such that $\chi\left(D_{i}\right) \geq i$ and every cycle in D_{i} has at least four blocks.

Conjecture (L. Addario-Berry et al.)

For all k and l, there exists an integer $\alpha(k, l)$ such that : $\chi(D)>\alpha(k, l)$ and D strong $\Rightarrow D$ contains an oriented cycle with two blocks, one of length at least k, and the other at least l.

l
Figure: Cycle with two blocks.

This can be seen as finding a subdivision of $C(k, l)$ the cycle with one block of size k and one block of size l.

Results

We showed the following:

Theorem

$\alpha(1,2)=\alpha(2,2)=\alpha(1,3)=4, \alpha(2,3)=5$ and $\alpha(3,3) \leq 7$.
Where $\alpha(k, l)$ is the smallest integer such that:
D strong and $\chi(D)>\alpha(k, l) \Rightarrow D$ contains a subdivision of $C(k, l)$.

Results

We showed the following:

Theorem

$\alpha(1,2)=\alpha(2,2)=\alpha(1,3)=4, \alpha(2,3)=5$ and $\alpha(3,3) \leq 7$.
Where $\alpha(k, l)$ is the smallest integer such that:
D strong and $\chi(D)>\alpha(k, l) \Rightarrow D$ contains a subdivision of $C(k, l)$.
Theorem
Let D be a 2-strong digraph. If $\chi(D) \geq(k+l-2)(k-1)+2$, then D contains a subdivision of $C(k, l)$.

Handle decomposition

Definition

F a subgraph of D. A handle h of F is a directed path of D which meets F only at its ends.

Handle decomposition

Definition

F a subgraph of D. A handle h of F is a directed path of D which meets F only at its ends.

Definition

A handle decomposition of D starting at $v \in V(D)$ is a triple $\left(v,\left(h_{i}\right)_{1 \leq i \leq p},\left(D_{i}\right)_{0 \leq i \leq p}\right)$, where $\left(D_{i}\right)_{0 \leq i \leq p}$ is a sequence of strongly connected digraphs and $\left(h_{i}\right)_{1 \leq i \leq p}$ is a sequence of handles such that:

- $V\left(D_{0}\right)=\{v\}$,
- for $1 \leq i \leq p, h_{i}$ is a handle of D_{i} and D_{i} is the (arc-disjoint) union of D_{i-1} and h_{i}, and
- $D=D_{p}$.

Handle decomposition

v_{0}
Figure : $D_{0}=\left\{v_{0}\right\}$

Handle decomposition

Figure : $D_{1}=D_{0} \cup h_{1}$

Handle decomposition

Figure : $D_{2}=D_{1} \cup h_{2}$

Handle decomposition

Figure : $D_{3}=D_{2} \cup h_{3}$

Handle decomposition

Theorem

Every strong digraph admits a handle decomposition.

Theorem
 Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Theorem

Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_{q} is not trivial.

Theorem

Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order.
Let q be the largest index such that h_{q} is not trivial.
Case $q \neq 1$

Figure: h_{q} is an (s, t) dipath

Theorem

Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order.
Let q be the largest index such that h_{q} is not trivial.
Case $q \neq 1$

Figure: h_{r}^{\prime} is longer than h_{r}

Theorem

Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order.
Let q be the largest index such that h_{q} is not trivial.
Case $q=1$

Figure: 2 crossing chords

Theorem

Let D be a strong digraph. If $\chi(D) \geq 4$ then D contains a subdivision of $C(2,2)$.

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order.
Let q be the largest index such that h_{q} is not trivial.
Case $q=1$

Figure: A subdivision of $C(2,2)$

Theorem

Let D be a 2-strong digraph. If $\chi(D) \geq(k+l-2)(k-1)+2$, then D contains a subdivision of $C(k, l)$.

Theorem

Let D be a 2-strong digraph. If $\chi(D) \geq(k+l-2)(k-1)+2$, then D contains a subdivision of $C(k, l)$.

Assume $k>l$ and pick u any vertex. Let $L_{i}=\left\{v \mid \operatorname{dist}_{D}(u, v)=i\right\}$. If $v \in L_{k}$ we have a subdivision of $C(k, k)$. If $L_{k}=\emptyset$,
$V(D)=\{u\} \cup L_{1} \cup \cdots \cup L_{k-1}$.

Theorem

Let D be a 2-strong digraph. If $\chi(D) \geq(k+l-2)(k-1)+2$, then D contains a subdivision of $C(k, l)$.

Assume $k>l$ and pick u any vertex. Let $L_{i}=\left\{v \mid \operatorname{dist}_{D}(u, v)=i\right\}$. If $v \in L_{k}$ we have a subdivision of $C(k, k)$. If $L_{k}=\emptyset$,
$V(D)=\{u\} \cup L_{1} \cup \cdots \cup L_{k-1}$.

$\chi(D) \leq 1+\sum_{i} \chi\left(L_{i}\right)$, so there exists i, with $\chi\left(L_{i}\right) \geq(k+l-1)$.

Because $\chi\left(L_{i}\right) \geq(k+l-1)$, there exists a path with two blocks, one of length k, the other of length $l-1$.

Figure: Path of two blocks in L_{i}

Because $\chi\left(L_{i}\right) \geq(k+l-1)$, there exists a path with two blocks, one of length k, the other of length $l-1$.

$$
L_{i}
$$

Figure: Subdivision of $C(k, l)$

Open questions

Question

Prove the existence of $\alpha(k, l)$ for all k and l.

Open questions

Question

Prove the existence of $\alpha(k, l)$ for all k and l.
We proved it for small k and l and in the case 2 strong.

Open questions

Question

Prove the existence of $\alpha(k, l)$ for all k and l.
We proved it for small k and l and in the case 2 strong.

Question (More than two blocks)

C has more than two blocks

- Counter example in the non-strong case.
- Which connectivity condition is necessary.
- Under these conditions what chromatic number is needed.

Open questions

Question

Prove the existence of $\alpha(k, l)$ for all k and l.
We proved it for small k and l and in the case 2 strong.

Question (More than two blocks)

C has more than two blocks

- Counter example in the non-strong case.
- Which connectivity condition is necessary.
- Under these conditions what chromatic number is needed.

Proposition

$\chi(D)>12$ and D strong $\Rightarrow D$ contains a subdivision of a cycle with 4 blocks.

Thank you!

