Subdivision of oriented cycles in oriented graphs

F. Havet, <u>W. Lochet</u>, N. Nisse

I3S (CNRS et Université Nice Sophia Antipolis) & Inria Sophia Antipolis Méditerranée

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

 $\chi(D) = k \Rightarrow D$ has a directed path with k vertices.

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

 $\chi(D) = k \Rightarrow D$ has a directed path with k vertices.

• Transitive tournaments: high chromatic number but no directed cycle.

Definition

The chromatic number, $\chi(D)$ of a digraph D is the chromatic number of its underlying graph.

Theorem (Gallai-Hasse-Roy-Vitaver)

 $\chi(D) = k \Rightarrow D$ has a directed path with k vertices.

• Transitive tournaments: high chromatic number but no directed cycle.

Theorem (Bondy)

D is strong, $\chi(D) = k \Rightarrow D$ has a directed cycle with at least k vertices.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure : A path with 2 blocks.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure : A path with 2 blocks.

Theorem (L.Addario-Berry, F.Havet and S. Thomassé)

If $\chi(D) = k$, then D contains every path with 2 blocks on k vertices.

Blocks

Definition

In an oriented path or cycle, a block is a maximal directed sub-path.

Figure : A path with 2 blocks.

Theorem (L.Addario-Berry, F.Havet and S. Thomassé)

If $\chi(D) = k$, then D contains every path with 2 blocks on k vertices.

Lemma (Gyárfás, Thomassen)

There exists oriented graph D_i such that $\chi(D_i) \ge i$ and every cycle in D_i has at least four blocks.

Conjecture (L. Addario-Berry et al.)

For all k and l, there exists an integer $\alpha(k, l)$ such that : $\chi(D) > \alpha(k, l)$ and D strong \Rightarrow D contains an oriented cycle with two blocks, one of length at least k, and the other at least l.

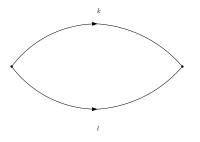


Figure : Cycle with two blocks.

This can be seen as finding a subdivision of C(k, l) the cycle with one block of size k and one block of size l.

Results

We showed the following:

Theorem

 $\alpha(1,2)=\alpha(2,2)=\alpha(1,3)=4,\ \alpha(2,3)=5\ \text{and}\ \alpha(3,3)\leq 7.$

Where $\alpha(k, l)$ is the smallest integer such that: D strong and $\chi(D) > \alpha(k, l) \Rightarrow D$ contains a subdivision of C(k, l).

Results

We showed the following:

Theore<u>m</u>

 $\alpha(1,2)=\alpha(2,2)=\alpha(1,3)=4,\ \alpha(2,3)=5\ and\ \alpha(3,3)\leq 7.$

Where $\alpha(k, l)$ is the smallest integer such that: D strong and $\chi(D) > \alpha(k, l) \Rightarrow D$ contains a subdivision of C(k, l).

Theorem

Let D be a 2-strong digraph. If $\chi(D) \ge (k+l-2)(k-1)+2$, then D contains a subdivision of C(k,l).

Definition

F a subgraph of D. A handle h of F is a directed path of D which meets F only at its ends.

<u>Definition</u>

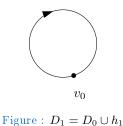
F a subgraph of D. A handle h of F is a directed path of D which meets F only at its ends.

Definition

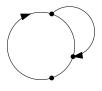
A handle decomposition of D starting at $v \in V(D)$ is a triple $(v, (h_i)_{1 \leq i \leq p}, (D_i)_{0 \leq i \leq p})$, where $(D_i)_{0 \leq i \leq p}$ is a sequence of strongly connected digraphs and $(h_i)_{1 \leq i \leq p}$ is a sequence of handles such that:

- $V(D_0) = \{v\},\$
- for $1 \le i \le p$, h_i is a handle of D_i and D_i is the (arc-disjoint) union of D_{i-1} and h_i , and
- $D = D_p$.

• v_0 Figure : $D_0 = \{v_0\}$

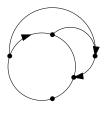


Subdivision of oriented cycles in oriented graphs



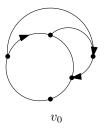
 v_0

Figure : $D_2 = D_1 \cup h_2$



 v_0

Figure : $D_3 = D_2 \cup h_3$



Theorem

Every strong digraph admits a handle decomposition.

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Theore<u>m</u>

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_q is not trivial.

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_q is not trivial. Case $q \neq 1$

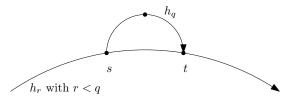


Figure : h_q is an (s, t) dipath

$\overline{\text{Theorem}}$

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_q is not trivial. Case $q \neq 1$

Figure : h'_r is longer than h_r

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_q is not trivial. Case q = 1

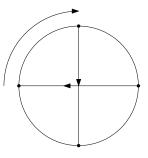


Figure : 2 crossing chords

Let D be a strong digraph. If $\chi(D) \ge 4$ then D contains a subdivision of C(2,2).

Consider a handle decomposition that maximizes the sequence of the length of the handles with respect to the lexicographic order. Let q be the largest index such that h_q is not trivial. Case q = 1

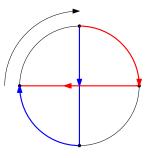
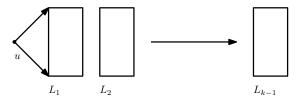


Figure : A subdivision of C(2,2)

Let D be a 2-strong digraph. If $\chi(D) \ge (k+l-2)(k-1)+2$, then D contains a subdivision of C(k, l).

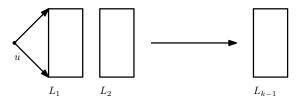
Let D be a 2-strong digraph. If $\chi(D) \ge (k+l-2)(k-1)+2$, then D contains a subdivision of C(k, l).

Assume k > l and pick u any vertex. Let $L_i = \{v | \text{dist}_D(u, v) = i\}$. If $v \in L_k$ we have a subdivision of C(k, k). If $L_k = \emptyset$, $V(D) = \{u\} \cup L_1 \cup \cdots \cup L_{k-1}$.



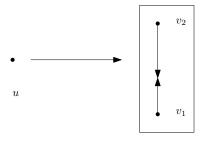
Let D be a 2-strong digraph. If $\chi(D) \ge (k+l-2)(k-1)+2$, then D contains a subdivision of C(k, l).

Assume k > l and pick u any vertex. Let $L_i = \{v | \text{dist}_D(u, v) = i\}$. If $v \in L_k$ we have a subdivision of C(k, k). If $L_k = \emptyset$, $V(D) = \{u\} \cup L_1 \cup \cdots \cup L_{k-1}$.



 $\chi(D) \le 1 + \sum_i \chi(L_i)$, so there exists *i*, with $\chi(L_i) \ge (k+l-1)$.

Because $\chi(L_i) \ge (k+l-1)$, there exists a path with two blocks, one of length k, the other of length l-1.



 L_i

Figure : Path of two blocks in L_i

Because $\chi(L_i) \ge (k+l-1)$, there exists a path with two blocks, one of length k, the other of length l-1.

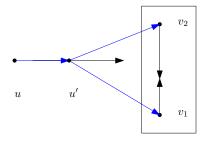


Figure : Subdivision of C(k, l)

Question

Prove the existence of $\alpha(k,l)$ for all k and l.

Question

Prove the existence of $\alpha(k, l)$ for all k and l.

We proved it for small k and l and in the case 2 strong.

Question

Prove the existence of $\alpha(k,l)$ for all k and l.

We proved it for small k and l and in the case 2 strong.

Question (More than two blocks)

C has more than two blocks

- Counter example in the non-strong case.
- Which connectivity condition is necessary.
- Under these conditions what chromatic number is needed.

Question

Prove the existence of $\alpha(k,l)$ for all k and l.

We proved it for small k and l and in the case 2 strong.

Question (More than two blocks)

C has more than two blocks

- Counter example in the non-strong case.
- Which connectivity condition is necessary.
- Under these conditions what chromatic number is needed.

Proposition

 $\chi(D)>12$ and D strong \Rightarrow D contains a subdivision of a cycle with 4 blocks.

Thank you!