Cops and robber games in graphs

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

Journées Graphes et Algorithmes (JGA 2015)

November 4th, 2015

Pursuit-Evasion Games

2-Player games

A team of mobile entities (Cops) track down another mobile entity (Robber)

Always one winner

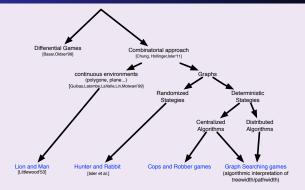
 Combinatorial Problem: Minimizing some resource for some Player to win e.g., minimize number of Cops to capture the Robber.
Algorithmic Problem:

Computing winning strategy (sequence of moves) for some Player e.g., compute strategy for Cops to capture Robber/Robber to avoid the capture

natural applications: coordination of mobile autonomous agents (Robotic, Network Security, Information Seeking...) but also: Graph Theory, Models of Computation, Logic, Routing...

イロン イヨン イヨン イヨン

Pursuit-Evasion: Over-simplified Classification



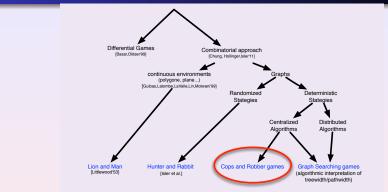
(日) (四) (E) (E) (E)

Pursuit-Evasion: Over-simplified Classification

[Chung,Hollinger,Isler'11]

(ロ) (同) (E) (E) (E)

Pursuit-Evasion: Over-simplified Classification

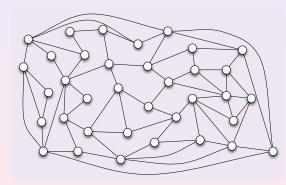


Today: focus on Cops and Robber games

Goal of this talk: illustrate that studying Pursuit-Evasion games helps

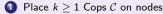
- Offer new approaches for several structural graph properties
- Models for studying several practical problems
- Fun and intriguing questions

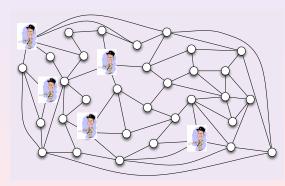
Rules of the $\mathcal{C}\&\mathcal{R}$ game



・ロン ・日ン ・ヨン ・ヨン

Rules of the $C\&\mathcal{R}$ game

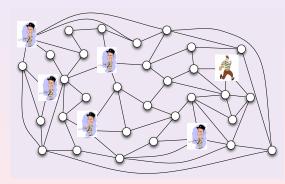




・ロン ・四 と ・ ヨ と ・ ヨ と

Rules of the C&R game

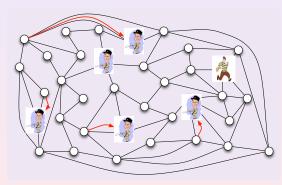
- **1** Place $k \ge 1$ Cops $\mathcal C$ on nodes
- **(2)** Visible Robber \mathcal{R} at one node



・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

Rules of the $C\&\mathcal{R}$ game

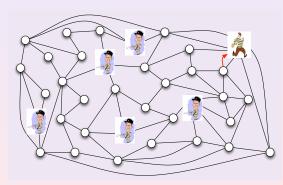
- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
-) Visible Robber ${\mathcal R}$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge



・ロト ・同ト ・ヨト ・ヨト

Rules of the $\mathcal{C}\&\mathcal{R}$ game

-] Place $k \geq 1$ Cops ${\mathcal C}$ on nodes
- Visible Robber $\mathcal R$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge



・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・

Rules of the $\mathcal{C}\&\mathcal{R}$ game

- $lacksymbol{1}$ Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
- Visible Robber $\mathcal R$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge



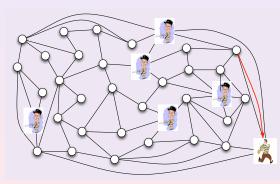
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Rules of the C&R game

- - Place $k \ge 1$ Cops C on nodes
 - Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each C slides along < 1 edge
 - (2) \mathcal{R} slides along ≤ 1 edge

Goal of the $C\&\mathcal{R}$ game

Robber must avoid the Cops



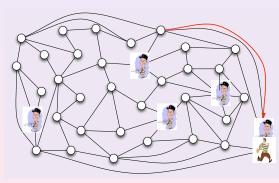
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Rules of the $\mathcal{C}\&\mathcal{R}$ game

- llool Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
- Visible Robber $\mathcal R$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\mathcal R}$ slides along ≤ 1 edge

Goal of the $\mathcal{C}\&\mathcal{R}$ game

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)



・ロト ・回ト ・ヨト ・ヨト

Rules of the $\mathcal{C}\&\mathcal{R}$ game

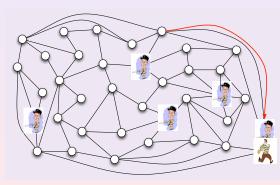
- m 1 Place $k\geq 1$ Cops ${\mathcal C}$ on nodes
-) Visible Robber ${\mathcal R}$ at one node
- 3 Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\mathcal R}$ slides along ≤ 1 edge

Goal of the $\mathcal{C}\&\mathcal{R}$ game

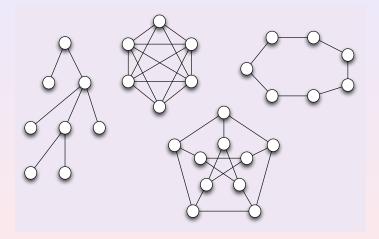
- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

Cop Number of a graph G

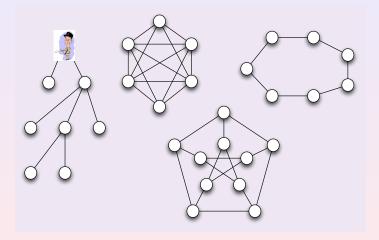
cn(G): min # Cops to win in G



() < </p>

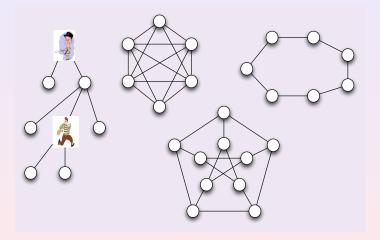


< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



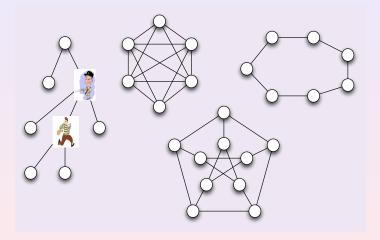
N. Nisse Cops and robber games in graphs

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



N. Nisse Cops and robber games in graphs

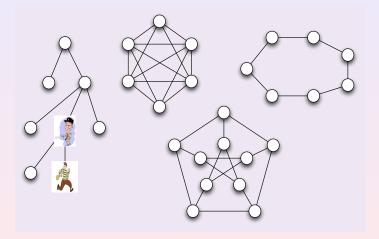
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



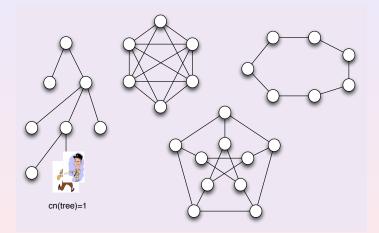
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

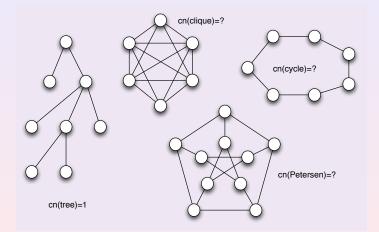


< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

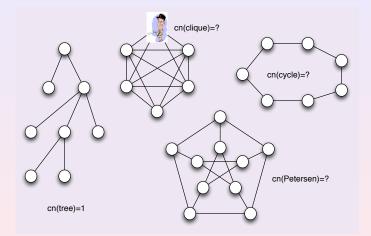


< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

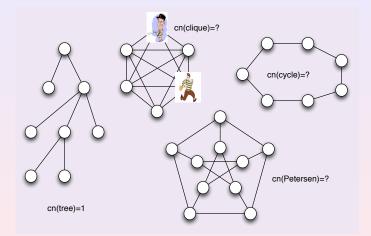




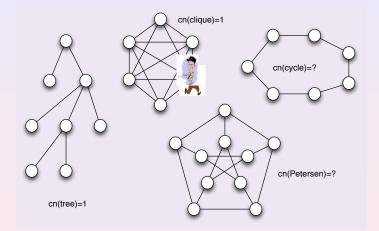
< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ



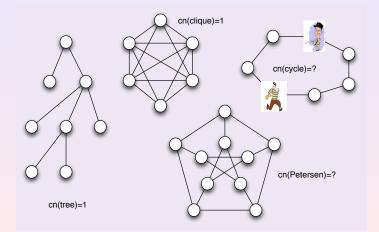
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



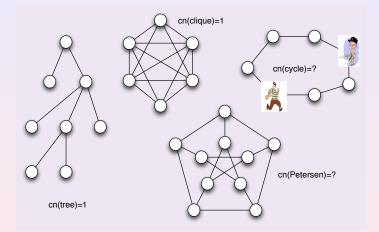
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



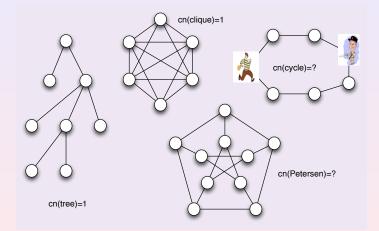
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



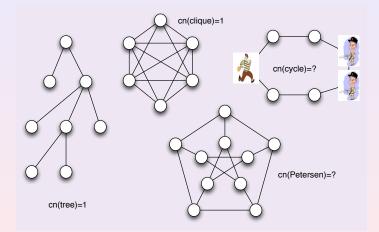
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



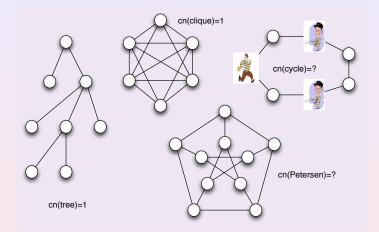
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



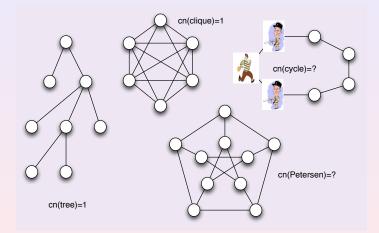
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



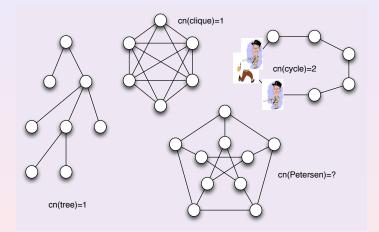
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



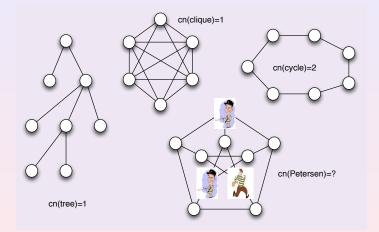
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



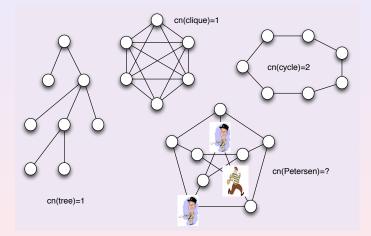
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



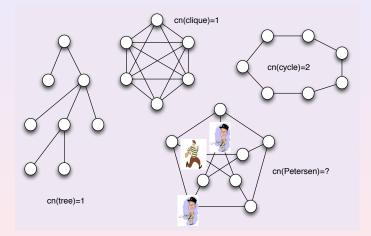
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



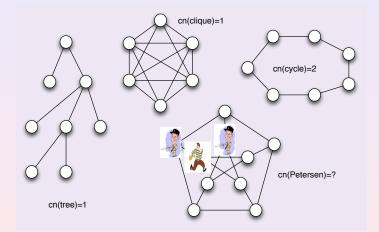
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ



N. Nisse Cops and robber games in graphs

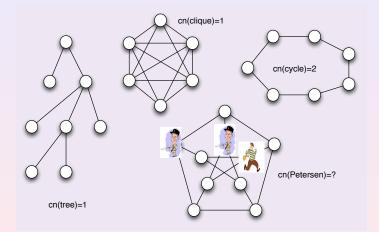


N. Nisse Cops and robber games in graphs



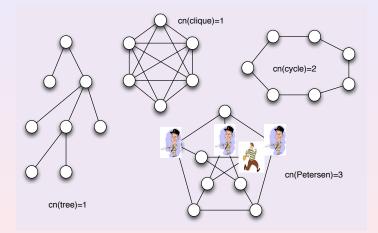
< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let's play a bit



< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let's play a bit



Easy remark: For any graph G, $cn(G) \leq \gamma(G)$ the size of a min dominating set of G.

$cn(G) = 1$ iff $V = \{v_1, \cdots, v_n\}$ and, $\forall i < n, \exists j$ dismantlable graphs)	can be checked in time $O(n^3)$

$v_n \subseteq N[v_j].$ in time $O(n^3)$
e, MacGillivray'12]
$\in EXPTIME$
i

Seminal paper: $k = 1$ $cn(G) = 1$ iff $V = \{v_1, \dots, v_n\}$ and, $\forall i < n, \exists$	[Nowakowski and Winkler; Quilliot, 1983] $j > i ext{ s.t., } N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantlable graphs)	can be checked in time $O(n^3)$
Generalization to any k [Berarducci, Intrigila'	93] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
NP-hard and W[2]-hard	[Goldstein and Reingold, 1995]
EXPTIME-complete in directed graphs NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$ expected) PSPACE-hard	

Seminal paper: $k = 1$	
	[Nowakowski and Winkler; Quilliot, 1983]
$cn(G) = 1$ iff $V = \{v_1, \cdots, v_n\}$ and, $\forall i < n, \exists j$	$> i \text{ s.t.}, N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantlable graphs)	can be checked in time $O(n^3)$
Generalization to any k [Berarducci, Intrigila'9	3] [Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k$? can be checked in time $n^{O(k)}$	\in EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
Ext Thire complete in directed graphs	
NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$ expected)	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
(i.e., no algorithm in time r (k)n (*) expected)	

Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
$cn(G) = 1$ iff $V = \{v_1, \cdots, v_n\}$ and,	$\forall i < n, \exists j > i \text{ s.t.}, N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantlable graphs)	can be checked in time $O(n^3)$
Generalization to any <i>k</i> [Berard	
$cn(G) \leq k$? can be checked in time	$e^{O(k)} \in EXPTIME$
EXPTIME-complete in directed grap	15 [Goldstein and Reingold, 1995]
ND have and W(2) have	
NP-hard and W[2]-hard (i.e., no algorithm in time $f(k)n^{O(1)}$	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010] expected)
	. ,
PSPACE-hard	[Marrian 2012]
	[Mamino 2013]
	スロアスログアス モアス モアニモ

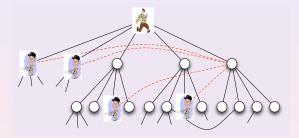
Seminal paper: $k = 1$	[Nowakowski and Winkler; Quilliot, 1983]
$cn(G) = 1$ iff $V = \{v_1, \cdots, v_n\}$ and, $\forall i < n, \exists j > 0$	$i \text{ s.t.}, N(v_i) \cap \{v_i, \cdots, v_n\} \subseteq N[v_j].$
(dismantlable graphs)	can be checked in time $O(n^3)$
Generalization to any <i>k</i> [Berarducci, Intrigila'93]	[Hahn, MacGillivray'06] [Clarke, MacGillivray'12]
$cn(G) \leq k?$ can be checked in time $n^{O(k)}$	<i>∈</i> EXPTIME
EXPTIME-complete in directed graphs	[Goldstein and Reingold, 1995]
NP-hard and W[2]-hard	[Fomin,Golovach,Kratochvil,N.,Suchan, 2010]
(i.e., no algorithm in time $f(k)n^{O(1)}$ expected)	· · · · · · · · · · · · · · · · · · ·
PSPACE-hard	[Mamino 2013]
EXPTIME-complete	[Kinnersley 2014]
	NUCIUM SECTED E

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number

G with min-degree *d* and girth $> 4 \Rightarrow cn(G) \ge d$.

[Aigner and Fromme 84]



• for any k, d, there are d-regular graphs G with $cn(G) \ge k$ [Aigner and Fromme 84

• $cn(G) \geq d^t$ in any graph with min-degree d and girth > 8t-3 [Fra

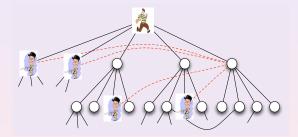
ullet for any k, there is G with diameter 2 and $\mathit{cn}(G) \geq k$ (e.g., Kneser

Graphs with high cop-number

Large girth (smallest cycle) AND large min degree \Rightarrow large cop-number

G with min-degree d and girth $> 4 \Rightarrow cn(G) \ge d$.

[Aigner and Fromme 84]



- for any k, d, there are d-regular graphs G with $cn(G) \ge k$ [Aigner and Fromme 84]
- $cn(G) \ge d^t$ in any graph with min-degree d and girth > 8t 3[Frankl 87]
- for any k, there is G with diameter 2 and $cn(G) \ge k$ (e.g., Kneser graph $KG_{3k,k}$)

 \exists *n*-node graphs with degree $\Theta(\sqrt{n})$ and girth > 4

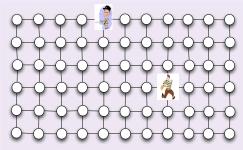
 $\Rightarrow \exists n \text{-node graphs } G \text{ with } cn(G) = \Omega(\sqrt{n})$ (e.g., projective plan, random \sqrt{n} -regular graphs)

Meyniel Conjecture

Conjecture: For any *n*-node connected graph *G*, $cn(G) = O(\sqrt{n})$ [Meyniel 85]

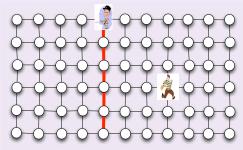
(日) (종) (종) (종) (종)

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



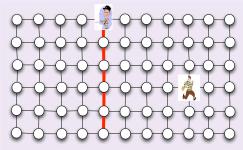
- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



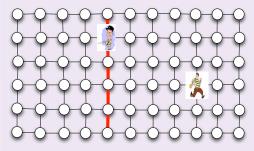
- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



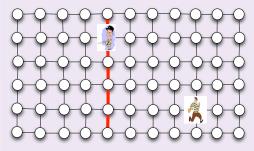
- 4 回 2 - 4 □ 2 - 4 □

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



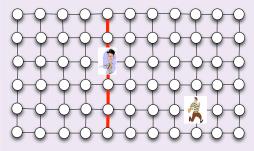
イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



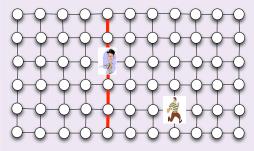
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



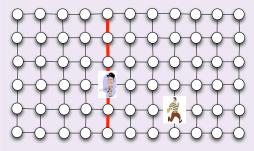
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



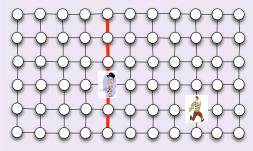
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



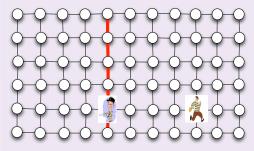
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



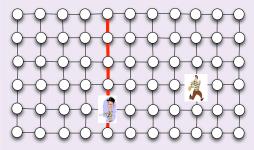
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



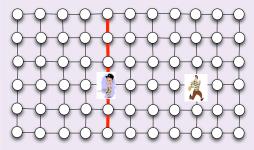
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



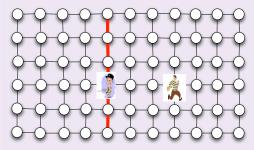
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



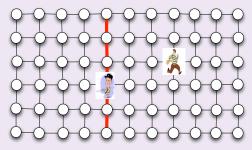
イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



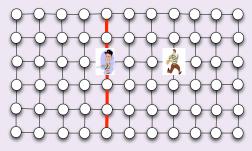
イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



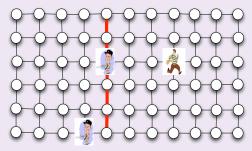
イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



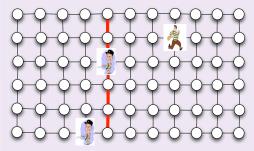
イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



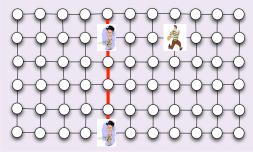
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



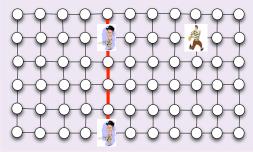
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



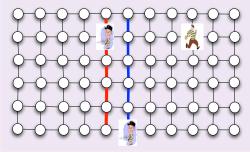
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



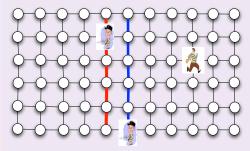
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



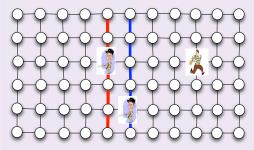
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



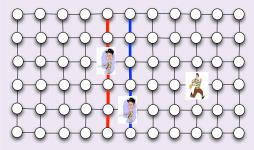
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



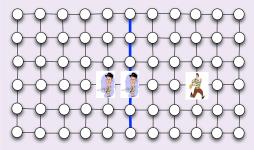
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



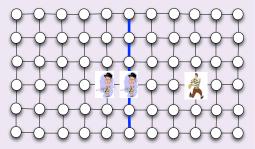
・ロン ・回 と ・ ヨ と ・ ヨ と

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



イロン イヨン イヨン イヨン

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



Lemma

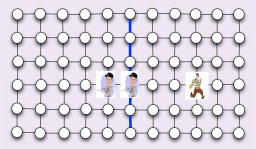
[Aigner, Fromme 1984]

▲ロ → ▲圖 → ▲ 画 → ▲ 画 →

1 Cop is sufficient to "protect" a shortest path P in any graph. (after a finite number of step, Robber cannot reach P) $\Rightarrow cn(grid) = 2$ (while $\gamma(grid) \approx n/2$)

Link with Graph Structural Properties

Reminder: For any graph G, $cn(G) \leq \gamma(G)$ the dominating number of G.



Lemma

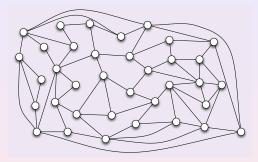
[Aigner, Fromme 1984]

イロン イヨン イヨン イヨン

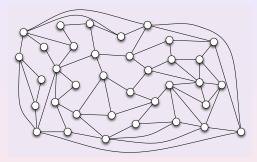
1 Cop is sufficient to "protect" a shortest path P in any graph. (after a finite number of step, Robber cannot reach P) $\Rightarrow cn(grid) = 2$ (while $\gamma(grid) \approx n/2$)

⇒ Cop-number related to both structural and metric properties

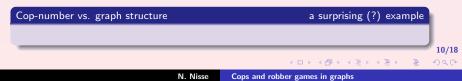
1 Cop can protect 1 shortest path: applications (1)



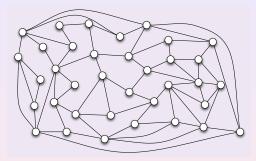
1 Cop can protect 1 shortest path: applications (1)



For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths



1 Cop can protect 1 shortest path: applications (1)



For any planar graph G (there is a drawing of G on the plane without crossing edges), there exists separators consisting of ≤ 3 shortest paths

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".



Cop-number vs. graph structure

let's go further

 $\begin{array}{l} cn(G) \leq \lfloor \frac{3g}{2} \rfloor + 3 \text{ for any graph } G \text{ with genus } \leq g \\ & \text{Conjectures [Schröder]: } cn(G) \leq g + 3? \ cn(G) \leq 3 \text{ if } G \text{ has genus } 1? \end{array}$

G is H-minor-free if no graph H as minor "generalize" bounded genus [Robertson, Seymour 83-04cn(G) < |E(H)| [Andreae, 86]

Application

[Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

"Any graph excluding K_r as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r/\Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".



Cop-number vs. graph structure

let's go further

 $cn(G) \leq \lfloor \frac{3g}{2} \rfloor + 3 \text{ for any graph } G \text{ with genus } \leq g \qquad [Schröder, 01] \\ Conjectures [Schröder]: cn(G) \leq g + 3? cn(G) \leq 3 \text{ if } G \text{ has genus } 1?$

G is H-minor-free if no graph H as minor	"generalize" bounded genus [Robertson,Seymour 83-04]
cn(G) < E(H)	[Andreae, 86]

Application

[Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

"Any graph excluding K_r as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r/\Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (2)

G with genus $\leq g$: can be drawn on a surface with $\leq g$ "handles".

Cop-number vs. graph structure

let's go further

11/18

 $cn(G) \leq \lfloor \frac{3g}{2} \rfloor + 3 \text{ for any graph } G \text{ with genus } \leq g \qquad [Schröder, 01] \\ Conjectures [Schröder]: cn(G) \leq g + 3? cn(G) \leq 3 \text{ if } G \text{ has genus } 1?$

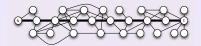
G is H -minor-free if no graph H as minor	"generalize" bounded genus [Robertson,Seymour 83-04]
cn(G) < E(H)	[Andreae, 86]

Application

[Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

"Any graph excluding K_r as a minor can be partitioned into clusters of diameter at most Δ while removing at most $O(r/\Delta)$ fraction of the edges."

1 Cop can protect 1 shortest path: applications (3)



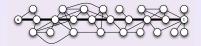
Lemma

shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph.

・ロン ・回 と ・ ヨン ・ ヨン

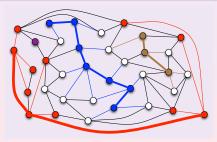
1 Cop can protect 1 shortest path: applications (3)



Lemma

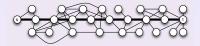
shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n/\log n$ shortest-path-caterpillar (consider a BFS)



・ロ・ ・ 日・ ・ ヨ・ ・ 日・

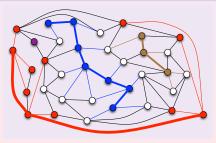
1 Cop can protect 1 shortest path: applications (3)



Lemma

shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to "protect" 1 shortest-path-caterpillar in any graph. Any graph can be partitioned in $n/\log n$ shortest-path-caterpillar (consider a BFS)



For any graph G, $cn(G) = O(n/\log n)$

[Chiniforooshan 2008]

Progress on Meyniel Conjecture

Meyniel Conjecture [85]: For any *n*-node connected graph G, $cn(G) = O(\sqrt{n})$

	сп	
dominating set $\leq k$	$\leq k$	[folklore]
treewidth $\leq t$	$\leq t/2+1$	[Joret, Kaminski,Theis 09]
chordality $\leq k$	< k	[Kosowski,Li,N.,Suchan 12]
genus $\leq g$	$\leq \lfloor \frac{3g}{2} \rfloor + 3$	$(conjecture \leq g+3)$ [Schröder, 01]
H-minor free	$ \leq \tilde{E}(H) $	[Andreae, 86]
degeneracy $\leq d$	$\leq d$	[Lu,Peng 12]
diameter 2	$O(\sqrt{n})$	_
bipartite diameter 3	$O(\sqrt{n})$	_
Erdös-Réyni graphs	$O(\sqrt{n})$	[Bollobas et al. 08] [Luczak, Pralat 10]
Power law	$O(\sqrt{n})$	(big component?) [Bonato,Pralat,Wang 07]

A long story not finished yet ...

• $cn(G) = O(\frac{n}{\log \log n})$

•
$$cn(G) = O(\frac{n}{\log n})$$

•
$$cn(G) = O(\frac{n}{2^{(1-o(1))\sqrt{\log n}}})$$

[Frankl 1987]

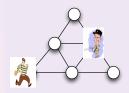
[Chiniforooshan 2008]

[Scott, Sudakov 11, Lu,Peng 12]

note that
$$rac{n}{2^{(1-o(1))\sqrt{\log n}}} \geq n^{1-\epsilon}$$
 for any $\epsilon > 0$ 13/18

When Cops and Robber can run

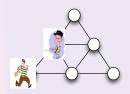
New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.



(4回) (三) (三)

When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.



When Cops and Robber can run

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.



(4回) (三) (三)

When Cops and Robber can run (Similarities)

New variant with speed: Players may move along several edges per turn $cn_{s',s}(G)$: min # of Cops with speed s' to capture Robber with speed s, $s \ge s'$.

 $\begin{array}{ll} \text{Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12]} \\ \text{extend to this variant} & \Omega(n^{\frac{s}{1+s}}) \leq c_{1,s}(G) \leq O(\frac{n}{\alpha^{(1-o(1))\sqrt{\log_{\alpha}n}}}) \text{ where } \alpha = 1+1/s \\ \end{array}$

N. Nisse Cops and robber games in graphs

(ロ) (四) (王) (日)

When Cops and Robber can run (Similarities)

G is **Cop-win** \Leftrightarrow 1 Cop sufficient to capture Robber in G

Structural characterization of Cop-win graphs for any speed s and s' [Chalopin,Chepoi,N.,Vaxès SIDMA'11] generalize seminal work of [Nowakowski,Winkler'83]

hyperbolicity δ of *G*: measures the "proximity" of the metric of *G* with a tree metric Roughly, measures the distance between shortest paths in *G*

New characterization and algorithm for hyperbolicity

● bounded hyperbolicity ⇒ one Cop can catch Robber almost twice faster

[Chalopin, Chepoi, N., Vaxès SIDMA'11]

• one Cop can capture a faster Robber \Rightarrow bounded hyperbolicity

[Chalopin,Chepoi,Papasoglu,Pecatte SIDMA'14]

・ロン ・回 と ・ ヨ と ・ ヨ と

⇒ O(1)-approx. sub-cubic-time for hyperbolicity [Chalopin,Chepoi,Papasoglu,Pecatte SIDMA'14]

When Cops and Robber can run (Differences)

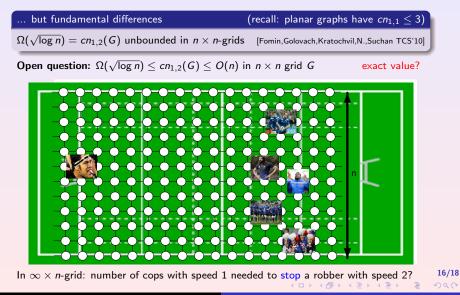
but fundamental differences	(recall: planar graphs have $cn_{1,1} \leq 3$)
$\Omega(\sqrt{\log n}) = cn_{1,2}(G)$ unbounded in $n \times n$ -grids	[Fomin,Golovach,Kratochvil,N.,Suchan TCS'10]

イロン イヨン イヨン イヨン

When Cops and Robber can run (Differences)

but fundamental differences	(recall: planar graphs have $\mathit{cn}_{1,1} \leq$ 3)
$\Omega(\sqrt{\log n}) = cn_{1,2}(G)$ unbounded in $n \times n$ -grid	s [Fomin,Golovach,Kratochvil,N.,Suchan TCS'10]
Open question: $\Omega(\sqrt{\log n}) \leq cn_{1,2}(G) \leq O(n)$	in $n \times n$ grid G exact value?

When Cops and Robber can run (Differences)



Spy Game

new rule: The robber may occupy the same vertex as Cops **new goal:** Cops must ensure that, after a finite number of steps, the Robber is always at distance at most $d \ge 0$ from a cop d is a fixed parameter.

 $g_s^d(G)$: min. # of Cops (speed one) controlling a robber with speed s at distance $\leq d$.

Rmk 1: if s = 1, it is equivalent to capture a robber at distance *d*. **Rmk 2:** Close (?) to the patrolling game [Czyzowicz et al. SIROCCO'14, ESA'11]

Preliminary results

[Cohen, Hilaire, Martins, N., Pérennes

(日) (종) (종) (종) (종)

- Computing g_3^1 is NP-hard in graph with maximum degree 5
- Computing g is PSPACE-hard in DAGs
- $g_s^d(P) = \Theta(\frac{n}{2d\frac{s}{s-1}})$ for any d, s in any *n*-node path *P*
- $g_s^d(C) = \Theta(\frac{n}{2d\frac{s+1}{s+1}})$ for any d, s in any n-node cycle C
- there exists $\epsilon > 0$ such that $g_s^d(G) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid G

new rule: The robber may occupy the same vertex as Cops **new goal:** Cops must ensure that, after a finite number of steps, the Robber is always at distance at most $d \ge 0$ from a cop d is a fixed parameter.

 $g_s^d(G)$: min. # of Cops (speed one) controlling a robber with speed s at distance $\leq d$.

Rmk 1: if s = 1, it is equivalent to capture a robber at distance *d*. **Rmk 2:** Close (?) to the patrolling game [Czyzowicz et al. SIROCCO'14, ESA'11]

Preliminary results

[Cohen, Hilaire, Martins, N., Pérennes]

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

- Computing g_3^1 is NP-hard in graph with maximum degree 5
- Computing g is PSPACE-hard in DAGs
- $g_s^d(P) = \Theta(\frac{n}{2d\frac{s}{s-1}})$ for any d, s in any *n*-node path P
- $g_s^d(C) = \Theta(\frac{n}{2d\frac{s+1}{s-1}})$ for any d, s in any *n*-node cycle C
- there exists $\epsilon > 0$ such that $g_s^d(G) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid G

Conclusion / Open problems

Meyniel Conjecture [1985]: For any *n*-node connected graph G, $cn(G) = O(\sqrt{n})$

Conjecture [Schröder'01]: $\forall n$ -node connected graph G with genus g, $cn(G) \leq g + 3$

simpler(?) questions

- $cn(G) \leq 3$ if G has genus ≤ 1 ?
- how many cops with speed 1 to capture a robber with speed 2 in a grid?
- when Cops can capture at distance?

[Bonato, Chiniforooshan, Pralat'10] [Chalopin, Chepoi, N., Vaxès'11]

Many other variants and questions...

(e.g. [Clarke'09] [Bonato, et a.'13]...)

(日) (종) (종) (종) (종)

Directed graphs ??

B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche, pages 5-37, 2004.

W. Baird and A. Bonato. Meyniel's conjecture on the cop number: a survey. http://arxiv.org/abs/1308.3385. 2013

A. Bonato and R. J. Nowakowski. The game of Cops and Robber on Graphs. American Math. Soc., 2011.