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Pursuit-Evasion Games

2-Player games

A team of mobile entities (Cops) track down another mobile entity (Robber)

Always one winner

Combinatorial Problem:
Minimizing some resource for some Player to win
e.g., minimize number of Cops to capture the Robber.

Algorithmic Problem:
Computing winning strategy (sequence of moves) for some Player
e.g., compute strategy for Cops to capture Robber/Robber to avoid the capture

natural applications: coordination of mobile autonomous agents
(Robotic, Network Security, Information Seeking...)

but also: Graph Theory, Models of Computation, Logic, Routing...
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Pursuit-Evasion: Over-simplified Classification

Differential Games
[Basar,Oldser'99]

Combinatorial approach
[Chung, Hollinger,Isler'11]

continuous environments
(polygone, plane...)

[Guibas,Latombe,LaValle,Lin,Motwani'99]

Graphs

Randomized 
Stategies

Deterministic 
Stategies

Distributed
Algorithms

Centralized 
Algorithms

Graph Searching games
(algorithmic interpretation of 

treewidth/pathwidth)

Cops and Robber gamesLion and Man
[Littlewood'53]

Hunter and Rabbit
 [Isler et al.]

Today: focus on Cops and Robber games

Goal of this talk: illustrate that studying Pursuit-Evasion games helps

Offer new approaches for several structural graph properties

Models for studying several practical problems

Fun and intriguing questions
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Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game

1 Place k ≥ 1 Cops C on nodes

2 Visible Robber R at one node

3 Turn by turn
(1) each C slides along ≤ 1 edge
(2) R slides along ≤ 1 edge

Goal of the C&R game

Robber must avoid the Cops

Cops must capture Robber (i.e.,
occupy the same node)

Cop Number of a graph G

cn(G): min # Cops to win in G
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Let’s play a bit

Easy remark: For any graph G , cn(G) ≤ γ(G) the size of a min dominating set of G .
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Let’s play a bit
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cn(Petersen)=?

Easy remark: For any graph G , cn(G) ≤ γ(G) the size of a min dominating set of G .
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Let’s play a bit

cn(tree)=1

cn(clique)=1

cn(cycle)=2

cn(Petersen)=3

Easy remark: For any graph G , cn(G) ≤ γ(G) the size of a min dominating set of G .
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Complexity: a graph G , cn(G ) ≤ k?

Seminal paper: k = 1 [Nowakowski and Winkler; Quilliot, 1983]

cn(G) = 1 iff V = {v1, · · · , vn} and, ∀i < n, ∃j > i s.t., N(vi ) ∩ {vi , · · · , vn} ⊆ N[vj ].

(dismantlable graphs) can be checked in time O(n3)

Generalization to any k [Berarducci, Intrigila’93] [Hahn, MacGillivray’06] [Clarke, MacGillivray’12]

cn(G) ≤ k? can be checked in time nO(k) ∈ EXPTIME

EXPTIME-complete in directed graphs [Goldstein and Reingold, 1995]

NP-hard and W[2]-hard [Fomin,Golovach,Kratochvil,N.,Suchan, 2010]

(i.e., no algorithm in time f (k)nO(1) expected)

PSPACE-hard [Mamino 2013]

EXPTIME-complete [Kinnersley 2014]
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Graphs with high cop-number

Large girth (smallest cycle) AND large min degree ⇒ large cop-number

G with min-degree d and girth > 4 ⇒ cn(G) ≥ d . [Aigner and Fromme 84]

for any k, d , there are d-regular graphs G with cn(G) ≥ k [Aigner and Fromme 84]

cn(G) ≥ d t in any graph with min-degree d and girth > 8t − 3 [Frankl 87]

for any k, there is G with diameter 2 and cn(G) ≥ k (e.g., Kneser graph KG3k,k )
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Meyniel Conjecture

∃ n-node graphs with degree Θ(
√
n) and girth > 4

⇒ ∃ n-node graphs G with cn(G) = Ω(
√
n)

(e.g., projective plan, random
√
n-regular graphs)

Meyniel Conjecture

Conjecture: For any n-node connected graph G , cn(G) = O(
√
n) [Meyniel 85]
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Link with Graph Structural Properties

Reminder: For any graph G , cn(G) ≤ γ(G) the dominating number of G .

Lemma [Aigner, Fromme 1984]

1 Cop is sufficient to “protect” a shortest path P in any graph.
(after a finite number of step, Robber cannot reach P)

⇒ cn(grid) = 2 (while γ(grid) ≈ n/2)

⇒ Cop-number related to both structural and metric properties
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1 Cop can protect 1 shortest path: applications (1)

For any planar graph G (there is a drawing of G on the plane without crossing edges),
there exists separators consisting of ≤ 3 shortest paths

Cop-number vs. graph structure a surprising (?) example

cn(G) ≤ 3 for any planar graph G [Aigner and Fromme 84]
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1 Cop can protect 1 shortest path: applications (2)
G with genus ≤ g : can be drawn on a surface with ≤ g “handles”.

Cop-number vs. graph structure let’s go further

cn(G) ≤ b 3g
2
c+ 3 for any graph G with genus ≤ g [Schröder, 01]

Conjectures [Schröder]: cn(G) ≤ g + 3? cn(G) ≤ 3 if G has genus 1?

G is H-minor-free if no graph H as minor “generalize” bounded genus [Robertson,Seymour 83-04]

cn(G) < |E(H)| [Andreae, 86]

Application [Abraham,Gavoille,Gupta,Neiman,Tawar, STOC 14]

“Any graph excluding Kr as a minor can be partitioned into clusters of diameter at
most ∆ while removing at most O(r/∆) fraction of the edges.”
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1 Cop can protect 1 shortest path: applications (3)

s t

Lemma shortest-path-caterpillar = closed neighborhood of a shortest path [Chiniforooshan 2008]

5 Cop are sufficient to “protect” 1 shortest-path-caterpillar in any graph.

Any graph can be partitioned in n/ log n shortest-path-caterpillar (consider a BFS)

For any graph G , cn(G) = O(n/ log n) [Chiniforooshan 2008]
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Progress on Meyniel Conjecture
Meyniel Conjecture [85]: For any n-node connected graph G , cn(G) = O(

√
n)

cn
dominating set ≤ k ≤ k [folklore]

treewidth ≤ t ≤ t/2 + 1 [Joret, Kaminski,Theis 09]

chordality ≤ k < k [Kosowski,Li,N.,Suchan 12]

genus ≤ g ≤ b 3g
2
c+ 3 (conjecture ≤ g + 3) [Schröder, 01]

H-minor free ≤ |E(H)| [Andreae, 86]

degeneracy ≤ d ≤ d [Lu,Peng 12]

diameter 2 O(
√
n) −

bipartite diameter 3 O(
√
n) −

Erdös-Réyni graphs O(
√
n) [Bollobas et al. 08] [Luczak, Pralat 10]

Power law O(
√
n) (big component?) [Bonato,Pralat,Wang 07]

A long story not finished yet...

cn(G) = O( n
log log n

) [Frankl 1987]

cn(G) = O( n
log n

) [Chiniforooshan 2008]

cn(G) = O( n

2(1−o(1))
√

log n
) [Scott, Sudakov 11, Lu,Peng 12]

note that n

2(1−o(1))
√

log n
≥ n1−ε for any ε > 0
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When Cops and Robber can run

New variant with speed: Players may move along several edges per turn
cns′,s(G): min # of Cops with speed s′ to capture Robber with speed s, s ≥ s′.

Meyniel Conjecture [Alon, Mehrabian’11] and general upper bound [Frieze,Krivelevich,Loh’12]

extend to this variant Ω(n
s

1+s ) ≤ c1,s(G) ≤ O( n

α(1−o(1))
√

logα n
) where α = 1 + 1/s
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When Cops and Robber can run (Similarities)
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When Cops and Robber can run (Similarities)

G is Cop-win ⇔ 1 Cop sufficient to capture Robber in G

Structural characterization of Cop-win graphs for any speed s and s′

[Chalopin,Chepoi,N.,Vaxès SIDMA’11]

generalize seminal work of [Nowakowski,Winkler’83]

hyperbolicity δ of G : measures the “proximity” of the metric of G with a tree metric
Roughly, measures the distance between shortest paths in G

New characterization and algorithm for hyperbolicity

bounded hyperbolicity ⇒ one Cop can catch Robber almost twice faster
[Chalopin,Chepoi,N.,Vaxès SIDMA’11]

one Cop can capture a faster Robber ⇒ bounded hyperbolicity
[Chalopin,Chepoi,Papasoglu,Pecatte SIDMA’14]

⇒ O(1)-approx. sub-cubic-time for hyperbolicity [Chalopin,Chepoi,Papasoglu,Pecatte

SIDMA’14]

N. Nisse Cops and robber games in graphs



16/18

When Cops and Robber can run (Differences)

... but fundamental differences (recall: planar graphs have cn1,1 ≤ 3)

Ω(
√

log n) = cn1,2(G) unbounded in n × n-grids [Fomin,Golovach,Kratochvil,N.,Suchan TCS’10]

Open question: Ω(
√

log n) ≤ cn1,2(G) ≤ O(n) in n × n grid G exact value?

n

In ∞× n-grid: number of cops with speed 1 needed to stop a robber with speed 2?
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Spy Game

new rule: The robber may occupy the same vertex as Cops
new goal: Cops must ensure that, after a finite number of steps, the Robber is always
at distance at most d ≥ 0 from a cop d is a fixed parameter.

gd
s (G): min. # of Cops (speed one) controlling a robber with speed s at distance ≤ d .

Rmk 1: if s = 1, it is equivalent to capture a robber at distance d .
Rmk 2: Close (?) to the patrolling game [Czyzowicz et al. SIROCCO’14, ESA’11]

Preliminary results [Cohen,Hilaire,Martins,N.,Pérennes]

Computing g1
3 is NP-hard in graph with maximum degree 5

Computing g is PSPACE-hard in DAGs

gd
s (P) = Θ( n

2d s
s−1

) for any d , s in any n-node path P

gd
s (C) = Θ( n

2d s+1
s−1

) for any d , s in any n-node cycle C

there exists ε > 0 such that gd
s (G) = Ω(n1+ε) in any n × n grid G
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Conclusion / Open problems

Meyniel Conjecture [1985]: For any n-node connected graph G , cn(G) = O(
√
n)

Conjecture [Schröder’01]: ∀n-node connected graph G with genus g , cn(G) ≤ g + 3

simpler(?) questions

cn(G) ≤ 3 if G has genus ≤ 1?

how many cops with speed 1 to capture a robber with speed 2 in a grid?

when Cops can capture at distance?
[Bonato,Chiniforooshan,Pralat’10] [Chalopin,Chepoi,N.,Vaxès’11]

Many other variants and questions... (e.g. [Clarke’09] [Bonato, et a.’13]...)

Directed graphs ??

B. Alspach. Searching and sweeping graphs: a brief survey. In Le Matematiche, pages 5-37, 2004.
W. Baird and A. Bonato. Meyniel’s conjecture on the cop number: a survey. http://arxiv.org/abs/1308.3385. 2013
A. Bonato and R. J. Nowakowski. The game of Cops and Robber on Graphs. American Math. Soc., 2011.
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