List-coloring in claw-free perfect graphs

Lucas Pastor

Joint-work with Sylvain Gravier and Frédéric Maffray

$$
\text { JGA } 2015
$$

04/11/15

Coloring

Given a graph G, a (proper) k-coloring of the vertices of G is a mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ for which every pair of adjacent vertices x, y satisfies $c(x) \neq c(y)$.

Coloring

Given a graph G, a (proper) k-coloring of the vertices of G is a mapping $c: V(G) \rightarrow\{1,2, \ldots, k\}$ for which every pair of adjacent vertices x, y satisfies $c(x) \neq c(y)$.

Chromatic number

The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G admits a k-coloring.

List-coloring

- Let G be a graph. Every vertex $v \in V(G)$ has a list $L(v)$ of prescribed colors, we want to find a proper vertex-coloring c such that $c(v) \in L(v)$.

List-coloring

- Let G be a graph. Every vertex $v \in V(G)$ has a list $L(v)$ of prescribed colors, we want to find a proper vertex-coloring c such that $c(v) \in L(v)$.
- When such a coloring exists, G is L-colorable.

List-coloring

- Let G be a graph. Every vertex $v \in V(G)$ has a list $L(v)$ of prescribed colors, we want to find a proper vertex-coloring c such that $c(v) \in L(v)$.
- When such a coloring exists, G is L-colorable.

Choice number

The choice number $\operatorname{ch}(G)$ of a graph G is the smallest k such that for every list assignment L of size k, the graph G is L-colorable.

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Chromatic inequality

We have $\chi(G) \leq c h(G)$ for every graph G. There are graphs for which $\chi(G) \neq \operatorname{ch}(G)$ (in fact, the gap can be arbitrarily large).

Vizing's conjecture

For every graph $G, \chi(\mathcal{L}(G))=\operatorname{ch}(\mathcal{L}(G))$. In other words, $\chi^{\prime}(G)=c h^{\prime}(G)$ with $c h^{\prime}(G)$ the list chromatic index of G.

Vizing's conjecture

For every graph $G, \chi(\mathcal{L}(G))=c h(\mathcal{L}(G))$. In other words, $\chi^{\prime}(G)=c h^{\prime}(G)$ with $c h^{\prime}(G)$ the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]
For every claw-free graph $G, \chi(G)=c h(G)$.

Vizing's conjecture

For every graph $G, \chi(\mathcal{L}(G))=c h(\mathcal{L}(G))$. In other words, $\chi^{\prime}(G)=c h^{\prime}(G)$ with $c h^{\prime}(G)$ the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]
For every claw-free graph $G, \chi(G)=\operatorname{ch}(G)$.

Special case

We are interested in the case where G is perfect.

Vizing's conjecture

For every graph $G, \chi(\mathcal{L}(G))=c h(\mathcal{L}(G))$. In other words, $\chi^{\prime}(G)=c h^{\prime}(G)$ with $c h^{\prime}(G)$ the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]
For every claw-free graph $G, \chi(G)=\operatorname{ch}(G)$.

Special case

We are interested in the case where G is perfect.
Theorem [Gravier, Maffray, P.]
Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\chi(G)=\operatorname{ch}(G)$.

Perfect graph

A graph G is called perfect if for every induced subgraph H of G, $\chi(H)=\omega(H)$.

Perfect graph

A graph G is called perfect if for every induced subgraph H of G, $\chi(H)=\omega(H)$.

Strong Perfect Graph Theorem

A graph G is perfect if and only if G does not contain an odd hole nor an odd antihole.

Claw-free graph

The claw is the graph $K_{1,3}$. A graph is said to be claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

Claw-free graph

The claw is the graph $K_{1,3}$. A graph is said to be claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

Theorem [Chvátal and Sbihi, 1988]

Every claw-free perfect graph either has a clique-cutset, or is a peculiar graph, or is an elementary graph.

peculiar

elementary

---------.

- complete adjacency

Theorem [Maffray and Reed, 1999]
A graph G is elementary if and only if it is an augmentation of the line-graph H (called the skeleton of G) of a bipartite multigraph B (called the root graph of G).

Theorem [Gravier, Maffray, P.]
Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\chi(G)=c h(G)$.

Lemma

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Lemma

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Lemma

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

Theorem [Galvin, 1994]
Let G be the line-graph of a bipartite multigraph. Then $\chi(G)=c h(G)$.

Theorem [Galvin, 1994]
Let G be the line-graph of a bipartite multigraph. Then $\chi(G)=c h(G)$.

Proof for the elementary graphs

Theorem [Galvin, 1994]
Let G be the line-graph of a bipartite multigraph. Then $\chi(G)=c h(G)$.

Proof for the elementary graphs

- By induction on the number h of augmented flat edges

Theorem [Galvin, 1994]

Let G be the line-graph of a bipartite multigraph. Then $\chi(G)=c h(G)$.

Proof for the elementary graphs

- By induction on the number h of augmented flat edges
- If $h=0$, by Galvin's theorem the base case is verified

Theorem [Galvin, 1994]

Let G be the line-graph of a bipartite multigraph. Then $\chi(G)=\operatorname{ch}(G)$.

Proof for the elementary graphs

- By induction on the number h of augmented flat edges
- If $h=0$, by Galvin's theorem the base case is verified
- We show that we can always extend the coloring to the last augmented flat edge

Hypothesis of the main theorem

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph
- We want to extend this coloring to G_{2}

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph
- We want to extend this coloring to G_{2}

Proof of the main theorem

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph
- We want to extend this coloring to G_{2}

Proof of the main theorem

- The colors on C are forced by the coloring of G_{1}

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph
- We want to extend this coloring to G_{2}

Proof of the main theorem

- The colors on C are forced by the coloring of G_{1}
- This is equivalent to reducing the list size on the vertices of C

Hypothesis of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \backslash C$ has a two disjoint set of vertices A_{1} and A_{2}
- Let $G_{1}=G\left[C \cup A_{1}\right]$ and $G_{2}=G\left[C \cup A_{2}\right]$
- Suppose that G_{1} is colored and that G_{2} is an elementary graph
- We want to extend this coloring to G_{2}

Proof of the main theorem

- The colors on C are forced by the coloring of G_{1}
- This is equivalent to reducing the list size on the vertices of C
- Thanks to a Galvin's argument, we can show that G_{2} is list-colorable with restriction of the list size of C

Perspectives
 Prove it for the general case! Or disprove it?!

Perspectives

Prove it for the general case! Or disprove it?!

A word on our method

Perspectives

Prove it for the general case! Or disprove it?!

A word on our method

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.

Perspectives

Prove it for the general case! Or disprove it?!

A word on our method

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.

Perspectives

Prove it for the general case! Or disprove it?!

A word on our method

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.
- We tried Galvin like arguments without any success.

Perspectives

Prove it for the general case! Or disprove it?!

A word on our method

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.
- We tried Galvin like arguments without any success.
- What about peculiar graphs?

Thank you for listening.

