List-coloring in claw-free perfect graphs

Lucas Pastor

Joint-work with Sylvain Gravier and Frédéric Maffray

JGA 2015

04/11/15

Coloring

Given a graph G, a (proper) k-coloring of the vertices of G is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$ for which every pair of adjacent vertices x, y satisfies $c(x) \neq c(y)$.

Coloring

Given a graph G, a (proper) k-coloring of the vertices of G is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$ for which every pair of adjacent vertices x, y satisfies $c(x) \neq c(y)$.

Chromatic number

The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k such that G admits a k-coloring.

 Let G be a graph. Every vertex v ∈ V(G) has a list L(v) of prescribed colors, we want to find a proper vertex-coloring c such that c(v) ∈ L(v).

- Let G be a graph. Every vertex v ∈ V(G) has a list L(v) of prescribed colors, we want to find a proper vertex-coloring c such that c(v) ∈ L(v).
- When such a coloring exists, G is L-colorable.

- Let G be a graph. Every vertex v ∈ V(G) has a list L(v) of prescribed colors, we want to find a proper vertex-coloring c such that c(v) ∈ L(v).
- When such a coloring exists, G is L-colorable.

Choice number

The choice number ch(G) of a graph G is the smallest k such that for every list assignment L of size k, the graph G is L-colorable.

Chromatic inequality

Chromatic inequality

Chromatic inequality

Chromatic inequality

Chromatic inequality

Chromatic inequality

Chromatic inequality

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]

For every claw-free graph G, $\chi(G) = ch(G)$.

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]

For every claw-free graph G, $\chi(G) = ch(G)$.

Special case

We are interested in the case where G is perfect.

For every graph G, $\chi(\mathcal{L}(G)) = ch(\mathcal{L}(G))$. In other words, $\chi'(G) = ch'(G)$ with ch'(G) the list chromatic index of G.

Conjecture [Gravier and Maffray, 1997]

For every claw-free graph G, $\chi(G) = ch(G)$.

Special case

We are interested in the case where G is perfect.

Theorem [Gravier, Maffray, P.]

Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\chi(G) = ch(G)$.

Perfect graph

A graph G is called perfect if for every induced subgraph H of G, $\chi(H) = \omega(H)$.

Perfect graph

A graph G is called perfect if for every induced subgraph H of G, $\chi(H) = \omega(H)$.

Strong Perfect Graph Theorem

A graph G is perfect if and only if G does not contain an odd hole nor an odd antihole.

Claw-free graph

The claw is the graph $K_{1,3}$. A graph is said to be claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

Claw-free graph

The claw is the graph $K_{1,3}$. A graph is said to be claw-free if it has no induced subgraph isomorphic to $K_{1,3}$.

Theorem [Chvátal and Sbihi, 1988]

Every claw-free perfect graph either has a clique-cutset, or is a peculiar graph, or is an elementary graph.

Theorem [Maffray and Reed, 1999]

A graph G is elementary if and only if it is an augmentation of the line-graph H (called the **skeleton** of G) of a bipartite multigraph B (called the **root** graph of G).

Theorem [Gravier, Maffray, P.]

Let G be a claw-free perfect graph with $\omega(G) \leq 4$. Then $\chi(G) = ch(G)$.

Lemma

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Lemma

Let G be a connected claw-free perfect graph that contains a peculiar subgraph. Then G is peculiar.

Lemma

Let G be a peculiar graph with $\omega(G) \leq 4$ (unique in this case). Then G is 4-choosable.

Let G be the line-graph of a bipartite multigraph. Then $\chi(G) = ch(G)$.

Let G be the line-graph of a bipartite multigraph. Then $\chi(G) = ch(G)$.

Proof for the elementary graphs

Let G be the line-graph of a bipartite multigraph. Then $\chi(G) = ch(G)$.

Proof for the elementary graphs

• By induction on the number *h* of augmented flat edges

Let G be the line-graph of a bipartite multigraph. Then $\chi(G) = ch(G)$.

Proof for the elementary graphs

- By induction on the number *h* of augmented flat edges
- If h = 0, by Galvin's theorem the base case is verified

Let G be the line-graph of a bipartite multigraph. Then $\chi(G) = ch(G)$.

Proof for the elementary graphs

- By induction on the number *h* of augmented flat edges
- If h = 0, by Galvin's theorem the base case is verified
- We show that we can always extend the coloring to the last augmented flat edge

• Let G be a claw-free perfect graph and C a clique cutset.

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph
- We want to extend this coloring to G_2

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph
- We want to extend this coloring to G_2

Proof of the main theorem

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph
- We want to extend this coloring to G_2

Proof of the main theorem

• The colors on C are forced by the coloring of G_1

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph
- We want to extend this coloring to G₂

Proof of the main theorem

- The colors on C are forced by the coloring of G₁
- This is equivalent to reducing the list size on the vertices of C

- Let G be a claw-free perfect graph and C a clique cutset.
- The graph $G \setminus C$ has a two disjoint set of vertices A_1 and A_2
- Let $G_1 = G[C \cup A_1]$ and $G_2 = G[C \cup A_2]$
- Suppose that G_1 is colored and that G_2 is an elementary graph
- We want to extend this coloring to G_2

Proof of the main theorem

- The colors on C are forced by the coloring of G_1
- This is equivalent to reducing the list size on the vertices of C
- Thanks to a Galvin's argument, we can show that G_2 is list-colorable with restriction of the list size of C

Prove it for the general case! Or disprove it?!

Prove it for the general case! Or disprove it?!

Prove it for the general case! Or disprove it?!

A word on our method

• Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.

Prove it for the general case! Or disprove it?!

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.

Prove it for the general case! Or disprove it?!

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.
- We tried Galvin like arguments without any success.

Prove it for the general case! Or disprove it?!

- Proving that elementary graphs are chromatic-choosable by induction on the number of augmented flat edges gives us interesting tools for the extension of a coloring to an elementary graph.
- It seems to be hard to use this trick for the general case.
- We tried Galvin like arguments without any success.
- What about peculiar graphs?

Thank you for listening.