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Coloring

Coloring
Given a graph G , a (proper) k-coloring of the vertices of G is a mapping
c : V (G)→ {1, 2, . . . , k} for which every pair of adjacent vertices x , y
satisfies c(x) 6= c(y).

Chromatic number
The chromatic number of G , denoted by χ(G), is the smallest integer k
such that G admits a k-coloring.
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List-coloring

List-coloring
Let G be a graph. Every vertex v ∈ V (G) has a list L(v) of
prescribed colors, we want to find a proper vertex-coloring c such that
c(v) ∈ L(v).

When such a coloring exists, G is L-colorable.

Choice number
The choice number ch(G) of a graph G is the smallest k such that for
every list assignment L of size k, the graph G is L-colorable.
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List-coloring

Chromatic inequality
We have χ(G) ≤ ch(G) for every graph G . There are graphs for which
χ(G) 6= ch(G) (in fact, the gap can be arbitrarily large).
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List-coloring

Vizing’s conjecture
For every graph G , χ(L(G)) = ch(L(G)). In other words, χ′(G) = ch′(G)
with ch′(G) the list chromatic index of G .

Conjecture [Gravier and Maffray, 1997]
For every claw-free graph G , χ(G) = ch(G).

Special case
We are interested in the case where G is perfect.

Theorem [Gravier, Maffray, P.]
Let G be a claw-free perfect graph with ω(G) ≤ 4. Then χ(G) = ch(G).
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Perfect graph

Perfect graph
A graph G is called perfect if for every induced subgraph H of G ,
χ(H) = ω(H).

Strong Perfect Graph Theorem
A graph G is perfect if and only if G does not contain an odd hole nor an
odd antihole.
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Claw-free perfect graph

Claw-free graph
The claw is the graph K1,3. A graph is said to be claw-free if it has no
induced subgraph isomorphic to K1,3.
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Claw-free perfect graph

Theorem [Chvátal and Sbihi, 1988]
Every claw-free perfect graph either has a clique-cutset, or is a peculiar
graph, or is an elementary graph.
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Peculiar graph

A3

A2

A1

B1

B3

B2

Q1Q2

Q3

clique

at least one non-edge

complete adjacency
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Elementary graph

Theorem [Maffray and Reed, 1999]
A graph G is elementary if and only if it is an augmentation of the
line-graph H (called the skeleton of G) of a bipartite multigraph B (called
the root graph of G).
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Theorem and sketch of the proof

Theorem [Gravier, Maffray, P.]
Let G be a claw-free perfect graph with ω(G) ≤ 4. Then χ(G) = ch(G).
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Theorem and sketch of the proof

Lemma
Let G be a connected claw-free perfect graph that contains a peculiar
subgraph. Then G is peculiar.

Lemma
Let G be a peculiar graph with ω(G) ≤ 4 (unique in this case). Then G is
4-choosable.
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Theorem and sketch of the proof

Theorem [Galvin, 1994]
Let G be the line-graph of a bipartite multigraph. Then χ(G) = ch(G).

Proof for the elementary graphs
By induction on the number h of augmented flat edges
If h = 0, by Galvin’s theorem the base case is verified
We show that we can always extend the coloring to the last
augmented flat edge
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Theorem and sketch of the proof

Hypothesis of the main theorem

Let G be a claw-free perfect graph and C a clique cutset.
The graph G \ C has a two disjoint set of vertices A1 and A2

Let G1 = G [C ∪ A1] and G2 = G [C ∪ A2]
Suppose that G1 is colored and that G2 is an elementary graph
We want to extend this coloring to G2

Proof of the main theorem
The colors on C are forced by the coloring of G1

This is equivalent to reducing the list size on the vertices of C
Thanks to a Galvin’s argument, we can show that G2 is list-colorable
with restriction of the list size of C
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Conclusion and perspectives

Perspectives
Prove it for the general case! Or disprove it?!

A word on our method
Proving that elementary graphs are chromatic-choosable by induction
on the number of augmented flat edges gives us interesting tools for
the extension of a coloring to an elementary graph.
It seems to be hard to use this trick for the general case.
We tried Galvin like arguments without any success.
What about peculiar graphs?
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Conclusion and perspectives

Thank you for listening.
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