<u>Claire Pennarun</u> Joint work with Paul Dorbec and Antonio Gonzalez

LaBRI, Université de Bordeaux Universidad de Cadiz

JGA, Orléans, 6 novembre 2015

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set <u>S</u> (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set *S* (captors).
- N[S] = M
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \to M \cup \{x\}.$

Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

is NP-complete for planar graphs [Guo et al. '05]

Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex *v* separating *G* in two connected components *G'* and *G''* with $\delta_{G'}(v) \ge 2$ and $\delta_{G'}(v) \ge 2$.

Power-dominating set

Input: A (undirected) graph G = (V, E), an integer $k \ge 0$. **Question**: Is there a power-dominating set $S \subseteq V$ with $|S| \le k$?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex v separating G in two connected components G' and G'' with $\delta_{G'}(v) \ge 2$ and $\delta_{G'}(v) \ge 2$.

 \rightarrow restrict to triangulations: no cut-vertex!

[Matheson & Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of *M* "on the boundary" has ≥ 2 neighbors in \overline{M} .

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of *M* "on the boundary" has ≥ 2 neighbors in \overline{M} .

Tight graphs with $\gamma_P(G) = \frac{n}{6}$: each induced octahedron needs a captor.

[Matheson & Tarjan '96]

 $\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order *n* (conjecture: $\frac{n}{4}$)

Tight graphs with $\gamma(G) = \frac{n}{4}$: each induced K_4 needs a vertex in *S*.

Power domination: propagation stops when every vertex of M "on the boundary" has ≥ 2 neighbors in \overline{M} .

Tight graphs with $\gamma_P(G) = \frac{n}{6}$: each induced octahedron needs a captor.

Main Theorem

$$\gamma_P(G) \le \frac{n-2}{4}$$
 if *G* is a triangulation with $n \ge 6$ vertices.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

Isolated octahedron: select a vertex of the outer face in S

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

Isolated octahedron: select a vertex of the outer face in S

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

Isolated octahedron: select a vertex of the outer face in S

5/9

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

Isolated octahedron: select a vertex of the outer face in S

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

2 octahedra sharing a vertex: Select it in ${\color{black} S}$

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

2 octahedra sharing a vertex: Select it in ${\color{black} S}$

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

2 octahedra sharing a vertex: Select it in ${\color{black} S}$

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

2 octahedra sharing a vertex: Select it in ${\cal S}$

- Monitor the octahedrons, and propagate.
- For every vertex v in M
 in decreasing degree
 (in G) order: if adding v
 to S adds at least 4
 vertices in M (with
 propagation):
 add v to S.
 No vertex selected:
 stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

- Monitor the octahedrons, and propagate.
- For every vertex v in M in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

The graph G[M] satisfies the following properties:
(a) G[M] has maximum degree at most 2.

(b) Each connected component of $G[\overline{M}]$ has at most three vertices.

- (a) $G[\overline{M}]$ has maximum degree at most 2. (Otherwise, if *u* has degree ≥ 3 , take *u* in **S**)
- (b) Each connected component of $G[\overline{M}]$ has at most three vertices.

- (a) $G[\overline{M}]$ has maximum degree at most 2. (Otherwise, if *u* has degree ≥ 3 , take *u* in **S**)
- (b) Each connected component of $G[\overline{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)

- (a) $G[\overline{M}]$ has maximum degree at most 2. (Otherwise, if *u* has degree ≥ 3 , take *u* in **S**)
- (b) Each connected component of $G[\overline{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
- \rightarrow A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

- (a) $G[\overline{M}]$ has maximum degree at most 2. (Otherwise, if *u* has degree ≥ 3 , take *u* in **S**)
- (b) Each connected component of $G[\overline{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
- \rightarrow A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

- (a) $G[\overline{M}]$ has maximum degree at most 2. (Otherwise, if *u* has degree ≥ 3 , take *u* in **S**)
- (b) Each connected component of $G[\overline{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
- \rightarrow A connected component of $G[\overline{M}]$ is isomorphic to K_3 , P_3 , P_2 or K_1 .

Global technique used for all cases: try to build *G* around the hypothetical connected component.

(Some) Tools used in this (long) proof:

- planarity (contradiction with Euler's formula)
- contradiction with the conditions to choose a vertex in *S* : maximal degree or contribution of each vertex
- induction reasoning

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size:

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

Adding
$$x_2$$
 to *S*:
 $\gamma_P(G) \le \frac{n_1 + n_2 - 4}{4} + 1 = \frac{n_1 + n_2}{4}$
and $\frac{n_1 + n_2}{4} < \frac{n - 2}{4}$

Power-domination in triangulations

If a connected component of $G[\overline{M}]$ is isomorphic to P_3 , then *G* is isomorphic to:

 G_1 and G_2 have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size: $\gamma_P(G_1) \le \frac{n_1 - 2}{4}$ $\gamma_P(G_2) \le \frac{n_2 - 2}{4}$

Adding
$$x_2$$
 to *S*:
 $\gamma_P(G) \le \frac{n_1 + n_2 - 4}{4} + 1 = \frac{n_1 + n_2}{4}$
and $\frac{n_1 + n_2}{4} < \frac{n - 2}{4}$

Power-domination in triangulations

OPEN QUESTIONS

- Can we do better than $\frac{n-2}{4}$? (the lower bound is $\frac{n}{6}$...)
- Is the decision problem NP-Complete for triangulations?

OPEN QUESTIONS

- Can we do better than $\frac{n-2}{4}$? (the lower bound is $\frac{n}{6}$...)
- Is the decision problem NP-Complete for triangulations?

Thank you!