Power-domination in triangulations

Claire Pennarun
Joint work with Paul Dorbec and Antonio Gonzalez

LaBRI, Université de Bordeaux
Universidad de Cadiz

JGA, Orléans, 6 novembre 2015

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power-domination in triangulations

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power-domination in triangulations

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

$$
\begin{aligned}
\gamma_{P}(G) & \leq 3 \\
\gamma_{P}(G) & \leq 2
\end{aligned}
$$

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Power domination

Control the world a system with a minimal number of captors [Baldwin et al. '91, '93]

- Some vertices in a starting set S (captors).
- $N[S]=M$
- (propagation step) $u \in M$. If $v \in N(u)$ is the only vertex outside $N[u] \cup M: M \rightarrow M \cup\{x\}$.
S is a power dominating set (PDS) if $M=V(G)$ at the end. $\gamma_{P}(G)$ (power domination number of G): minimum size of a PDS.

Some known results

Power-dominating set
Input: A (undirected) graph $G=(V, E)$, an integer $k \geq 0$.
Question: Is there a power-dominating set $S \subseteq V$ with $|S| \leq k$?
is NP-complete for planar graphs [Guo et al. '05]

Some known results

Power-dominating set
Input: A (undirected) graph $G=(V, E)$, an integer $k \geq 0$.
Question: Is there a power-dominating set $S \subseteq V$ with $|S| \leq k$?
is NP-complete for planar graphs [Guo et al. '05]
"Problem" with planar graphs: vertex v separating G in two connected components G^{\prime} and $G^{\prime \prime}$ with $\delta_{G^{\prime}}(v) \geq 2$ and $\delta_{G^{\prime}}(v) \geq 2$.

Some known results

Power-dominating set
Input: A (undirected) graph $G=(V, E)$, an integer $k \geq 0$.
Question: Is there a power-dominating set $S \subseteq V$ with $|S| \leq k$?
is NP-complete for planar graphs [Guo et al. '05]
"Problem" with planar graphs: vertex v separating G in two connected components G^{\prime} and $G^{\prime \prime}$ with $\delta_{G^{\prime}}(v) \geq 2$ and $\delta_{G^{\prime}}(v) \geq 2$.

\rightarrow restrict to triangulations: no cut-vertex!

Power-domination in triangulations

[Matheson \& Tarjan '96]
$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order n (conjecture: $\frac{n}{4}$)

Power-domination in triangulations

[Matheson \& Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order n (conjecture: $\frac{n}{4}$)
Tight graphs with $\gamma(G)=\frac{n}{4}$: each induced K_{4} needs a vertex in S.

Power-domination in triangulations

[Matheson \& Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order n (conjecture: $\frac{n}{4}$)
Tight graphs with $\gamma(G)=\frac{n}{4}$: each induced K_{4} needs a vertex in S.

Power domination: propagation stops when every vertex of M "on the boundary" has ≥ 2 neighbors in \bar{M}.

Power-domination in triangulations

[Matheson \& Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order n (conjecture: $\frac{n}{4}$)
Tight graphs with $\gamma(G)=\frac{n}{4}$: each induced K_{4} needs a vertex in S.

Power domination: propagation stops when every vertex of M "on the boundary" has ≥ 2 neighbors in \bar{M}.
Tight graphs with $\gamma_{P}(G)=\frac{n}{6}$: each induced octahedron needs a captor.

Power-domination in triangulations

[Matheson \& Tarjan '96]

$\gamma(G) \leq \frac{n}{3}$ for (sufficiently large) triangulations of order n (conjecture: $\frac{n}{4}$)
Tight graphs with $\gamma(G)=\frac{n}{4}$: each induced K_{4} needs a vertex in S.

Power domination: propagation stops when every vertex of M "on the boundary" has ≥ 2 neighbors in \bar{M}.
Tight graphs with $\gamma_{P}(G)=\frac{n}{6}$: each induced octahedron needs a captor.
Main Theorem

$$
\gamma_{P}(G) \leq \frac{n-2}{4} \text { if } G \text { is a triangulation with } n \geq 6 \text { vertices. }
$$

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

Isolated octahedron: select a vertex of the outer face in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

Isolated octahedron: select a vertex of the outer face in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

Isolated octahedron: select a vertex of the outer face in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S. No vertex selected: stop.

Isolated octahedron: select a vertex of the outer face in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

2 octahedra sharing a vertex: Select it in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

2 octahedra sharing a vertex: Select it in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

2 octahedra sharing a vertex: Select it in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

2 octahedra sharing a vertex: Select it in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

2 octahedra sharing a vertex: Select it in S

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

Our algorithm

- Monitor the octahedrons, and propagate.
- For every vertex v in \bar{M} in decreasing degree (in G) order: if adding v to S adds at least 4 vertices in M (with propagation): add v to S.
No vertex selected: stop.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices with each captor.

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 .
(b) Each connected component of $G[\bar{M}]$ has at most three vertices.

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 . (Otherwise, if u has degree ≥ 3, take u in S)
(b) Each connected component of $G[\bar{M}]$ has at most three vertices.

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 .
(Otherwise, if u has degree ≥ 3, take u in S)
(b) Each connected component of $G[\bar{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 .
(Otherwise, if u has degree ≥ 3, take u in S)
(b) Each connected component of $G[\bar{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
\rightarrow A connected component of $G[\bar{M}]$ is isomorphic to K_{3}, P_{3}, P_{2} or K_{1}.

0

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 .
(Otherwise, if u has degree ≥ 3, take u in S)
(b) Each connected component of $G[\bar{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
\rightarrow A connected component of $G[\bar{M}]$ is isomorphic to K_{3}, P_{3}, P_{2} or K_{1}.

The 4 cases

The graph $G[\bar{M}]$ satisfies the following properties:
(a) $G[\bar{M}]$ has maximum degree at most 2 .
(Otherwise, if u has degree ≥ 3, take u in S)
(b) Each connected component of $G[\bar{M}]$ has at most three vertices. (Each cc is a cycle or a path. If ≥ 4 vertices: any vertex propagates to 3 others)
\rightarrow A connected component of $G[\bar{M}]$ is isomorphic to K_{3}, P_{3}, P_{2} or K_{1}.

lead to unique configurations

Connected components of $G[\bar{M}]$

Global technique used for all cases: try to build G around the hypothetical connected component.
(Some) Tools used in this (long) proof:

- planarity (contradiction with Euler's formula)
- contradiction with the conditions to choose a vertex in S : maximal degree or contribution of each vertex
- induction reasoning

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size:

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size:
$\gamma_{P}\left(G_{1}\right) \leq \frac{n_{1}-2}{4}$

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)

Induction on the size:

$$
\begin{aligned}
& \gamma_{P}\left(G_{1}\right) \leq \frac{n_{1}-2}{4} \\
& \gamma_{P}\left(G_{2}\right) \leq \frac{n_{2}-2}{4}
\end{aligned}
$$

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)
Induction on the size:

$$
\begin{aligned}
& \gamma_{P}\left(G_{1}\right) \leq \frac{n_{1}-2}{4} \\
& \gamma_{P}\left(G_{2}\right) \leq \frac{n_{2}-2}{4}
\end{aligned}
$$

Adding x_{2} to S :

$$
\begin{aligned}
& \gamma_{P}(G) \leq \frac{n_{1}+n_{2}-4}{4}+1=\frac{n_{1}+n_{2}}{4} \\
& \text { and } \frac{n_{1}+n_{2}}{4}<\frac{n-2}{4}
\end{aligned}
$$

Induction example: P_{3}

If a connected component of $G[\bar{M}]$ is isomorphic to P_{3}, then G is isomorphic to:

G_{1} and G_{2} have ≥ 6 vertices (oth. contradiction with the degree condition)
Induction on the size:

$$
\begin{aligned}
& \gamma_{P}\left(G_{1}\right) \leq \frac{n_{1}-2}{4} \\
& \gamma_{P}\left(G_{2}\right) \leq \frac{n_{2}-2}{4}
\end{aligned}
$$

Adding x_{2} to S :

$$
\begin{aligned}
& \gamma_{P}(G) \leq \frac{n_{1}+n_{2}-4}{4}+1=\frac{n_{1}+n_{2}}{4} \\
& \text { and } \frac{n_{1}+n_{2}}{4}<\frac{n-2}{4}
\end{aligned}
$$

Open questions

- Can we do better than $\frac{n-2}{4}$? (the lower bound is $\frac{n}{6} \ldots$)
- Is the decision problem NP-Complete for triangulations?

Open questions

- Can we do better than $\frac{n-2}{4}$? (the lower bound is $\frac{n}{6} \ldots$)
- Is the decision problem NP-Complete for triangulations?

Thank you!

