Graph decompositions and well-quasi-ordering

Jean-Florent Raymond

LIRMM, University of Montpellier, France, and
MIMUW, University of Warsaw, Poland

Orléans, November 2015

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering

A WQO is an order where:
@ every decreasing sequence is finite;

@ every sequence of non-comparable elements is finite.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering

A WQO is an order where:
@ every decreasing sequence is finite;

@ every sequence of non-comparable elements is finite.

Examples:

o1, %, %, ... is an infinite decreasing sequence wrt. <
— (Q, <) is not a WQO;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering

A WQO is an order where:
@ every decreasing sequence is finite;

@ every sequence of non-comparable elements is finite.

Examples:
o1, %, %, ... is an infinite decreasing sequence wrt. <
— (Q, <) is not a WQO;
e {0},{1},{2},... is an infinite antichain wrt. C
— (P(N), C) is not a WQO;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering

A WQO is an order where:
@ every decreasing sequence is finite;

@ every sequence of non-comparable elements is finite.

Examples:
o1, %, %, ... is an infinite decreasing sequence wrt. <
— (Q, <) is not a WQO;
e {0},{1},{2},... is an infinite antichain wrt. C
— (P(N), ©) is not a WQO;
(A*, <subseq) With A finite: WQO;
(graphs, <minor): WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finite number of checks.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finite number of checks.

my

v
Downwards closed classes have a finite number of obstructions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finite number of checks.

my

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finite number of checks.

my
v
Downwards closed classes have a finite number of obstructions.

xeD << m L£xN---Ame £ x

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

xelU < m <xV---Vm<x
(finite base)

Membership testing can be done in a finite number of checks.

my
v
Downwards closed classes have a finite number of obstructions.

xeD << m L£xN---Ame £ x

Membership testing can be done in a finite number of checks.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Why do we like well-quasi-orders?

graphs of genus > g + minor relation

(> k)-colorable graphs + induced subgraph relation

graphs of treewidth < k + minor relation

trees + contraction relation

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

In this talk...

(S, <) = (graph class, graph containment relation)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

In this talk...

(S, <) = (graph class, graph containment relation)

@ contraction relation <.,: E contraction;
@ induced minor relation <;n,: V deletion and E contraction;

@ minor relation <,;: V and E deletion, E contraction.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Containment relations on graphs

@ Some are WQO:

e minors: [GMXX] (Wagner's conjecture)
o immersions: [GMXXIII] (Nash-Williams' Conjecture)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Containment relations on graphs

@ Some are WQO:

e minors: [GMXX] (Wagner's conjecture)
o immersions: [GMXXIII] (Nash-Williams' Conjecture)

@ ...some are not:

(induced) subgraphs
contractions

induced minors

(induced) topological minor

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Containment relations on graphs

@ Some are WQO:

e minors: [GMXX] (Wagner's conjecture)
o immersions: [GMXXIII] (Nash-Williams' Conjecture)

@ ...some are not:

(induced) subgraphs

e contractions

e induced minors

o (induced) topological minor

@ ...and some are still open:

e induced immersions
e strong immersions

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Containment relations on graphs

@ Some are WQO:

e minors: [GMXX] (Wagner's conjecture)
o immersions: [GMXXIII] (Nash-Williams' Conjecture)

@ ...some are not:

(induced) subgraphs
e contractions

e induced minors

o (induced) topological minor
@ ...and some are still open:

e induced immersions
e strong immersions

Main message: decomposition results (sometimes) imply WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

T

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.
4
H= 5 1
@z&

@ choose an encoding of graphs as tuples (for instance)

enc('@gg') =(1,0,1,0,2)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.
4
H= 5 1
@z&

@ choose an encoding of graphs as tuples (for instance)

enc('@gg') =(1,0,1,0,2)

@ choose an order on tuples s.t. enc(G) < enc(G') = G <, G
. (2,1,0,3,1) < (5,1,2,4,1

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.
4
H= 5 1
@z&

@ choose an encoding of graphs as tuples (for instance)

enc('@gg') =(1,0,1,0,2)

@ choose an order on tuples s.t. enc(G) < enc(G') = G <, G
,(2,1,0,3,1) < (5,1,2,4,1)
© show that encodings are WQO by this order;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.
4
H= 5 1
@z&

@ choose an encoding of graphs as tuples (for instance)

enc('@gg') =(1,0,1,0,2)

@ choose an order on tuples s.t. enc(G) < enc(G') = G <y G
,(2,1,0,3,1) < (5,1,2,4,1)

© show that encodings are WQO by this order;

Q that's it!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G/;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G';
@ show that (S, <s) is a WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G';
@ show that (S, <s) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G';
@ show that (S, <s) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

@ given by a decomposition;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G';
@ show that (S, <s) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:
@ given by a decomposition;
e S = (labeled) 2-c graphs of G;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

High level view

Goal: show that (G, <) is a WQO.
@ choose a mapping enc: G — S where S is simple;
@ choose an order <5 on S s.t. enc(G) <5 enc(G') = G < G';
@ show that (S, <s) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:
@ given by a decomposition;
e S = (labeled) 2-c graphs of G;
e S C G* (Nash-Williams' minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

First example

Theorem (Btasiok, Kaminski, R., Trunck '15)

H-induced minor-free graphs are WQO by <in, iff H is induced
minor of Vor .

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

First example

Theorem (Btasiok, Kaminski, R., Trunck '15)

H-induced minor-free graphs are WQO by <in, iff H is induced
minor of Vor .

Vinduced minor-free graphs are WQO by induced minors.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Following the recipe

Lemma (Btasiok, Kaminski, R., Trunck '15)

Every 2-connected V-induced minor-free graph is like this:

C: cograph
P: path

596

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Following the recipe

Lemma (Btasiok, Kaminski, R., Trunck '15)

Every 2-connected V-induced minor-free graph is like this:

P: path

RERAIR

OO
@ C: cograph
©

enc(G) = (G1, A1), -, (Gk, \k)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Following the recipe

Lemma (Btasiok, Kaminski, R., Trunck '15)

Every 2-connected V-induced minor-free graph is like this:

C: cograph
P: path

596

enc(G) = (G1, A1), .-, (Gk, Ak
@ G;j is a path or a cograph;
o \;: V(G;) — {0,1}° (labeling)

~—

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Following the recipe

Lemma (Btasiok, Kaminski, R., Trunck '15)

Every 2-connected V-induced minor-free graph is like this:

C: cograph
P: path

596

enc(G) = (G1, A1), .-, (Gk, Ak
@ G;j is a path or a cograph;
o \;: V(G;) — {0,1}° (labeling)

@ we choose an order on encodings.

~—

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Following the recipe

Lemma (Btasiok, Kaminski, R., Trunck '15)

Every 2-connected V-induced minor-free graph is like this:

C: cograph
P: path

596

enc(G) = (G1, A1), .-, (Gk, Ak
@ G;j is a path or a cograph;
o \;: V(G;) — {0,1}° (labeling)

@ we choose an order on encodings.

~—

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Second example

Theorem (Btasiok, Kaminiski, R., Trunck '15+)

H-contraction-free graphs are WQO by contractions iff H is a
contraction of 4>

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 10 / 14

Second example

Theorem (Btasiok, Kaminiski, R., Trunck '15+)

H-contraction-free graphs are WQO by contractions iff H is a
contraction of 4>

@-contraction-free graphs are wqo by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 10 / 14

The decomposition

IfGis @-contraction—free then every block of G is either a clique
or an induced cycle.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 11 /14

The encoding

M

= cycle(ANV ")

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

The encoding

M

= cycle(<">" /N AT

If (Gi,...,Gp) <ctr* (Hi,...,Hq)
then cycle(Gi, ..., Gp) <ctr cycle(Hi, ..., Hg)
and clique(Gy, ..., Gp) <ctr clique(Hy, ..., Hy)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Q B = “parts’ of A;'s;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Q B = “parts’ of A;'s;
@ (B, <ctr) is a wqo, by minimality of {A;};;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Q B = “parts’ of A;'s;
@ (B, <ctr) is a wqo, by minimality of {A;};;
o (B*a <ctr) is a wqo,

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

= "“parts” of A;’s;
(, <etr) is @ wqo, by minimality of {A;};;

(a\ctr) is a wqo,
(cycle(B*) U clique(B*), <ctr) is a wqo;

0909

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Q B = “parts’ of A;'s;

@ (B, <) is a wqo, by minimality of {A;};;
Q (B*, <ctr) is a wqo;

@ (cycle(B*) U clique(B*), <ctr) is a wqo;

O {Ai}i is WQO, contradiction.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Well-quasi-ordering encodings

@ Consider a minimal infinite antichain:

A1, Ao, . ..

Q B = “parts’ of A;'s;

@ (B, <) is a wqo, by minimality of {A;};;
Q (B*, <ctr) is a wqo;

@ (cycle(B*) U clique(B*), <ctr) is a wqo;

O {Ai}i is WQO, contradiction.

@—contraction—free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering

Conclusion

@ general recipe to go from a decomposition to a wqo;

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

@ general recipe to go from a decomposition to a wqo;

@ needs a good choice of the (encoding, order)
(not always possible);

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

@ general recipe to go from a decomposition to a wqo;

@ needs a good choice of the (encoding, order)
(not always possible);

o well-quasi-orders are “simple” orders.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

@ general recipe to go from a decomposition to a wqo;

@ needs a good choice of the (encoding, order)
(not always possible);

o well-quasi-orders are “simple” orders.

Further work:

@ study the limit cases for parameterized classes in non-wqos

@ which classes are wqo by strong immersions?

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

@ general recipe to go from a decomposition to a wqo;

@ needs a good choice of the (encoding, order)
(not always possible);

o well-quasi-orders are “simple” orders.

Further work:

@ study the limit cases for parameterized classes in non-wqos

@ which classes are wqo by strong immersions?

Thank youl!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

