
Graph decompositions and well-quasi-ordering

Jean-Florent Raymond

LIRMM, University of Montpellier, France, and
MIMUW, University of Warsaw, Poland

Orléans, November 2015

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 1 / 14

Well-quasi-ordering

A WQO is an order where:

every decreasing sequence is finite;

every sequence of non-comparable elements is finite.

1, 12 ,
1
3 , . . . is an infinite decreasing sequence wrt. 6

→ (Q,6) is not a WQO;

{0}, {1}, {2}, . . . is an infinite antichain wrt. ⊆
→ (P(N),⊆) is not a WQO;

(A?,6subseq) with A finite: WQO;

(graphs,6minor): WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 2 / 14

Well-quasi-ordering

A WQO is an order where:

every decreasing sequence is finite;

every sequence of non-comparable elements is finite.

Examples:

1, 12 ,
1
3 , . . . is an infinite decreasing sequence wrt. 6

→ (Q,6) is not a WQO;

{0}, {1}, {2}, . . . is an infinite antichain wrt. ⊆
→ (P(N),⊆) is not a WQO;

(A?,6subseq) with A finite: WQO;

(graphs,6minor): WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 2 / 14

Well-quasi-ordering

A WQO is an order where:

every decreasing sequence is finite;

every sequence of non-comparable elements is finite.

Examples:

1, 12 ,
1
3 , . . . is an infinite decreasing sequence wrt. 6

→ (Q,6) is not a WQO;

{0}, {1}, {2}, . . . is an infinite antichain wrt. ⊆
→ (P(N),⊆) is not a WQO;

(A?,6subseq) with A finite: WQO;

(graphs,6minor): WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 2 / 14

Well-quasi-ordering

A WQO is an order where:

every decreasing sequence is finite;

every sequence of non-comparable elements is finite.

Examples:

1, 12 ,
1
3 , . . . is an infinite decreasing sequence wrt. 6

→ (Q,6) is not a WQO;

{0}, {1}, {2}, . . . is an infinite antichain wrt. ⊆
→ (P(N),⊆) is not a WQO;

(A?,6subseq) with A finite: WQO;

(graphs,6minor): WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 2 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

a

b

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

a

b

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

x ∈ D ⇐⇒ m1 66 x ∧ · · · ∧mk 66 x

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

Upwards closed classes have a finite number of minimal elements.

x ∈ U ⇐⇒ m1 6 x ∨ · · · ∨mk 6 x

(finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

x ∈ D ⇐⇒ m1 66 x ∧ · · · ∧mk 66 x

Membership testing can be done in a finite number of checks.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

Why do we like well-quasi-orders?

m1

m2

m3

graphs of genus > g + minor relation

(> k)-colorable graphs + induced subgraph relation

. . .

graphs of treewidth 6 k + minor relation

trees + contraction relation

. . .

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 3 / 14

In this talk...

(S ,6) = (graph class, graph containment relation)

contraction relation 6ctr: E contraction;

induced minor relation 6im: V deletion and E contraction;

minor relation 6m: V and E deletion, E contraction.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 4 / 14

In this talk...

(S ,6) = (graph class, graph containment relation)

contraction relation 6ctr: E contraction;

induced minor relation 6im: V deletion and E contraction;

minor relation 6m: V and E deletion, E contraction.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 4 / 14

Containment relations on graphs

Some are WQO:

minors: [GMXX] (Wagner’s conjecture)
immersions: [GMXXIII] (Nash-Williams’ Conjecture)

...some are not:

(induced) subgraphs
contractions
induced minors
(induced) topological minor

...and some are still open:

induced immersions
strong immersions

Main message: decomposition results (sometimes) imply WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 5 / 14

Containment relations on graphs

Some are WQO:

minors: [GMXX] (Wagner’s conjecture)
immersions: [GMXXIII] (Nash-Williams’ Conjecture)

...some are not:

(induced) subgraphs
contractions
induced minors
(induced) topological minor

...and some are still open:

induced immersions
strong immersions

Main message: decomposition results (sometimes) imply WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 5 / 14

Containment relations on graphs

Some are WQO:

minors: [GMXX] (Wagner’s conjecture)
immersions: [GMXXIII] (Nash-Williams’ Conjecture)

...some are not:

(induced) subgraphs
contractions
induced minors
(induced) topological minor

...and some are still open:

induced immersions
strong immersions

Main message: decomposition results (sometimes) imply WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 5 / 14

Containment relations on graphs

Some are WQO:

minors: [GMXX] (Wagner’s conjecture)
immersions: [GMXXIII] (Nash-Williams’ Conjecture)

...some are not:

(induced) subgraphs
contractions
induced minors
(induced) topological minor

...and some are still open:

induced immersions
strong immersions

Main message: decomposition results (sometimes) imply WQO.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 5 / 14

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

H =

1 choose an encoding of graphs as tuples (for instance)
e.g. # of subdivisions for each edge, in some chosen order;

enc() = (1, 0, 1, 0, 2)

2 choose an order on tuples s.t. enc(G) 6 enc(G ′)⇒ G 6ctr G
′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are WQO by this order;

4 that’s it!
antichain {G1,G2, . . . } ⇒ antichain {enc(G1), enc(G2), . . . }

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 6 / 14

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

1

2
3

4
5H =

1 choose an encoding of graphs as tuples (for instance)
e.g. # of subdivisions for each edge, in some chosen order;

enc() = (1, 0, 1, 0, 2)

2 choose an order on tuples s.t. enc(G) 6 enc(G ′)⇒ G 6ctr G
′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are WQO by this order;

4 that’s it!
antichain {G1,G2, . . . } ⇒ antichain {enc(G1), enc(G2), . . . }

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 6 / 14

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

1

2
3

4
5H =

1 choose an encoding of graphs as tuples (for instance)
e.g. # of subdivisions for each edge, in some chosen order;

enc() = (1, 0, 1, 0, 2)

2 choose an order on tuples s.t. enc(G) 6 enc(G ′)⇒ G 6ctr G
′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are WQO by this order;

4 that’s it!
antichain {G1,G2, . . . } ⇒ antichain {enc(G1), enc(G2), . . . }

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 6 / 14

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

1

2
3

4
5H =

1 choose an encoding of graphs as tuples (for instance)
e.g. # of subdivisions for each edge, in some chosen order;

enc() = (1, 0, 1, 0, 2)

2 choose an order on tuples s.t. enc(G) 6 enc(G ′)⇒ G 6ctr G
′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are WQO by this order;

4 that’s it!
antichain {G1,G2, . . . } ⇒ antichain {enc(G1), enc(G2), . . . }

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 6 / 14

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

1

2
3

4
5H =

1 choose an encoding of graphs as tuples (for instance)
e.g. # of subdivisions for each edge, in some chosen order;

enc() = (1, 0, 1, 0, 2)

2 choose an order on tuples s.t. enc(G) 6 enc(G ′)⇒ G 6ctr G
′

e.g. the product order, (2, 1, 0, 3, 1) 6 (5, 1, 2, 4, 1)

3 show that encodings are WQO by this order;

4 that’s it!
antichain {G1,G2, . . . } ⇒ antichain {enc(G1), enc(G2), . . . }

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 6 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

High level view

Goal: show that (G,6) is a WQO.

1 choose a mapping enc : G → S where S is simple;

2 choose an order �S on S s.t. enc(G) �S enc(G ′)⇒ G � G ′;

3 show that (S,�S) is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of S:

given by a decomposition;

S = (labeled) 2-c graphs of G;

S ⊆ G? (Nash-Williams’ minimum bad sequence).

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 7 / 14

First example

Theorem (B lasiok, Kamiński, R., Trunck ’15)

H-induced minor-free graphs are WQO by 6im iff H is induced
minor of or .

Lemma

-induced minor-free graphs are WQO by induced minors.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 8 / 14

First example

Theorem (B lasiok, Kamiński, R., Trunck ’15)

H-induced minor-free graphs are WQO by 6im iff H is induced
minor of or .

Lemma

-induced minor-free graphs are WQO by induced minors.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 8 / 14

Following the recipe

Lemma (B lasiok, Kamiński, R., Trunck ’15)

Every 2-connected -induced minor-free graph is like this:

C

...

P

C

C: cograph
P: path

enc(G) = (G1, λ1), . . . , (Gk , λk)

Gi is a path or a cograph;

λi : V (Gi)→ {0, 1}6 (labeling)

we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 9 / 14

Following the recipe

Lemma (B lasiok, Kamiński, R., Trunck ’15)

Every 2-connected -induced minor-free graph is like this:

C

...

P

C

C: cograph
P: path

enc(G) = (G1, λ1), . . . , (Gk , λk)

Gi is a path or a cograph;

λi : V (Gi)→ {0, 1}6 (labeling)

we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 9 / 14

Following the recipe

Lemma (B lasiok, Kamiński, R., Trunck ’15)

Every 2-connected -induced minor-free graph is like this:

C

...

P

C

C: cograph
P: path

enc(G) = (G1, λ1), . . . , (Gk , λk)

Gi is a path or a cograph;

λi : V (Gi)→ {0, 1}6 (labeling)

we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 9 / 14

Following the recipe

Lemma (B lasiok, Kamiński, R., Trunck ’15)

Every 2-connected -induced minor-free graph is like this:

C

...

P

C

C: cograph
P: path

enc(G) = (G1, λ1), . . . , (Gk , λk)

Gi is a path or a cograph;

λi : V (Gi)→ {0, 1}6 (labeling)

we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 9 / 14

Following the recipe

Lemma (B lasiok, Kamiński, R., Trunck ’15)

Every 2-connected -induced minor-free graph is like this:

C

...

P

C

C: cograph
P: path

enc(G) = (G1, λ1), . . . , (Gk , λk)

Gi is a path or a cograph;

λi : V (Gi)→ {0, 1}6 (labeling)

we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 9 / 14

Second example

Theorem (B lasiok, Kamiński, R., Trunck ’15+)

H-contraction-free graphs are WQO by contractions iff H is a

contraction of .

Lemma

-contraction-free graphs are wqo by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 10 / 14

Second example

Theorem (B lasiok, Kamiński, R., Trunck ’15+)

H-contraction-free graphs are WQO by contractions iff H is a

contraction of .

Lemma

-contraction-free graphs are wqo by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 10 / 14

The decomposition

Lemma

If G is -contraction-free then every block of G is either a clique
or an induced cycle.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 11 / 14

The encoding

= cycle(), , , , ,

If (G1, . . . ,Gp) 6ctr
? (H1, . . . ,Hq)

then cycle(G1, . . . ,Gp) 6ctr cycle(H1, . . . ,Hq)
and clique(G1, . . . ,Gp) 6ctr clique(H1, . . . ,Hq)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 12 / 14

The encoding

= cycle(), , , , ,

If (G1, . . . ,Gp) 6ctr
? (H1, . . . ,Hq)

then cycle(G1, . . . ,Gp) 6ctr cycle(H1, . . . ,Hq)
and clique(G1, . . . ,Gp) 6ctr clique(H1, . . . ,Hq)

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 12 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;

4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Well-quasi-ordering encodings

1 Consider a minimal infinite antichain:

A1,A2, . . .

2 B = “parts” of Ai ’s;

3 (B,6ctr) is a wqo, by minimality of {Ai}i ;
4 (B?,6ctr) is a wqo;

5 (cycle(B?) ∪ clique(B?),6ctr) is a wqo;

6 {Ai}i is WQO, contradiction.

-contraction-free graphs are WQO by contractions.

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 13 / 14

Conclusion

general recipe to go from a decomposition to a wqo;

needs a good choice of the (encoding, order)
(not always possible);

well-quasi-orders are “simple” orders.

Further work:

study the limit cases for parameterized classes in non-wqos
(H-6-free, sparse classes, bounded parameter, etc.);

which classes are wqo by strong immersions?

Thank you!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

general recipe to go from a decomposition to a wqo;

needs a good choice of the (encoding, order)
(not always possible);

well-quasi-orders are “simple” orders.

Further work:

study the limit cases for parameterized classes in non-wqos
(H-6-free, sparse classes, bounded parameter, etc.);

which classes are wqo by strong immersions?

Thank you!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

general recipe to go from a decomposition to a wqo;

needs a good choice of the (encoding, order)
(not always possible);

well-quasi-orders are “simple” orders.

Further work:

study the limit cases for parameterized classes in non-wqos
(H-6-free, sparse classes, bounded parameter, etc.);

which classes are wqo by strong immersions?

Thank you!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

general recipe to go from a decomposition to a wqo;

needs a good choice of the (encoding, order)
(not always possible);

well-quasi-orders are “simple” orders.

Further work:

study the limit cases for parameterized classes in non-wqos
(H-6-free, sparse classes, bounded parameter, etc.);

which classes are wqo by strong immersions?

Thank you!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

Conclusion

general recipe to go from a decomposition to a wqo;

needs a good choice of the (encoding, order)
(not always possible);

well-quasi-orders are “simple” orders.

Further work:

study the limit cases for parameterized classes in non-wqos
(H-6-free, sparse classes, bounded parameter, etc.);

which classes are wqo by strong immersions?

Thank you!

Jean-Florent Raymond (Montpellier & Warsaw) Graph decompositions and well-quasi-ordering 14 / 14

