Graph decompositions and well-quasi-ordering

Jean-Florent Raymond

LIRMM, University of Montpellier, France, and MIMUW, University of Warsaw, Poland

Orléans, November 2015

- A WQO is an order where:
 - every decreasing sequence is finite;
 - every sequence of non-comparable elements is finite.

- A WQO is an order where:
 - every decreasing sequence is finite;
 - every sequence of non-comparable elements is finite.

Examples:

• $1, \frac{1}{2}, \frac{1}{3}, \ldots$ is an infinite decreasing sequence wrt. $\leq \rightarrow (\mathbb{Q}, \leq)$ is not a WQO;

- A WQO is an order where:
 - every decreasing sequence is finite;
 - every sequence of non-comparable elements is finite.

Examples:

1, ¹/₂, ¹/₃,... is an infinite decreasing sequence wrt. ≤
 → (Q, ≤) is not a WQO;
 ∫0} ∫1} ∫2 is an infinite antichain wrt. ⊂

• $\{0\}, \{1\}, \{2\}, \dots$ is an infinite antichain wrt. $\subseteq \rightarrow (\mathcal{P}(\mathbb{N}), \subseteq)$ is not a WQO;

- A WQO is an order where:
 - every decreasing sequence is finite;
 - every sequence of non-comparable elements is finite.

Examples:

- $1, \frac{1}{2}, \frac{1}{3}, \ldots$ is an infinite decreasing sequence wrt. $\leq \rightarrow (\mathbb{Q}, \leq)$ is not a WQO;
- $\{0\}, \{1\}, \{2\}, \dots$ is an infinite antichain wrt. $\subseteq \rightarrow (\mathcal{P}(\mathbb{N}), \subseteq)$ is not a WQO;
- $(A^{\star}, \leqslant_{\text{subseq}})$ with A finite: WQO;
- (graphs, $\leqslant_{\min or}$): WQO.

Upwards closed classes have a finite number of minimal elements.

Upwards closed classes have a finite number of minimal elements.

Upwards closed classes have a finite number of minimal elements.

Upwards closed classes have a finite number of minimal elements.

$$x \in U \iff m_1 \leqslant x \lor \dots \lor m_k \leqslant x$$
(finite base)

Membership testing can be done in a finite number of checks.

m

 m_1

m₃

Upwards closed classes have a finite number of minimal elements.

$$x \in U \iff m_1 \leqslant x \lor \dots \lor m_k \leqslant x$$
 (finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

 m_2

m

Upwards closed classes have a finite number of minimal elements.

$$x \in U \iff m_1 \leqslant x \lor \dots \lor m_k \leqslant x$$
 (finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

 m_2

m

Upwards closed classes have a finite number of minimal elements.

$$x \in U \iff m_1 \leqslant x \lor \cdots \lor m_k \leqslant x$$
(finite base)

Membership testing can be done in a finite number of checks.

 m_2

$$x \in D \iff m_1 \nleq x \wedge \cdots \wedge m_k \nleq x$$

m

Upwards closed classes have a finite number of minimal elements.

$$x \in U \iff m_1 \leqslant x \lor \dots \lor m_k \leqslant x$$
(finite base)

Membership testing can be done in a finite number of checks.

Downwards closed classes have a finite number of obstructions.

 m_2

$$x \in D \iff m_1 \nleq x \wedge \cdots \wedge m_k \nleq x$$

Membership testing can be done in a finite number of checks.

m

graphs of genus $\geq g + \text{minor relation}$

 $(\geq k)$ -colorable graphs + induced subgraph relation

graphs of treewidth $\leq k + \text{minor relation}$

trees + contraction relation

. . .

$(S, \leqslant) = ($ graph class, graph containment relation)

$(S, \leqslant) = (graph class, graph containment relation)$

- contraction relation \leq_{ctr} : E contraction;
- induced minor relation \leqslant_{im} : V deletion and E contraction;
- minor relation \leq_m : V and E deletion, E contraction.

• Some are WQO:

- minors: [GMXX] (Wagner's conjecture)
- immersions: [GMXXIII] (Nash-Williams' Conjecture)

- Some are WQO:
 - minors: [GMXX] (Wagner's conjecture)
 - immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
 - (induced) subgraphs
 - contractions
 - induced minors
 - (induced) topological minor

- Some are WQO:
 - minors: [GMXX] (Wagner's conjecture)
 - immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
 - (induced) subgraphs
 - contractions
 - induced minors
 - (induced) topological minor
- ...and some are still open:
 - induced immersions
 - strong immersions

- Some are WQO:
 - minors: [GMXX] (Wagner's conjecture)
 - immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
 - (induced) subgraphs
 - contractions
 - induced minors
 - (induced) topological minor
- ...and some are still open:
 - induced immersions
 - strong immersions

Main message: decomposition results (sometimes) imply WQO.

Toy example

Subdivisions of H are WQO by contraction.

Toy example

Subdivisions of H are WQO by contraction.

$$H = 5 3 1$$

choose an encoding of graphs as tuples (for instance)
 e.g. # of subdivisions for each edge, in some chosen order;

$$enc(()) = (1, 0, 1, 0, 2)$$

Toy example

Subdivisions of H are WQO by contraction.

$$H = 5 3 1$$

choose an encoding of graphs as tuples (for instance)
 e.g. # of subdivisions for each edge, in some chosen order;

$$enc(\bigcirc) = (1, 0, 1, 0, 2)$$

② choose an order on tuples s.t. $enc(G) ≤ enc(G') ⇒ G ≤_{ctr} G'$ e.g. the product order, (2, 1, 0, 3, 1) ≤ (5, 1, 2, 4, 1)

Toy example

Subdivisions of H are WQO by contraction.

$$H = 5 3 1$$

choose an encoding of graphs as tuples (for instance)
 e.g. # of subdivisions for each edge, in some chosen order;

$$enc(\bigcirc) = (1, 0, 1, 0, 2)$$

- ② choose an order on tuples s.t. $enc(G) ≤ enc(G') ⇒ G ≤_{ctr} G'$ e.g. the product order, (2, 1, 0, 3, 1) ≤ (5, 1, 2, 4, 1)
- Show that encodings are WQO by this order;

Toy example

Subdivisions of H are WQO by contraction.

$$H = 5 3 1$$

choose an encoding of graphs as tuples (for instance)
 e.g. # of subdivisions for each edge, in some chosen order;

$$enc(\bigcirc) = (1, 0, 1, 0, 2)$$

- ② choose an order on tuples s.t. $enc(G) ≤ enc(G') ⇒ G ≤_{ctr} G'$ e.g. the product order, (2, 1, 0, 3, 1) ≤ (5, 1, 2, 4, 1)
- Show that encodings are WQO by this order;
- that's it!

antichain $\{G_1, G_2, \dots\} \Rightarrow$ antichain $\{\operatorname{enc}(G_1), \operatorname{enc}(G_2), \dots\}$

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

Goal: show that (\mathcal{G}, \leq) is a WQO.

1 choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order $\leq_{\mathcal{S}}$ on \mathcal{S} s.t. $\operatorname{enc}(\mathcal{G}) \leq_{\mathcal{S}} \operatorname{enc}(\mathcal{G}') \Rightarrow \mathcal{G} \leq \mathcal{G}'$;

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order $\preceq_{\mathcal{S}}$ on \mathcal{S} s.t. $\operatorname{enc}(\mathcal{G}) \preceq_{\mathcal{S}} \operatorname{enc}(\mathcal{G}') \Rightarrow \mathcal{G} \preceq \mathcal{G}'$;
- **3** show that $(\mathcal{S}, \preceq_{\mathcal{S}})$ is a WQO.

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order \preceq_S on S s.t. $enc(G) \preceq_S enc(G') \Rightarrow G \preceq G'$;
- **3** show that $(\mathcal{S}, \preceq_{\mathcal{S}})$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order \preceq_S on S s.t. $enc(G) \preceq_S enc(G') \Rightarrow G \preceq G'$;
- **3** show that $(\mathcal{S}, \preceq_{\mathcal{S}})$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of \mathcal{S} :

• given by a decomposition;

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order $\preceq_{\mathcal{S}}$ on \mathcal{S} s.t. $\operatorname{enc}(\mathcal{G}) \preceq_{\mathcal{S}} \operatorname{enc}(\mathcal{G}') \Rightarrow \mathcal{G} \preceq \mathcal{G}'$;
- **3** show that $(\mathcal{S}, \preceq_{\mathcal{S}})$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of \mathcal{S} :

- given by a decomposition;
- S = (labeled) 2-c graphs of G;

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

- choose a mapping $enc: \mathcal{G} \to \mathcal{S}$ where \mathcal{S} is simple;
- ② choose an order $\leq_{\mathcal{S}}$ on \mathcal{S} s.t. $\operatorname{enc}(\mathcal{G}) \leq_{\mathcal{S}} \operatorname{enc}(\mathcal{G}') \Rightarrow \mathcal{G} \leq \mathcal{G}'$;
- **3** show that $(\mathcal{S}, \preceq_{\mathcal{S}})$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

Choice of \mathcal{S} :

- given by a decomposition;
- S = (labeled) 2-c graphs of G;
- $S \subseteq \mathcal{G}^*$ (Nash-Williams' minimum bad sequence).

7 / 14

Theorem (Błasiok, Kamiński, R., Trunck '15)

H-induced minor-free graphs are WQO by \leq_{im} iff *H* is induced minor of \Im or \bigtriangleup .

Theorem (Błasiok, Kamiński, R., Trunck '15)

H-induced minor-free graphs are WQO by \leq_{im} iff *H* is induced minor of \Im or \bigtriangleup .

Lemma

 \circledast -induced minor-free graphs are WQO by induced minors.

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected \heartsuit -induced minor-free graph is like this:

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected \heartsuit -induced minor-free graph is like this:

 $\operatorname{enc}(G) = (G_1, \lambda_1), \ldots, (G_k, \lambda_k)$

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected \heartsuit -induced minor-free graph is like this:

 $\operatorname{enc}(G) = (G_1, \lambda_1), \ldots, (G_k, \lambda_k)$

- *G_i* is a path or a cograph;
- $\lambda_i \colon V(G_i) \to \{0,1\}^6$ (labeling)

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected \heartsuit -induced minor-free graph is like this:

 $\operatorname{enc}(G) = (G_1, \lambda_1), \ldots, (G_k, \lambda_k)$

- *G_i* is a path or a cograph;
- $\lambda_i \colon V(G_i) \to \{0,1\}^6$ (labeling)
- we choose an order on encodings.

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected \heartsuit -induced minor-free graph is like this:

 $\operatorname{enc}(G) = (G_1, \lambda_1), \ldots, (G_k, \lambda_k)$

- G_i is a path or a cograph;
- $\lambda_i \colon V(G_i) \to \{0,1\}^6$ (labeling)
- we choose an order on encodings.

(labeled) cographs and paths are easy to order.

Theorem (Błasiok, Kamiński, R., Trunck '15+)

H-contraction-free graphs are WQO by contractions iff *H* is a contraction of Φ .

Theorem (Błasiok, Kamiński, R., Trunck '15+)

H-contraction-free graphs are WQO by contractions iff *H* is a contraction of Φ .

Lemma

 Φ -contraction-free graphs are wqo by contractions.

Lemma

If G is \bigoplus -contraction-free then every block of G is either a clique or an induced cycle.

If $(G_1, \ldots, G_p) \leq_{ctr} (H_1, \ldots, H_q)$ then cycle $(G_1, \ldots, G_p) \leq_{ctr} cycle(H_1, \ldots, H_q)$ and clique $(G_1, \ldots, G_p) \leq_{ctr} clique(H_1, \ldots, H_q)$

Well-quasi-ordering encodings

Consider a minimal infinite antichain:

2
$$\mathcal{B} =$$
 "parts" of A_i 's;

2
$$\mathcal{B} =$$
 "parts" of A_i 's;

$$\mathfrak{G}(\mathcal{B}, \leq_{\mathrm{ctr}})$$
 is a wqo, by minimality of $\{A_i\}_i$;

 A_1, A_2, \ldots

2
$$\mathcal{B} =$$
 "parts" of A_i 's;

(\mathcal{B} , \leq_{ctr}) is a wqo, by minimality of $\{A_i\}_i$;

 $\textcircled{0}(\mathcal{B}^{\star},\leqslant_{\mathrm{ctr}}) \text{ is a wqo;}$

2
$$\mathcal{B} =$$
 "parts" of A_i 's;

- **(** \mathcal{B} , \leq_{ctr}) is a wqo, by minimality of $\{A_i\}_i$;
- $(\mathcal{B}^{\star}, \leqslant_{\mathrm{ctr}})$ is a wqo;
- $(cycle(\mathcal{B}^{\star}) \cup clique(\mathcal{B}^{\star}), \leqslant_{ctr}) \text{ is a wqo;}$

- **2** $\mathcal{B} =$ "parts" of A_i 's;
- **③** (\mathcal{B} , \leq_{ctr}) is a wqo, by minimality of { A_i };
- $\textcircled{0}(\mathcal{B}^{\star},\leqslant_{\mathrm{ctr}}) \text{ is a wqo;}$
- $(cycle(\mathcal{B}^{\star}) \cup clique(\mathcal{B}^{\star}), \leqslant_{ctr}) \text{ is a wqo;}$
- $\{A_i\}_i$ is WQO, contradiction.

 A_1, A_2, \ldots

2
$$\mathcal{B} =$$
 "parts" of A_i 's;

- **③** (\mathcal{B} , \leq_{ctr}) is a wqo, by minimality of { A_i };
- $(\mathcal{B}^{\star}, \leqslant_{\mathrm{ctr}})$ is a wqo;
- $(cycle(\mathcal{B}^{\star}) \cup clique(\mathcal{B}^{\star}), \leqslant_{ctr}) \text{ is a wqo;}$
- $\{A_i\}_i$ is WQO, contradiction.

 \oplus -contraction-free graphs are WQO by contractions.

• general recipe to go from a decomposition to a wqo;

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)

• well-quasi-orders are "simple" orders.

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)

• well-quasi-orders are "simple" orders.

Further work:

- study the limit cases for parameterized classes in non-wqos (*H*-≤-free, sparse classes, bounded parameter, etc.);
- which classes are wqo by strong immersions?

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)

• well-quasi-orders are "simple" orders.

Further work:

- study the limit cases for parameterized classes in non-wqos (*H*-≤-free, sparse classes, bounded parameter, etc.);
- which classes are wqo by strong immersions?

Thank you!