Graph decompositions and well-quasi-ordering

Jean-Florent Raymond

LIRMM, University of Montpellier, France, and MIMUW, University of Warsaw, Poland

Orléans, November 2015

Well-quasi-ordering

A WQO is an order where:

- every decreasing sequence is finite;
- every sequence of non-comparable elements is finite.

Well-quasi-ordering

A WQO is an order where:

- every decreasing sequence is finite;
- every sequence of non-comparable elements is finite.

Examples:

- $1, \frac{1}{2}, \frac{1}{3}, \ldots$ is an infinite decreasing sequence wrt. \leqslant $\rightarrow(\mathbb{Q}, \leqslant)$ is not a WQO;

Well-quasi-ordering

A WQO is an order where:

- every decreasing sequence is finite;
- every sequence of non-comparable elements is finite.

Examples:

- $1, \frac{1}{2}, \frac{1}{3}, \ldots$ is an infinite decreasing sequence wrt. \leqslant $\rightarrow(\mathbb{Q}, \leqslant)$ is not a WQO;
- $\{0\},\{1\},\{2\}, \ldots$ is an infinite antichain wrt. \subseteq $\rightarrow(\mathcal{P}(\mathbb{N}), \subseteq)$ is not a WQO;

Well-quasi-ordering

A WQO is an order where:

- every decreasing sequence is finite;
- every sequence of non-comparable elements is finite.

Examples:

- $1, \frac{1}{2}, \frac{1}{3}, \ldots$ is an infinite decreasing sequence wrt. \leqslant $\rightarrow(\mathbb{Q}, \leqslant)$ is not a WQO;
- $\{0\},\{1\},\{2\}, \ldots$ is an infinite antichain wrt. \subseteq $\rightarrow(\mathcal{P}(\mathbb{N}), \subseteq)$ is not a WQO;
- $\left(A^{\star}, \leqslant_{\text {subseq }}\right)$ with A finite: WQO;
- (graphs, $\leqslant_{\text {minor }}$): WQO.

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

m_{1}

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

m_{2}

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

m_{2}

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks. m_{2}

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks.

$$
m_{1}
$$

Downwards closed classes have a finite number of obstructions.

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks.
m_{1}

Downwards closed classes have a finite number of obstructions.

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks.
m_{1}

m_{2}

Downwards closed classes have a finite number of obstructions.

$$
x \in D \Longleftrightarrow m_{1} \notin x \wedge \cdots \wedge m_{k} \notin x
$$

Why do we like well-quasi-orders?

Upwards closed classes have a finite number of minimal elements.

$$
x \in U \Longleftrightarrow \underset{\text { (finite base) }}{m_{1} \leqslant x \vee \cdots \vee m_{k} \leqslant x}
$$

Membership testing can be done in a finite number of checks.

$$
m_{1}
$$

Downwards closed classes have a finite number of obstructions.

$$
x \in D \Longleftrightarrow m_{1} \nless x \wedge \cdots \wedge m_{k} \nless x
$$

Membership testing can be done in a finite number of checks.

Why do we like well-quasi-orders?

$$
\begin{gathered}
\text { graphs of genus } \geqslant g+\text { minor relation } \\
(\geqslant k) \text {-colorable graphs }+ \text { induced subgraph relation }
\end{gathered}
$$

$$
m_{1}
$$

graphs of treewidth $\leqslant k+$ minor relation

 trees + contraction relation
In this talk...

$(S, \leqslant)=($ graph class, graph containment relation $)$

In this talk...

$$
(S, \leqslant)=(\text { graph class, graph containment relation })
$$

- contraction relation $\leqslant_{\text {ctr }}$: E contraction;
- induced minor relation $\leqslant \mathrm{im}$: V deletion and E contraction;
- minor relation \leqslant_{m} : V and E deletion, E contraction.

Containment relations on graphs

- Some are WQO:
- minors: $[G M X X]$ (Wagner's conjecture)
- immersions: [GMXXIII] (Nash-Williams' Conjecture)

Containment relations on graphs

- Some are WQO:
- minors: [GMXX] (Wagner's conjecture)
- immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
- (induced) subgraphs
- contractions
- induced minors
- (induced) topological minor

Containment relations on graphs

- Some are WQO:
- minors: [GMXX] (Wagner's conjecture)
- immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
- (induced) subgraphs
- contractions
- induced minors
- (induced) topological minor
- ...and some are still open:
- induced immersions
- strong immersions

Containment relations on graphs

- Some are WQO:
- minors: [GMXX] (Wagner's conjecture)
- immersions: [GMXXIII] (Nash-Williams' Conjecture)
- ...some are not:
- (induced) subgraphs
- contractions
- induced minors
- (induced) topological minor
- ...and some are still open:
- induced immersions
- strong immersions

Main message: decomposition results (sometimes) imply WQO.

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

(1) choose an encoding of graphs as tuples (for instance) e.g. \# of subdivisions for each edge, in some chosen order;

$$
\left.\operatorname{enc}()_{0}^{0}\right)=(1,0,1,0,2)
$$

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

(1) choose an encoding of graphs as tuples (for instance) e.g. \# of subdivisions for each edge, in some chosen order;

$$
\left.\operatorname{enc}()_{0}^{0}\right)=(1,0,1,0,2)
$$

(2) choose an order on tuples s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \leqslant \operatorname{ctr} G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

(1) choose an encoding of graphs as tuples (for instance) e.g. \# of subdivisions for each edge, in some chosen order;

$$
\left.\operatorname{enc}()_{0}^{0}\right)=(1,0,1,0,2)
$$

(2) choose an order on tuples s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \leqslant \operatorname{ctr} G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$
(3) show that encodings are WQO by this order;

From structure to WQO

Toy example

Subdivisions of H are WQO by contraction.

(1) choose an encoding of graphs as tuples (for instance) e.g. \# of subdivisions for each edge, in some chosen order;

$$
\operatorname{enc}\left(\hat{Q}_{0}\right)=(1,0,1,0,2)
$$

(2) choose an order on tuples s.t. enc $(G) \leqslant \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \leqslant \operatorname{ctr} G^{\prime}$ e.g. the product order, $(2,1,0,3,1) \leqslant(5,1,2,4,1)$
(3) show that encodings are WQO by this order;
(4) that's it!
antichain $\left\{G_{1}, G_{2}, \ldots\right\} \Rightarrow$ antichain $\left\{\operatorname{enc}\left(G_{1}\right), \operatorname{enc}\left(G_{2}\right), \ldots\right\}$

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. $\operatorname{enc}(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. $\operatorname{enc}(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;
(3) show that $\left(\mathcal{S}, \preceq_{\mathcal{S}}\right)$ is a WQO.

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. enc $(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;
(3) show that $\left(\mathcal{S}, \preceq_{\mathcal{S}}\right)$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. enc $(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;
(3) show that $\left(\mathcal{S}, \preceq_{\mathcal{S}}\right)$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.
Choice of \mathcal{S} :

- given by a decomposition;

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. enc $(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;
(3) show that $\left(\mathcal{S}, \preceq_{\mathcal{S}}\right)$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.
Choice of \mathcal{S} :

- given by a decomposition;
- $\mathcal{S}=$ (labeled) 2 -c graphs of \mathcal{G};

High level view

Goal: show that (\mathcal{G}, \leqslant) is a WQO.
(1) choose a mapping enc: $\mathcal{G} \rightarrow \mathcal{S}$ where \mathcal{S} is simple;
(2) choose an order $\preceq \mathcal{S}$ on \mathcal{S} s.t. enc $(G) \preceq \mathcal{S} \operatorname{enc}\left(G^{\prime}\right) \Rightarrow G \preceq G^{\prime}$;
(3) show that $\left(\mathcal{S}, \preceq_{\mathcal{S}}\right)$ is a WQO.

In other words: order-preserving functions send WQOs on WQOs.
Choice of \mathcal{S} :

- given by a decomposition;
- $\mathcal{S}=$ (labeled) 2-c graphs of \mathcal{G};
- $\mathcal{S} \subseteq \mathcal{G}^{\star}$ (Nash-Williams' minimum bad sequence).

First example

Theorem (Błasiok, Kamiński, R., Trunck '15)
 H-induced minor-free graphs are $W Q O$ by $\leqslant_{\text {im }}$ iff H is induced minor of ∇ or $\mathbb{\nabla}$.

First example

> Theorem (Błasiok, Kamiński, R., Trunck '15)
> H-induced minor-free graphs are $W Q O$ by $\leqslant_{\text {im }}$ iff H is induced minor of ∇ or $\mathbb{\nabla}$.

Lemma

∇-induced minor-free graphs are $W Q O$ by induced minors.

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected ∇-induced minor-free graph is like this:

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected ∇-induced minor-free graph is like this:

$$
\operatorname{enc}(G)=\left(G_{1}, \lambda_{1}\right), \ldots,\left(G_{k}, \lambda_{k}\right)
$$

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected ∇-induced minor-free graph is like this:

$\operatorname{enc}(G)=\left(G_{1}, \lambda_{1}\right), \ldots,\left(G_{k}, \lambda_{k}\right)$

- G_{i} is a path or a cograph;
- $\lambda_{i}: V\left(G_{i}\right) \rightarrow\{0,1\}^{6}$ (labeling)

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected ∇-induced minor-free graph is like this:

$\operatorname{enc}(G)=\left(G_{1}, \lambda_{1}\right), \ldots,\left(G_{k}, \lambda_{k}\right)$

- G_{i} is a path or a cograph;
- $\lambda_{i}: V\left(G_{i}\right) \rightarrow\{0,1\}^{6}$ (labeling)
- we choose an order on encodings.

Following the recipe

Lemma (Błasiok, Kamiński, R., Trunck '15)

Every 2-connected ∇-induced minor-free graph is like this:

$\operatorname{enc}(G)=\left(G_{1}, \lambda_{1}\right), \ldots,\left(G_{k}, \lambda_{k}\right)$

- G_{i} is a path or a cograph;
- $\lambda_{i}: V\left(G_{i}\right) \rightarrow\{0,1\}^{6}$ (labeling)
- we choose an order on encodings.
(labeled) cographs and paths are easy to order.

Second example

Theorem (Błasiok, Kamiński, R., Trunck '15+)

H-contraction-free graphs are WQO by contractions iff H is a contraction of \Downarrow.

Second example

> Theorem (Błasiok, Kamiński, R., Trunck '15+)
> H-contraction-free graphs are WQO by contractions iff H is a contraction of \downarrow.

Lemma

\Downarrow-contraction-free graphs are wqo by contractions.

The decomposition

Lemma

If G is \Downarrow-contraction-free then every block of G is either a clique or an induced cycle.

The encoding

$$
\begin{aligned}
& \otimes \Delta \\
& =\operatorname{cycle}\left(\triangle, \wedge^{\circ} \wedge^{\circ},{ }^{\circ}\right)
\end{aligned}
$$


```
If \(\left(G_{1}, \ldots, G_{p}\right) \leqslant_{c t r}{ }^{\star}\left(H_{1}, \ldots, H_{q}\right)\)
    then \(\operatorname{cycle}\left(G_{1}, \ldots, G_{p}\right) \leqslant \operatorname{ctr} \operatorname{cycle}\left(H_{1}, \ldots, H_{q}\right)\)
    and clique \(\left(G_{1}, \ldots, G_{p}\right) \leqslant_{\text {ctr }}\) clique \(\left(H_{1}, \ldots, H_{q}\right)\)
```


Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:
A_{1}, A_{2}, \ldots

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:

$$
A_{1}, A_{2}, \ldots
$$

(2) $\mathcal{B}=$ "parts" of A_{i} 's;

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:

$$
A_{1}, A_{2}, \ldots
$$

(2) $\mathcal{B}=$ "parts" of A_{i} 's;
(3) $\left(\mathcal{B}, \leqslant_{\mathrm{ctr}}\right)$ is a wqo, by minimality of $\left\{A_{i}\right\}_{i}$;

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:

$$
A_{1}, A_{2}, \ldots
$$

(2) $\mathcal{B}=$ "parts" of A_{i} 's;
(3) $\left(\mathcal{B}, \leqslant_{\mathrm{ctr}}\right)$ is a wqo, by minimality of $\left\{A_{i}\right\}_{i}$;
(9) $\left(\mathcal{B}^{\star}, \leqslant_{c t r}\right)$ is a wqo;

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:

$$
A_{1}, A_{2}, \ldots
$$

(2) $\mathcal{B}=$ "parts" of A_{i} 's;
(3) $\left(\mathcal{B}, \leqslant_{\mathrm{ctr}}\right)$ is a wqo, by minimality of $\left\{A_{i}\right\}_{i}$;
(9) $\left(\mathcal{B}^{\star}, \leqslant \mathrm{ctr}\right)$ is a wqo;
(6) ($\left.\operatorname{cycle}\left(\mathcal{B}^{\star}\right) \cup \operatorname{clique}\left(\mathcal{B}^{\star}\right), \leqslant_{c t r}\right)$ is a wqo;

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:

$$
A_{1}, A_{2}, \ldots
$$

(2) $\mathcal{B}=$ "parts" of A_{i} 's;
(3) $\left(\mathcal{B}, \leqslant_{\mathrm{ctr}}\right)$ is a wqo, by minimality of $\left\{A_{i}\right\}_{i}$;
(9) $\left(\mathcal{B}^{\star}, \leqslant_{c t r}\right)$ is a wqo;
(5) ($\left.\operatorname{cycle}\left(\mathcal{B}^{\star}\right) \cup \operatorname{clique}\left(\mathcal{B}^{\star}\right), \leqslant_{\text {ctr }}\right)$ is a wqo;
(0) $\left\{A_{i}\right\}_{i}$ is WQO, contradiction.

Well-quasi-ordering encodings

(1) Consider a minimal infinite antichain:
A_{1}, A_{2}, \ldots
(2) $\mathcal{B}=$ "parts" of A_{i} 's;
(3) ($\left.\mathcal{B}, \leqslant_{\text {ctr }}\right)$ is a wqo, by minimality of $\left\{A_{i}\right\}_{i}$;
(9) $\left(\mathcal{B}^{\star}, \leqslant \mathrm{ctr}\right)$ is a wqo;
(6) ($\left.\operatorname{cycle}\left(\mathcal{B}^{\star}\right) \cup \operatorname{clique}\left(\mathcal{B}^{\star}\right), \leqslant_{\text {ctr }}\right)$ is a wqo;
(6) $\left\{A_{i}\right\}_{i}$ is WQO, contradiction.
\Downarrow-contraction-free graphs are WQO by contractions.

Conclusion

- general recipe to go from a decomposition to a wqo;

Conclusion

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)
(not always possible);

Conclusion

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order) (not always possible);
- well-quasi-orders are "simple" orders.

Conclusion

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)
(not always possible);
- well-quasi-orders are "simple" orders.

Further work:

- study the limit cases for parameterized classes in non-wqos (H-\&-free, sparse classes, bounded parameter, etc.);
- which classes are wqo by strong immersions?

Conclusion

- general recipe to go from a decomposition to a wqo;
- needs a good choice of the (encoding, order)
(not always possible);
- well-quasi-orders are "simple" orders.

Further work:

- study the limit cases for parameterized classes in non-wqos (H-\&-free, sparse classes, bounded parameter, etc.);
- which classes are wqo by strong immersions?

Thank you!

