
Université de Nantes

Dynamic Trees and Log-lists

Irena Rusu
Université de Nantes, LINA
Irena.Rusu@univ-nantes.fr

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 2

Outline

• Motivations for an Array-List (but not the Java Collection …)

• Dynamic Trees
• A Sequence is a Filiform Tree
• A Log-List is a Filiform tree too … but Needs Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 3

Outline

• Motivations for an Array-List (but not the Java Collection …)

• Fundamentals: Dynamic Trees
• Easy observation: A Sequence is a Filiform Tree
• A step further: A Log-List too … but Needs Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 4

Problem. Improve the running time of the existing algorithm for sorting
a permutation P by prefix reversals and prefix transpositions
(explained below).

Motivations for an Array-List

P: 7 4 5 2 8 9 1 3 6 10

P: 7 4 5 2 8 9 1 3 6 10

2 5 4 7

P8
-1 needed

Need to:
• Reverse
• Update some Pi

-1

P: 2 5 4 7 8 9 1 3 6 10

7+1=8

P8
-1 better using arrays, reverse better using double-linked lists, update ???

Prefix reversal

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 5

Motivations for an Array-List

P: 2 5 4 7 8 9 1 3 6 10

P: 2 5 4 7 8 9 1 3 6 10

P: 2 5 4 3 6 107 8 9 1

P1
-1,P8, P4

-1 needed

Prefix transposition

Need to:
• Transpose
• Update many Pi
• Update many Pi

-1

P1
-1, P8, P4

-1 better using arrays, transpose better using double-linked lists, update ??

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 6

Goal:
– choose and perform a reversal or transposition in O(log n)
– improve the running time of the sorting algorithm from O(n2) to

O(n log n)

Use trees:
Initial step: the permutation is a big tree
Coloring step: cut the big tree into subtrees
Block operation: change trees order and/or left-right orientation, and

globally modify P and P-1 values at the root
Final step: link subtrees

Motivations for an Array-List : An Idea

P: 2 5 4 7 8 9 1 3 6 10

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 7

Motivations for an Array-List : An Idea

P: 2 5 4 7 8 9 1 3 6 10

Trees need to support:
• Cut several edges
• Link several subtrees
• Left-right flipping
in O(log n)

Binary balanced trees :
• Height balanced trees
• Red-Black trees
• …
(Any other with height in O(log n), and

which supports re-balancing)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 8

2
-1A

C
B

0
0A

C
B

1
-1

Rappels

33

65

78 92

64

5341

49 66

17

21

5

9

69

Height-balanced tree

Red-black tree

(Re-)balance

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 9

Motivations for an Array-List : An Idea

P: 2 5 4 7 8 9 1 3 6 10

Trees need to support:
• Cut several edges
• Link several subtrees
• Left-right flipping
in O(log n)

… but also
• global modifications of P

and P-1 values

Binary balanced trees :
• Height balanced trees
• Red-Black trees
• …
(Any other with height in O(log n), and

which supports re-balancing)

?

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 10

Outline

• Motivations for an Array-List (but not the Java Collection)

• Dynamic Trees
• Easy observation: A Sequence is a Filiform Tree
• A step further: A Log-List too … but Needs Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 11

Dynamic trees: Introduction (1)

Daniel D. Sleator and Robert E. Tarjan (1983)

Data structure proposed to maintain a forest of vertex disjoint rooted
trees under link (add an edge) and cut (delete an edge) operations
between trees, in O(log n) each.

Applications:
– maximum flow problem and variants (Sleator, Tarjan, 1983)
– the Least Common Ancestor problem (Sleator, Tarjan, 1983)
– the transshipment problem (Sleator, Tarjan, 1983)
– the string matching problem in compressed strings (Farach,

Thorup, 1995)
– …

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 12

Dynamic trees: Introduction (2)

More precisely, do in O(log n), given the forest of dynamic trees:
• dparent(v): return the parent of v in its tree, or null
• droot(v): return the root of the tree containing v
• dcost(v): return the cost of the edge (v,dparent(v))
• dmincost(v): return the vertex w closest to droot(v) whose

dcost(w) is minimum on the path from v to droot(v).
• dupdate(v,u): add u to all costs on the path from v to droot(v)
• dlink(v,w,u): add edge (v,w) of cost u assuming

v = droot(v), thus making w the parent of v
• dcut(v): delete the edge (v,parent(v)) and return its cost
• devert(v): make v become the root of its tree

Note. All these are operations on paths towards the root

a

b

g

c

d

h

e

f

k

l

m

7

2

5 6

10

3

9 1

84

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 13

1. A tree is partitionned into « solid » paths going towards the root (edges
are « solid » or « dashed »)

Dynamic trees: Ideas

a

b

g

c

d

h

e

f

k

l

m

7

2

5 6

10

3

9 1

84
a b

c d

h

e

g k

m l

2. Each « solid » path is represented as a (particular) binary tree.

f

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 14

Dynamic trees: Ideas

a

b

g

c

d

h

e

f

k

l

m

7

2

5 6

10

3

9 1

84
a b

c d

h

e

g k

m l

f

Here, the path from k to the root.

3. Operations on paths towards the root: turn the concerned path into a
solid path, and perform operations on its binary tree

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 15

3. Operations on paths towards the root: turn the concerned path into a
solid path, and perform operations on its binary tree

Dynamic trees: Ideas

a

b

g

c

d

h

e

f

k

l

m

7

2

5 6

10

3

9 1

84
a b

c d

h

e

g k

m l

Here, the path from k to the root.

f

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 16

Here, the path from k to the root.

Dynamic trees: Ideas

a

b

g

c

d

h

e

f

k

l

m

7

2

5 6

10

3

9 1

84

a b

c d

h
e

g k

m l

f

Splice : switches one solid and one dashed arc
Needs O(log n) for binary balanced trees.

Expose : builds the entire path, uses t splices
Needs O(t log n) for binary balanced trees.

3. Operations on paths towards the root: turn the concerned path into a
solid path, and perform operations on its binary tree

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 17

Dynamic trees: Choose the appropriate solid paths and binary trees

Trees

Solid paths

Standard
balanced
binary trees

Locally biased
binary trees/
Splay trees

Globally biased
binary trees

Initial: Arbitrary
Later: As resulting
from the operations
performed

Initial and Later:
Defined by the
structure of the tree
(Heavy/light edges*)

Running time of expose

O(log2 n)
amortized

O(log n)
amortized

O(log n)

*(v,father(v)) is a heavy edge in the dynamic tree if 2*size(v)>size(father(v)),
where size(v)=#nodes in the tree rooted at v

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 18

Dynamic trees: Choose the appropriate solid paths and binary trees

*(v,father(v)) is a heavy edge in
the dynamic tree if
2*size(v)>size(father(v))

Lemma. With solid paths defined by the heavy edges, a path from v to droot(v)
contains at most log n dashed edges.

Lemma. With globally biased binary trees, the running time of one splice
operation is not constant, but summing over all splices, the total
running time of expose is in O(log n).

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 19

Say v=a, and assume expose(a) has been done.

Dynamic trees: Focus on some operations

a

b

c

d

h

7

2

5

4

a b h

c d

dparent(a)
droot(a)

dcost(a)
dmincost(a)
dupdate(a,u)

dlink(v,c,u)
dcut(c)
devert(c)

Search the
binary tree

Store relative
information at nodes
and act on the root

Cut/link/reverse/balance
the binary trees

→ whatever the type of the tree, it will have a lot of links and information at nodes

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 20

Cost-related information in the binary tree.

Dynamic trees: Focus on dcost(), dmincost(), dupdate()

a
b

c

d

h

7

2

5

4

=cost-mintree

=mintree-mintree(bparent())

5-2=3

2-2=0

5-5=0

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 21

Operation Value Computation
dmincost(a) mintree(r) Search the node

(one branch)
dcost(a) netcost(a,b)+

mintree(a,b)
netcost(a,b)+
∑w=e,..,r netmin(w)

dupdate(a,x) +u on all
costs

+u on netmin(r)

Dynamic trees: Focus on dcost(), dmincost(), dupdate()

=cost-mintree

=mintree-mintree(bparent())

r

Notes.
1) *u on netmin(r) does not

multiply all the values
2) several costs are possible

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 22

Dynamic trees: Conclusions (1)

With heavy/light edges and globally biased binary trees:

– Good news: All the operations are in O(log n)
– Principle: Create the solid path from v to r, then work on the

associated binary tree
– Local operations dparent(v), droot(v) search the binary tree
– Aggregate operations dcost(v), dmincost(v), update(v,u) store

relative information at nodes and sometimes search the binary
tree

– Operations dlink(v,w,u), dcut(v), devert(v) modifying the structure
of the forest link, cut, reverse, re-balance the binary trees
involved.

– Several costs are possible

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 23

Dynamic trees: Conclusions (2)

Cannot be used in all situations:

– Not adapted to top-down visiting the dynamic trees
– Not adapted to searching a value in the forest/a dynamic tree
– Aggregate operations do not allow multiplications

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 24

Outline

• Motivations for an Array-List (but not the Java Collection)

• Fundamentals: Dynamic Trees
• A Sequence is a Filiform Tree
• A step further: A Log-List too … but Needs Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 25

A sequence is a filiform tree: Implement a sequence as a dynamic tree

P: 7 4 5 2 8 9 1 3 6 10

a
b

c

d

h

1
7

4
2

3
52

4

e
f

g

k

l

6
9

9
6

8
3

7
1

5
8

10
10Dynamic tree L

associated with P

The index i is a
new cost.

head(L)

tail+(L)

tail(L)

We need to:
• Compute Pi, Pi

-1 (fixed i)
• Perform a reversal
• Perform a transposition
• Update all Pj, Pj

-1

in O(log n)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 26

A sequence is a filiform tree: what we get from dynamic trees

P: 7 4 5 2 8 9 1 3 6 10

a
b

c

d

h

1
7

4
2

3
52

4

e
f

g

k

l

6
9

9
6

8
3

7
1

5
8

10
10Dynamic tree L

associated with P

The index i is a
new cost.

head(L)

tail+(L)

tail(L)

t8(x=8)

t1(y=1)
devert, dcut,
dlink
dmincost,
dupdate

Not done yet
with dynamic
trees

Note. get_element(), succ(), prev() in O(log n)

We are able to do more
(tx,ty designate nodes
with edge costs x, y) :
• insert(L,L1,tx)
• delete(L,tx,ty)
• reverse(L,tx,ty)
• find_min(L,tx,ty) (or max)
• add(L,tx,ty,u)
• change_sign(L,tx,ty)
• find_rank(L,tx) (=P-1[x])
• find_element(L,i) (=P[i])
in O(log n)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 27

1) Perform

2) Update the index for delete, insert, reverse

A sequence is a filiform tree: what remains to be done

Not done yet
with dynamic
trees

• change_sign(L,tx,ty)
• find_rank(L,tx) (=P-1[x])
• find_element(L,i) (=P[i])

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 28

Outline

• Motivations for an Array-List (but not the Java Collection)

• Fundamentals: Dynamic Trees
• Easy observation: A Sequence is a Filiform Tree
• A Log-List is a filiform tree too … but Needs Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 29

1) Perform

Quite easy : find_element(L,i)
devert(tail+(L)) put the list in its standard from
expose(head(L)) all the list is a solid path with binary

tree B
New: dsearchindex(B,i) search i in the binary search tree B

with values index()

A log-list is a filiform tree too: Adjustments (1)

Not done yet
with dynamic
trees

• change_sign(L,tx,ty)
• find_rank(L,tx) (=P-1[x])
• find_element(L,i) (=P[i])

Time: O(log n)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 30

change_sign(L,tx,ty):
devert(dparent(ty)),
expose(tx) (→binary tree B)
dminuscost(B) New

Idea:
(±)binary tree

A log-list is a filiform tree too

a
b

c

d

h

7

2

5

4

Multiply by -1:

Change the
marks on the
roots

-7

-4

-5

-2

cost() -cost()

Time: O(log n)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 31

A log-list is a filiform tree too: Adjustments(1ter)

P: 7 4 5 2 8 9 1 3 6 10

a
b

c

d

h

1
7

4
2

3
52

4

e
f

g

k

l

6
9

9
6

8
3

7
1

5
8

10
10 tail+(L)

tail(L)

find_rank(L,tx)
devert(tail+(L))
return dindex(tx)

How to find tx, given x ?

Idea:
• Nodes a, b, c, … are fixed

memory cases
• Each of them may be a

landmark for a given element
(i.e. it is kept close to the element)

h

c d

a b

Lm
1 2 3 4 5 6 7 8 9 10

t8(x=8)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 32

A log-list is a filiform tree too: Adjustments(1ter)

P: 7 4 5 2 8 9 1 3 6 10

a
b

c

d

h

1
7

4
2

3
52

4

m
g

f

k=e
l

6
9

9
6

8
3

7
1

5
8

10
10 tail+(L)

Idea:
• Nodes a, b, c, … are fixed

memory cases
• Each of them may be a

landmark for a given element
(i.e. it is kept close to the element)
• … with a few exceptions at the
endpoints of the moved blocks

Lm
1 2 3 4 5 6 7 8 9 10

e
f

g

k

6
9

8
3

7
1

reversal

Lm[x] is one of the endpoints of the
edge with cost x; tx is the lowest
endpoint of it

Time: O(log n)

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 33

A log-list is a filiform tree too: Adjustments(2)

a
b

c

d

h

1
7

4
2

3
52

4

m
g

f

k=e
l

6
9

9
6

8
3

7
1

5
8

10
10 tail+(L)

e
f

g

k

6
9

8
3

7
1

reversal

2) Update the index for delete, insert, reverse

m

g

f

k=e-6
9

- 8
3

-7
1

Index*(-1) Index+14

g

f

k=e8
9

6
3

7
1

An example for reverse

Time: O(log n)

m

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 34

A log-list is a filiform tree too: Summary

• What is a log-list ?
– a filiform dynamic tree L (but temporarily a forest of such trees)
– three pointers head(L), tail(L), tail+(L)
– a toolbox of O(log n) time operations

– (if needed) a landmark table Lm (allows to compute tx)

• get_element(tx)
• succ(tx)
• prec(tx)
• insert(L,L1,tx)
• delete(L,tx,ty)
• reverse(L,tx,ty)
• find_min(L,tx,ty) (or max)
• add(L,tx,ty,u)
• change_sign(L,tx,ty)
• find_rank(L,tx) (=P-1[x])
• find_element(L,i) (=P[i])

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 35

A log list is a filiform tree too: Summary

• Shall we deduce that visiting all the elements in a log-list
takes O(n log n)?

No, visiting directly the binary tree allows to do this in
O(n) … but needs to go deeper into the implementation

• What about searching a given element in a log-list?
If the list is not ordered, O(n) as above
If the list is ordered and has distinct elements, the dynamic tree
operation dsearchcost (we used it only for cost=index) does it
in O(log n).

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 36

Outline

• Motivations for an Array-List (but not the Java Collection)

• Fundamentals: Dynamic Trees
• Easy observation: A Sequence is a Filiform Tree
• A step further: A Log-List is a filiform tree too … but Needs

Adjustments
• Conclusion

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 37

Conclusion

• Improving the algorithm for sorting by prefix reversals and
prefix transpositions
– n steps, each identifying and performing a block operation
– O(n log n) time instead of O(n2) before

• In addition: four other variants of the sorting problem are
improved

• Some of them resist however
• Log-list could have many other applications

Université de Nantes

Dynamic Trees and Log-Lists – I. Rusu – JGA’15 38

Bibliography

• Daniel D. Sleator and Robert E. Tarjan – A Data Structure for
Dynamic Trees, Journal of Computer and System Sciences 26,
362-291 (1983)

• Irena Rusu – Log-Lists and Their Applications to Sorting by
Transpositions, Reversals and Block-Interchanges,
arXiv 1507.01512 (2015).

Thank you !

