Indice chromatique fort des graphes distances

Maxime Savaro

2 novembre 2015

Graphe distance

Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a,b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta = 2|D|$.

Graphe distance

Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a,b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta = 2|D|$.

0

2

4

6

(8)

. .

ı

1)

(3)

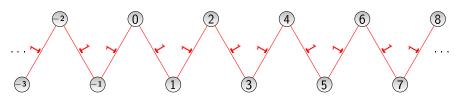
(5)

 $\overline{7}$

Le graphe distance G(1,2).

Graphe distance

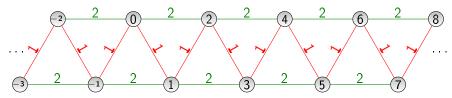
Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a,b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta=2|D|$.



Le graphe distance G(1,2).

Graphe distance

Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a,b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta=2|D|$.



Le graphe distance G(1,2).

Graphe distance

Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a,b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta = 2|D|$.

•••

Le graphe distance G(1,2).

Graphe distance

Soit $D \in \mathbb{N}^*$ (les éléments de D sont appelés générateurs). Le graphe distance généré par D est le graphe $G(D) = (\mathbb{Z}, E)$ où $(a, b) \in E$ ssi $|b-a|=d \in D$. L'arête (a, b) est alors dite de type d. En particulier, G(D) est un graphe infini Δ -régulier, avec $\Delta = 2|D|$.

(3) 2 (1) 2 (3) 2 (5) 2 (7)

Le graphe distance G(1,2).

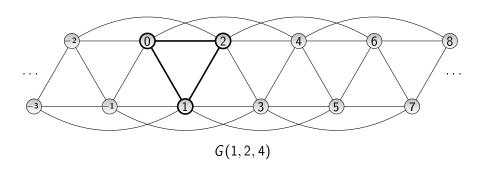
On peut supposer sans perte de généralité que pgcd(D) = 1.

Lemme (Folklore)

Si
$$[1, k] \subset D \subset \mathbb{N} \setminus (k+1)\mathbb{N}$$
, alors $\chi(D) = k+1$.

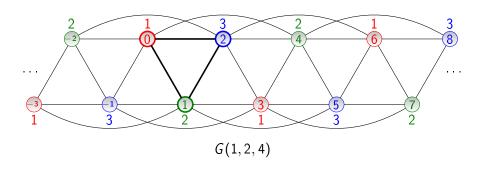
Lemme (Folklore)

Si
$$[1, k] \subset D \subset \mathbb{N} \setminus (k+1)\mathbb{N}$$
, alors $\chi(D) = k+1$.



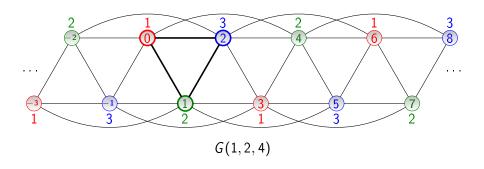
Lemme (Folklore)

Si
$$[1, k] \subset D \subset \mathbb{N} \setminus (k+1)\mathbb{N}$$
, alors $\chi(D) = k+1$.



Lemme (Folklore)

Si
$$[1, k] \subset D \subset \mathbb{N} \setminus (k+1)\mathbb{N}$$
, alors $\chi(D) = k+1$.

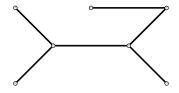


Lemme (Walther)

$$\chi(D) \leq |D| + 1.$$

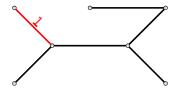
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



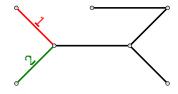
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



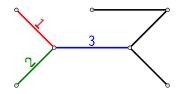
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



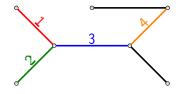
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



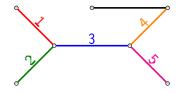
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



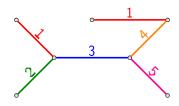
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



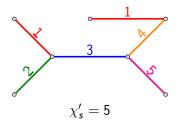
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



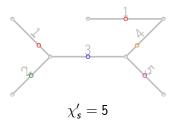
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



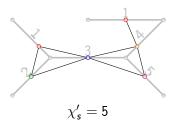
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



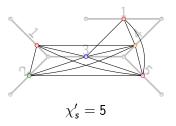
k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



k-coloration forte d'arêtes

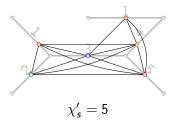
Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.



k-coloration forte d'arêtes

Une k-coloration forte d'arêtes d'un graphe G est une application $c: E(G) \to \{1,\ldots,k\}$ telle que deux arêtes adjacentes ou adjacentes à une même arête reçoivent des couleurs différentes.

L'indice chromatique fort de G, $\chi'_s(G)$, est le plus petit entier k pour lequel G admet une k-coloration forte d'arêtes.



Propriété

Si G est Δ -régulier, alors $2\Delta - 1 \le \chi'_{s}(G) \le 2\Delta(\Delta - 1) + 1$.

La conjecture d'Erdős et Nešetřil

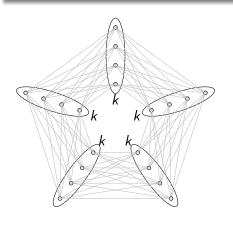
Conjecture [Erdős, Nešetřil, 1985]

$$\chi_s'(G) \leq \frac{5}{4}\Delta^2$$
 si Δ est pair et $\chi_s'(G) \leq \frac{1}{4}(5\Delta^2 - 2\Delta + 1)$ si Δ est impair.

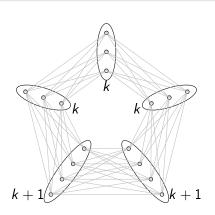
La conjecture d'Erdős et Nešetřil

Conjecture [Erdős, Nešetřil, 1985]

 $\chi_s'(G) \leq \frac{5}{4}\Delta^2$ si Δ est pair et $\chi_s'(G) \leq \frac{1}{4}(5\Delta^2 - 2\Delta + 1)$ si Δ est impair.

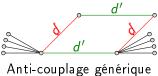


$$\Delta = 2k, \ \chi_s' = 5k^2$$



$$\Delta = 2k + 1, \ \chi'_s = 5k^2 + 4k + 1$$

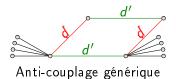
Anti-couplage générique



Théorème

Si $|D| \ge 2$, alors

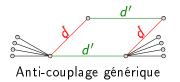
$$\chi'_s(D) \geq 4|D|.$$



Théorème

Si $|D| \ge 2$, alors

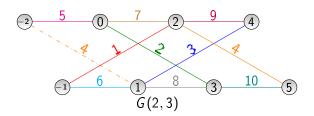
$$\chi_s'(D) > 4|D|.$$

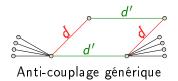


Théorème

Si $|D| \ge 2$, alors

$$\chi_s'(D) > 4|D|.$$

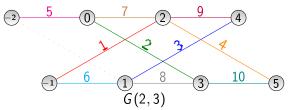




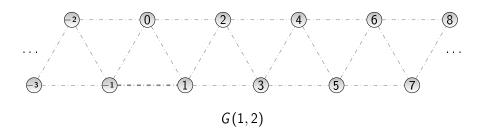
Théorème

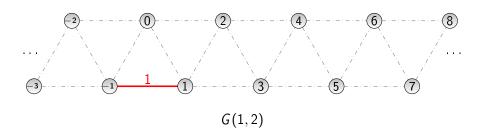
Si $|D| \ge 2$, alors

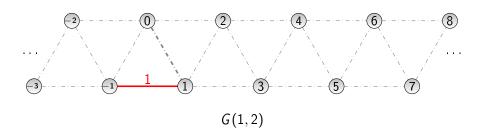
$$\chi_s'(D) > 4|D|.$$

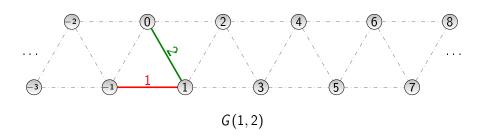


Anti-couplage relatif

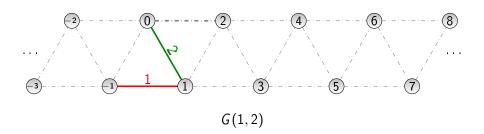




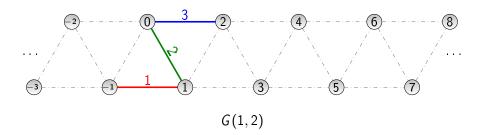


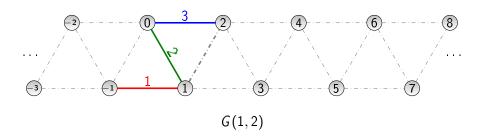


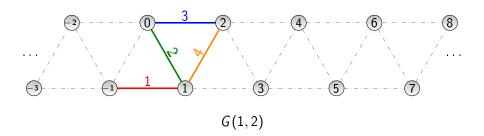
7 / 14

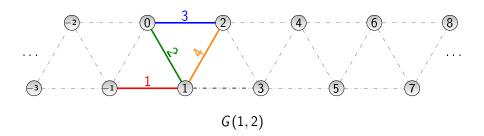


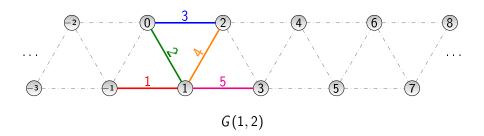
7 / 14

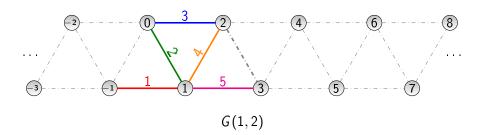


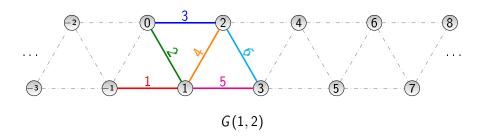


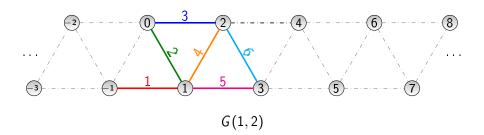


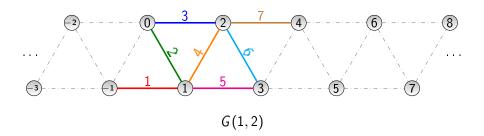


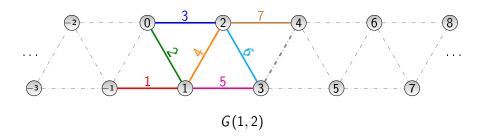


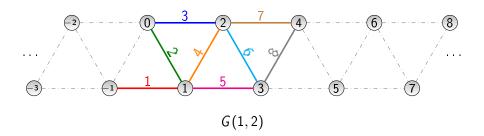


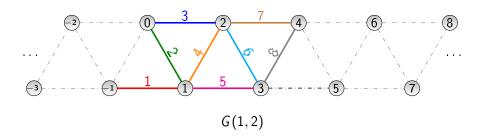


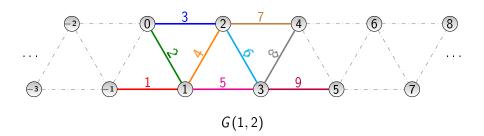


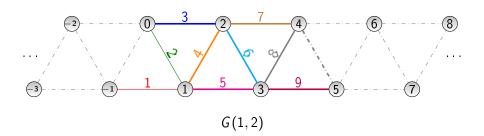


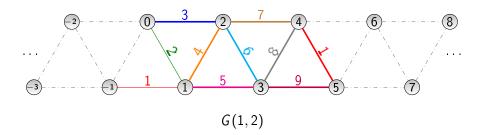


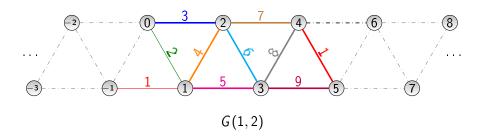


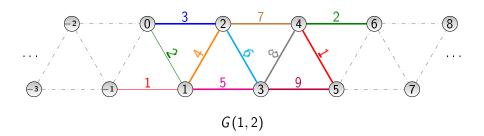


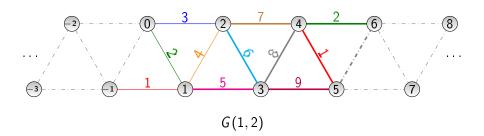


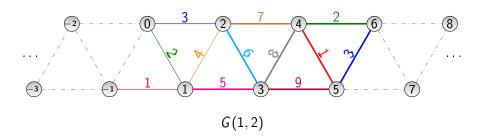


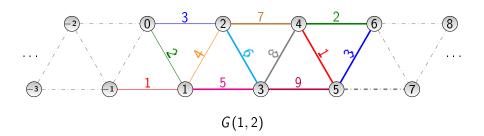


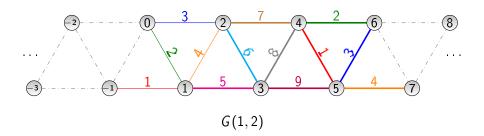


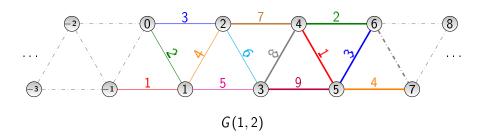


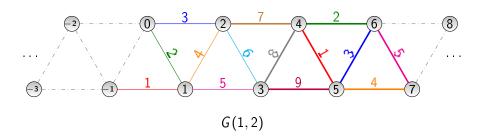


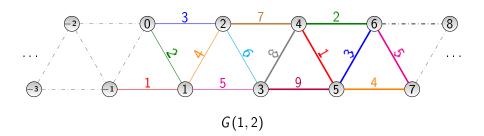


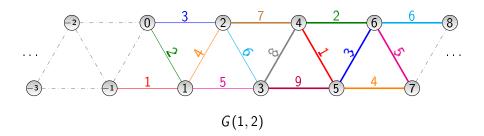


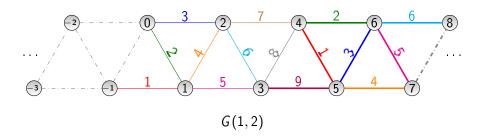


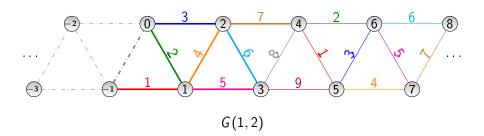


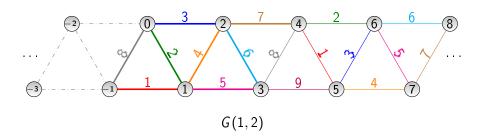


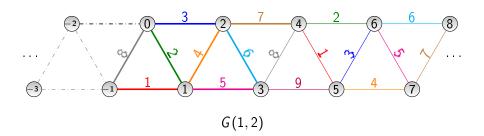


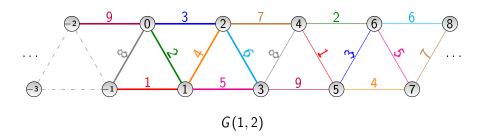


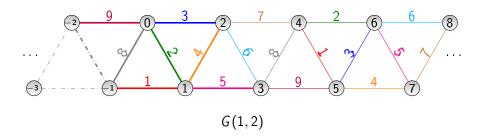


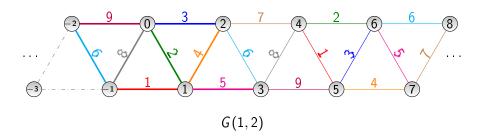


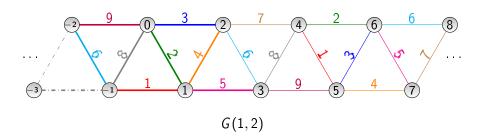


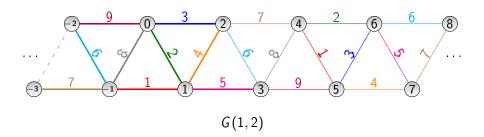


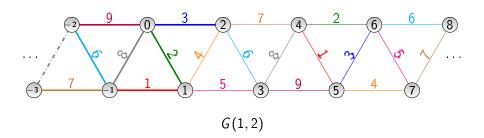


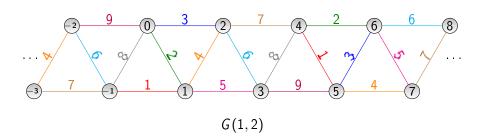








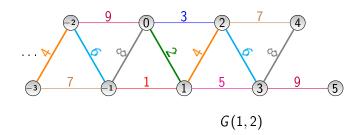




Théorème

$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

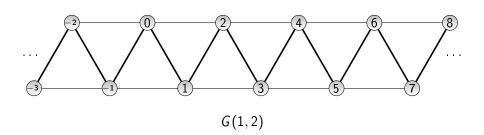
◆□▶ ◆□▶ ◆필▶ ◆필► 釣९♡



Théorème

$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

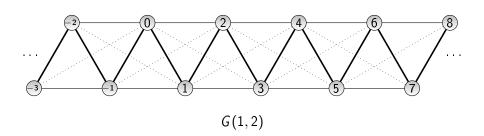
◆□▶ ◆□▶ ◆필▶ ◆필► 釣९♡



Théorème

$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

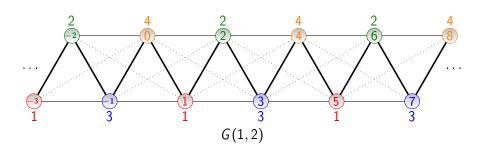
◆□▶ ◆□▶ ◆필▶ ◆필► 釣९♡



Théorème

$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

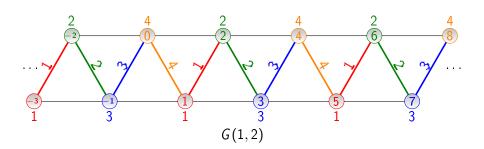
7 / 14



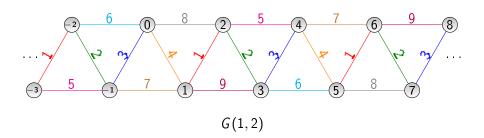
Théorème

$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

◆□▶ ◆□▶ ◆필▶ ◆필► 釣९♡



$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$



Théorème

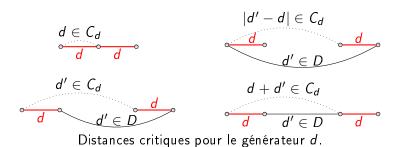
$$\chi_s'(\llbracket 1,k
rbracket) = rac{3}{2}k(k+1) \simeq rac{3}{8}\Delta^2 \left(\leq rac{5}{4}\Delta^2
ight)$$

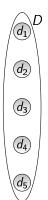
Maxime Savaro $\chi'_*(G(D))$ 2 novembre 2015 7 / 14

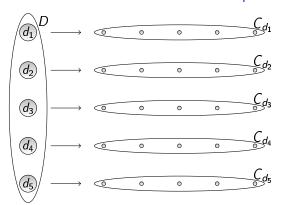
Les distances critiques

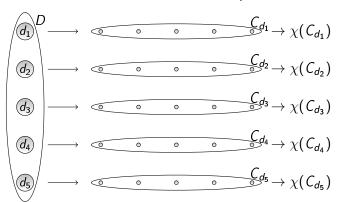
Distances critiques

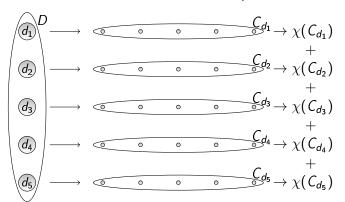
Une distance critique pour le générateur $d \in D$ est un entier d tel que deux arêtes de type d et dont les plus petites extrémités respectives sont distantes de d en valeur absolue sont à distance au plus 2 dans G(D). L'ensemble des distances critiques pour le générateur $d \in D$ est noté C_d^D .

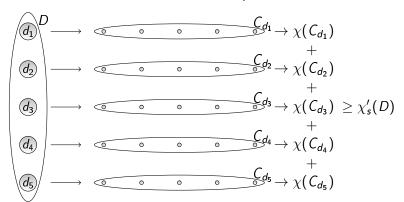


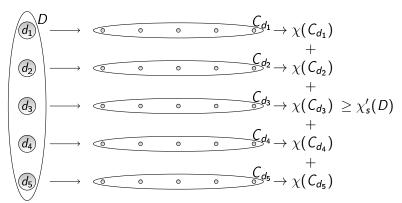








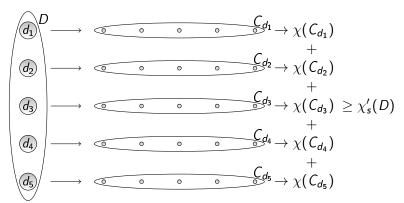




Théorème

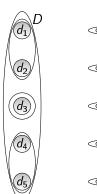
$$\chi'_s(D) \leq \sum_{d \in D} \chi(C_d).$$

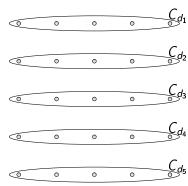
9 / 14



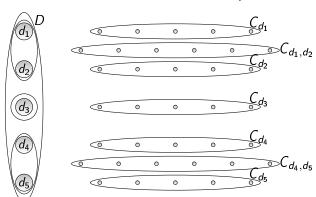
$$\chi_s'(D) \le \sum_{d \in D} \chi(C_d).$$

$$\chi_s'(D) \le 3|D|^2 = \frac{3}{4}\Delta^2.$$



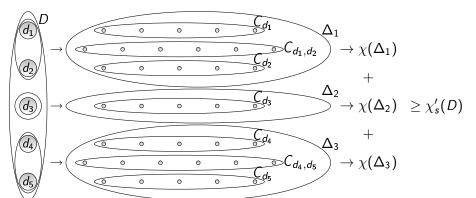


$$\chi'_{s}(D) \leq \sum_{d \in D} \chi(C_{d}).$$
$$\chi'_{s}(D) \leq 3|D|^{2} = \frac{3}{4}\Delta^{2}.$$

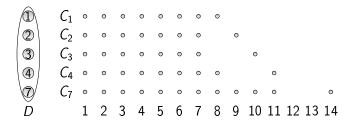


$$\chi_s'(D) \le \sum_{d \in D} \chi(C_d).$$

$$\chi_s'(D) \le 3|D|^2 = \frac{3}{4}\Delta^2.$$



$$\chi'_{s}(D) \leq \sum_{d \in D} \chi(C_{d}).$$
$$\chi'_{s}(D) \leq 3|D|^{2} = \frac{3}{4}\Delta^{2}.$$



\bigcirc	C_1	0	0	0	0	0	0	0	0	χ						$\chi_1 =$	9
	C_2	0	0	0	0	0	0	0	χ	0						$\chi_2 =$	8
3																$\chi_3 =$	8
4	C_4	0	0	0	0	0	0	0	0	χ		0				$\chi_{\rm 4} =$	
7	C_7	0	0	0	0	0	0	0	0	0	0	0	χ		0	$\chi_7 =$	12
Ď		1	2	3	4	5	6	7	8	9	10	11	12	13	14	$\gamma_{\rm c}^{\prime} <$	46

10 / 14

Théorème

Si $m+1 < x \le 2m+1$ et $m \ge 4$, alors

$$\chi_s'([1,m] \cup \{x\}) = \begin{cases} x + \frac{1}{2}(m+1)(3m+2) + 2 & \text{si } x = m+2, \\ x + \frac{1}{2}(m+1)(3m+2) + 1 & \text{sinon } . \end{cases}$$

◆□▶ ◆률▶ ◆불▶ 호텔 외약

10 / 14

Application à $[1, m] \setminus \{x\}$

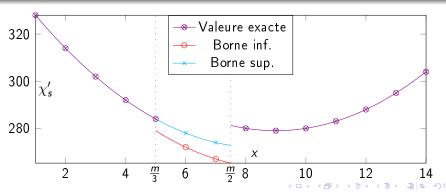
$$\chi_s'(D) \geq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{3}, \\ \frac{1}{2}m(3m+1) + x(x-m-3) - 1 & \text{si } \frac{m}{3} < x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$

$$\chi_s'(D) \leq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$

Application à $[1, m] \setminus \{x\}$

$$\chi_{s}'(D) \geq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{3}, \\ \frac{1}{2}m(3m+1) + x(x-m-3) - 1 & \text{si } \frac{m}{3} < x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$

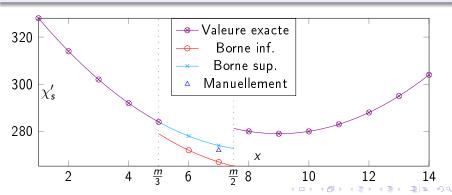
$$\chi_{s}'(D) \leq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$



Application à $[1, m] \setminus \{x\}$

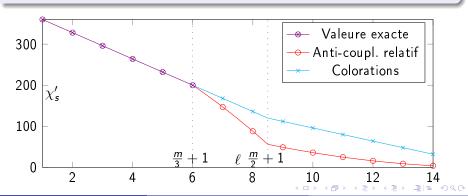
$$\chi_s'(D) \geq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{3}, \\ \frac{1}{2}m(3m+1) + x(x-m-3) - 1 & \text{si } \frac{m}{3} < x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$

$$\chi_s'(D) \leq \begin{cases} \frac{1}{2}m(3m+1) + x(x-m-2) - 1 & \text{si } x \leq \frac{m}{2}, \\ \frac{3}{2}m(m+1) + x(x-m-3) & \text{sinon.} \end{cases}$$

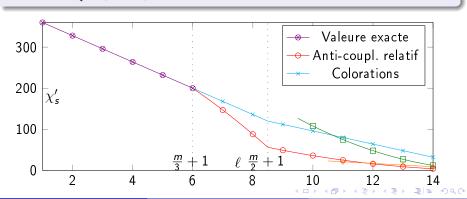


$$\begin{array}{l} \text{Th\'eor\`eme } (k=|D|=m-\ell+1) \\ \chi_s'(D) \geq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{3}, \\ \frac{1}{2}(m+1)(3k-\ell+1) - \ell(3\ell-3-m) & \text{si } \frac{m}{3} < \ell-1 \leq \frac{m}{2}, \\ k^2 & \text{sinon.} \end{cases} \\ \chi_s'(D) \leq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{2}, \\ k(m+1) & \text{sinon.} \end{cases}$$

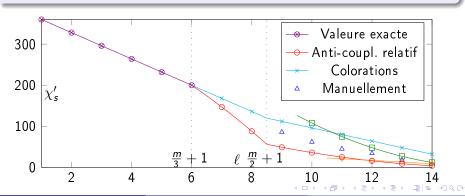
$$\begin{array}{l} \text{Th\'eor\`eme } (k=|D|=m-\ell+1) \\ \chi_{s}'(D) \geq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{3}, \\ \frac{1}{2}(m+1)(3k-\ell+1) - \ell(3\ell-3-m) & \text{si } \frac{m}{3} < \ell-1 \leq \frac{m}{2}, \\ k^2 & \text{sinon.} \end{cases} \\ \chi_{s}'(D) \leq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{2}, \\ k(m+1) & \text{sinon.} \end{cases}$$



$$\begin{array}{l} \text{Th\'eor\`eme } (k=|D|=m-\ell+1) \\ \chi_{s}'(D) \geq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{3}, \\ \frac{1}{2}(m+1)(3k-\ell+1) - \ell(3\ell-3-m) & \text{si } \frac{m}{3} < \ell-1 \leq \frac{m}{2}, \\ k^2 & \text{sinon.} \end{cases} \\ \chi_{s}'(D) \leq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{2}, \\ k(m+1) & \text{sinon.} \end{cases}$$



$$\begin{array}{l} \text{Th\'eor\`eme } (k=|D|=m-\ell+1) \\ \chi_{s}'(D) \geq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{3}, \\ \frac{1}{2}(m+1)(3k-\ell+1) - \ell(3\ell-3-m) & \text{si } \frac{m}{3} < \ell-1 \leq \frac{m}{2}, \\ k^2 & \text{sinon.} \end{cases} \\ \chi_{s}'(D) \leq \begin{cases} \frac{1}{2}(m+1)(3k-\ell+1) & \text{si } \ell-1 \leq \frac{m}{2}, \\ k(m+1) & \text{sinon.} \end{cases}$$



Bornes améliorables

- Bornes améliorables
- Dans quels cas ces méthodes sont-elles optimales?

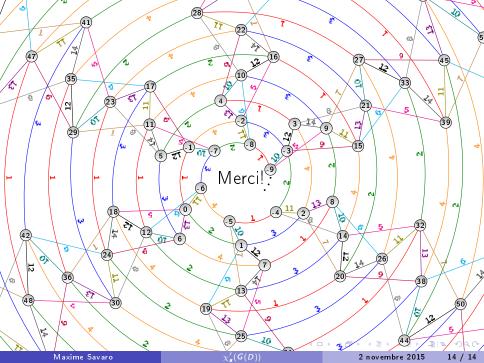
- Bornes améliorables
- Dans quels cas ces méthodes sont-elles optimales?
- Implémentation sous forme d'heuristique

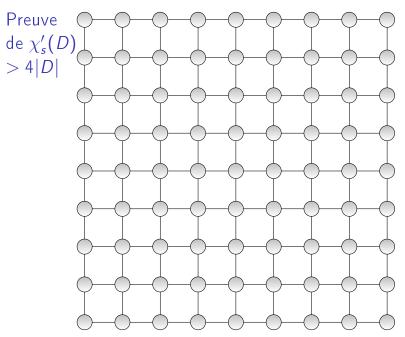
- Bornes améliorables
- Dans quels cas ces méthodes sont-elles optimales?
- Implémentation sous forme d'heuristique
- Application à d'autres sous-familles de graphes distances

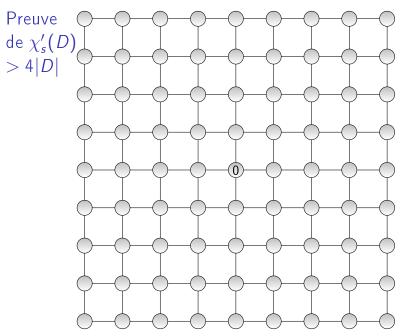
- Bornes améliorables
- Dans quels cas ces méthodes sont-elles optimales?
- Implémentation sous forme d'heuristique
- Application à d'autres sous-familles de graphes distances
- Application à d'autres colorations $(L(0,1,1),\ldots)$

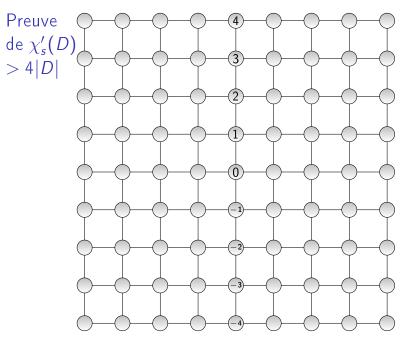
Ouvertures

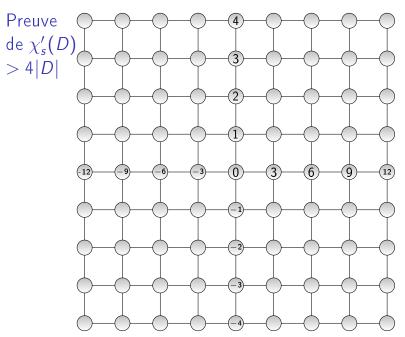
- Bornes améliorables
- Dans quels cas ces méthodes sont-elles optimales?
- Implémentation sous forme d'heuristique
- Application à d'autres sous-familles de graphes distances
- Application à d'autres colorations $(L(0,1,1),\ldots)$
- Application à d'autres familles de graphes (graphes circulants, graphes distances sur \mathbb{Z}^i ...)

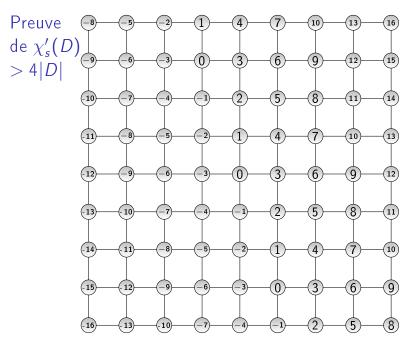






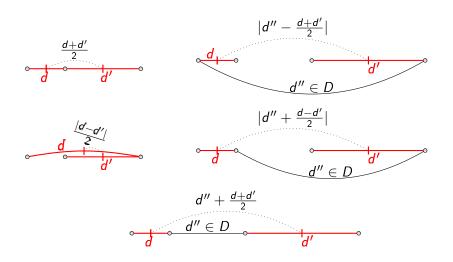






Preuve de $\chi'_s(D)^4$

Les distances critiques relatives à deux générateurs



La méthode des distances critiques généralisée

La méthode des distances critiques généralisée

graphe d'incompatibilité

Le graphe d'incompatibilité de D, est le graphe

$$G_I^D = (D, \{(d, d') \in D^2 | 0 \in C_{d, d'}\})$$

17 / 14

La méthode des distances critiques généralisée

graphe d'incompatibilité

Le graphe d'incompatibilité de D, est le graphe $G_{I}^{D} = (D, \{(d, d') \in D^{2} | 0 \in C_{d, d'}\})$

Théorème

Soit c une coloration propre de G_I . Pour tout $i \in Im(c)$, on note $S_i = \{d \in D | c(d) = i\}$ et $\Delta_i = \bigcup_{d,d' \in S_i} C_{d,d'} \cup \bigcup_{g \in S_i} C_{d_g}$ alors

$$\chi'_s(D) \leq \sum_{i \in Im(c)} \chi(\Delta_i).$$