Gamburgers and Graphs with Small Game Domination Numbers

Sandi Klavžar, Gašper Košmrlj, Simon Schmidt

Journées Graphes et Algorithmes, Orléans, 4-6 Novembre 2015

Work supported by ANR GAG.

Domination Game: rules set.

- Two players Dominator and Staller.
- Alternately choose a vertex to build a dominating set.
- A least one new vertex is dominated!
- The game ends when the whole graph is dominated.
- Dominator wants to shorten the game.
- Staller wants to prolong it.

D-game

D-game: if Dominator starts.

D-game

D-game: if Dominator starts.

D-game

D-game: if Dominator starts. Forbidden move!

D-game

D-game: if Dominator starts.

D-game

D-game: if Dominator starts. Dominating set of size 3

S-game

S-game: if Staller starts.

S-game

S-game: if Staller starts. Dominating set of size 4

γ_{g} and γ_{g}^{\prime}

Assuming both players play optimally:

- $\gamma_{g}(G)$ size of dominating set for D-game on G
- $\gamma_{g}^{\prime}(G)$ size of dominating set for S-game on G

$$
\begin{aligned}
& \gamma_{g}=3 \\
& \gamma_{g}^{\prime}=4
\end{aligned}
$$

Assuming both players play optimally:

- $\gamma_{g}(G)$ size of dominating set for D-game on G
- $\gamma_{g}^{\prime}(G)$ size of dominating set for S-game on G

Theorem Brešar et al. (2010), Kinnersley et al. (2013)

$$
\left|\gamma_{g}(G)-\gamma_{g}^{\prime}(G)\right| \leq 1
$$

Complexity

Theorem Brešar et al. (2014)
Problem: D-Game
Input: A graph G, an integer k
Output: whether $\gamma_{g}(G) \leq k$

The problem D-game is PSPACE-Complete.

Complexity

Theorem Brešar et al. (2014)
Problem: D-Game
Input: A graph G, an integer k
Output: whether $\gamma_{g}(G) \leq k$

The problem D-game is PSPACE-Complete.
Remark:
If k is not part of the input: D-game is solvable in time $\mathcal{O}\left(\Delta .|V(G)|^{k}\right)$.

Graphs with $\gamma_{g}=1$ or $\gamma_{g}^{\prime}=1$

$$
\gamma_{g}(G)=1 \Longleftrightarrow \Delta(G)=n-1
$$

$\gamma_{g}^{\prime}(G)=1 \Longleftrightarrow G$ is a clique.

Graphs with $\gamma_{g}=2$

$$
\gamma_{g}(G)=2
$$

\Longleftrightarrow

Graphs with $\gamma_{g}^{\prime}=2$

$$
\gamma_{g}^{\prime}(G)=2
$$

Any vertex belongs to a dominating set of size 2 and G is not a clique.

Isometric paths

Proposition

If P is an isometric path of $G: \gamma_{g}(P) \leq \gamma_{g}(G)$ and $\gamma_{g}^{\prime}(P) \leq \gamma_{g}^{\prime}(G)$
Proposition If $n \geq 1$, then
(i) $\gamma_{g}\left(P_{n}\right)= \begin{cases}\left\lceil\frac{n}{2}\right\rceil-1 ; & n \equiv 3(\bmod 4), \\ \left\lceil\frac{n}{2}\right\rceil ; & \text { otherwise. }\end{cases}$
(ii) $\gamma_{g}^{\prime}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Diameter bounds

Proposition

If G is a graph, then
(i) $\operatorname{diam}(G) \leq \begin{cases}2 \gamma_{g}(G) ; & \gamma_{g}(G) \text { odd }, \\ 2 \gamma_{g}(G)-1 ; & \text { otherwise. }\end{cases}$
(ii) $\operatorname{diam}(G) \leq 2 \gamma_{g}^{\prime}(G)-1$.

Extremal graphs: | | $\gamma_{g}=2$ | $\operatorname{diam}=3$ | $\gamma_{g}=4$ | $\operatorname{diam}=7$ |
| :---: | :---: | :---: | :---: | :---: |
| | $\gamma_{g}^{\prime}=2$ | $\operatorname{diam}=3$ | $\gamma_{g}^{\prime}=4$ | $\operatorname{diam}=7$ |
| | $\gamma_{g}=3$ | $\operatorname{diam}=6$ | \ldots | \ldots |
| | $\gamma_{g}^{\prime}=3$ | $\operatorname{diam}=5$ | \ldots | \ldots |

Gamburger

Gamburger

A burger has diam $=3$

Graphs with diam $=3$ and $\gamma_{g}^{\prime}=2$

Theorem Klavžar, Košmrlj, S. (2015)

Graphs with diam $=3$ and $\gamma_{g}^{\prime}=\gamma_{g}=2$

Theorem Klavžar, Košmrlj, S. (2015)

$$
\begin{gathered}
\operatorname{diam}(G)=3 \\
\text { and } \\
\gamma_{g}^{\prime}(G)=2 \\
\text { and } \\
\gamma_{g}(G)=2
\end{gathered}
$$

Graphs with $\gamma_{g}=3$

- Graphs with $\gamma_{g}=3$ and $\gamma_{g}^{\prime}=2$ caracterized by Brešar et al. (2015)
- What about extremal graphs (with respect to diam) ?

Tasty vertex

A vertex d is tasty if:
Burger condition

Graphs with $\gamma_{g}=3$ and diam $=6$

Theorem Klavžar, Košmrlj, S. (2015)
The followings statements are equivalent:

- $\gamma_{g}(G)=3$ and $\operatorname{diam}(G)=6$
- Any diametrical pair of vertices contains at least one tasty vertex
- There exists one tasty diametrical vertex
$\gamma_{g}=3 \&$ diam $=6 \Longrightarrow$ any diam. pair has a tasty vertex

$\gamma_{g}=3 \& \operatorname{diam}=6 \Longrightarrow$ any diam. pair has a tasty vertex

$\gamma_{g}=3 \&$ diam $=6 \Longrightarrow$ any diam. pair has a tasty vertex

$\gamma_{g}=3 \&$ diam $=6 \Longrightarrow$ any diam. pair has a tasty vertex

$\gamma_{g}=3 \& \operatorname{diam}=6 \Longrightarrow$ any diam. pair has a tasty vertex

Recognition algorithm

Corollary Klavžar, Košmrlj, S. (2015)
Graphs with $\gamma_{g}=3$ and diam $=6$ can be recognized in time $\mathcal{O}\left(|E(G)||V(G)|+\Delta^{3}\right)$.
(instead of $\mathcal{O}\left(\Delta|V(G)|^{3}\right)$)

Double-gamburger

Matching condition: If M_{i} perfect, then $M_{3-i}=\emptyset$ and join between T_{1}, T_{2}

Graphs with $\gamma_{g}^{\prime}=3$ and diam $=5$

Theorem Klavžar, Košmrlj, S. (2015)

The followings statements are equivalent:

- $\gamma_{g}^{\prime}(G)=3$ and $\operatorname{diam}(G)=5$
- The "distance layers" of any diam. vertex induce a double-gamburger
- There exists one diam. vertex whose "distance layers" induce a double-gamburger

Corollaries

- Graphs with $\gamma_{g}^{\prime}=3$ and diam $=5$ can be recognized in time $\mathcal{O}(\mid E(G) \| V(G \mid)$.
- If $\gamma_{g}^{\prime}(G)=3$ and $\operatorname{diam}(G)=5$, then $\gamma_{g}(G)=3$
- There is no diam $=5$ graph with $\gamma_{g}=4$ and $\gamma_{g}^{\prime}=3$

Further work

Extend the results to Gambanica!

