Édouard Bonnet¹, Florent Foucaud², Eunjung Kim³, and Florian Sikora³.

¹ Hungarian Academy of Sciences
²LIMOS – France
³LAMSADE, Université Paris Dauphine, CNRS – France

JGA 2015

Édouard Bonnet¹, Florent Foucaud², Eunjung Kim³, and Florian Sikora³.

¹ Hungarian Academy of Sciences
²LIMOS – France
³LAMSADE, Université Paris Dauphine, CNRS – France

JGA 2015

(Wrote most of these slides)

Édouard Bonnet¹, Florent Foucaud², Eunjung Kim³, and Florian Sikora³.

¹ Hungarian Academy of Sciences ²LIMOS – France ³LAMSADE, Université Paris Dauphine, CNRS – France

JGA 2015

Édouard Bonnet¹, Florent Foucaud², Eunjung Kim³, and Florian Sikora³.

¹ Hungarian Academy of Sciences
²LIMOS – France
³LAMSADE, Université Paris Dauphine, CNRS – France

JGA 2015

Outline

Warm Up

Exact algorithms

Weak Grundy Coloring

2/28

Grundy Coloring

Outline

Warm Up

Exact algorithms

Weak Grundy Coloring

3/28

Grundy Coloring

The worst way of reasonably coloring a graph.

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring: the Grundy Number (GN).
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood (first-fit).

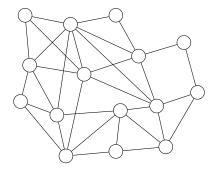
- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring: the Grundy Number (GN).
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood (first-fit).

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring: the Grundy Number (GN).
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood (first-fit).
- **Connected version**: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.

- Order the vertices v₁, v₂... v_n to maximize the number of colors used by the greedy coloring: the Grundy Number (GN).
- That is, v_i is colored with c(v_i) the first color that is not in its neighborhood (first-fit).
- **Connected version**: $\forall i, G[v_1 \cup \ldots \cup v_i]$ is connected.
- Weak version: v_i can be colored with any color in $\{1, \ldots, c(v_i)\}$.

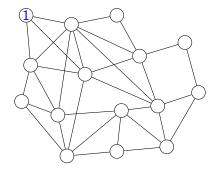
Algorithmic motivations

- ► *GN*(*G*) upper bounds the number of colors used by any greedy heuristic for MIN COLORING.
- GN(G) ≤ C · χ(G) on some classes of graphs gives a C-approximation for MIN COLORING.
- See Sampaio's PhD thesis for further motivations.



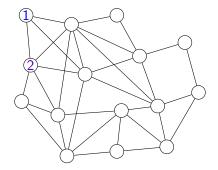
6/28

Grundy Coloring



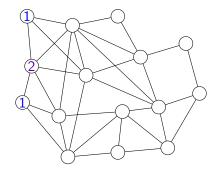
6/28

Grundy Coloring



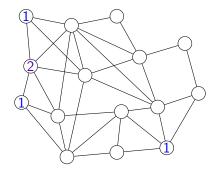
6/28

Grundy Coloring



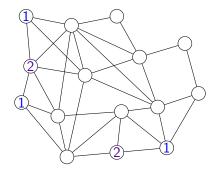
6/28

Grundy Coloring



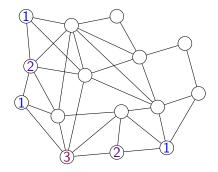
6/28

Grundy Coloring



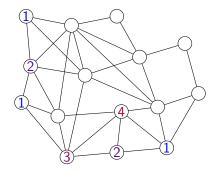
6/28

Grundy Coloring



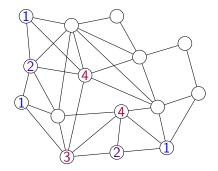
6/28

Grundy Coloring



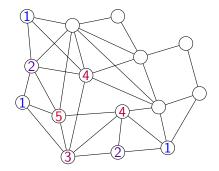
6/28

Grundy Coloring



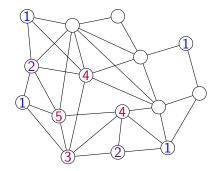
6/28

Grundy Coloring



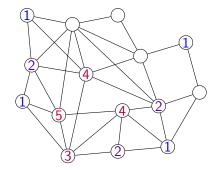
6/28

Grundy Coloring



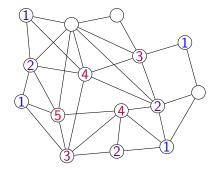
6/28

Grundy Coloring



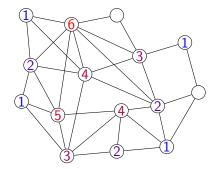
6/28

Grundy Coloring



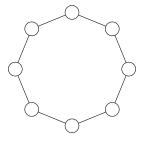
6/28

Grundy Coloring

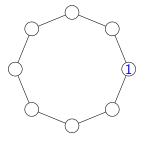


6/28

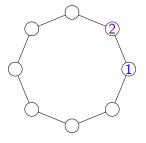
Grundy Coloring



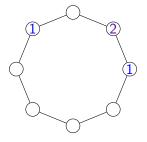
Grundy number =?



Grundy number =?



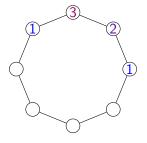
Grundy number =?



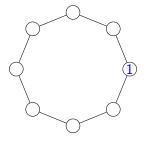
Grundy number =?

7/28

Grundy Coloring



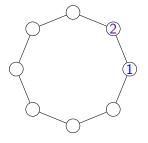
Grundy number = 3



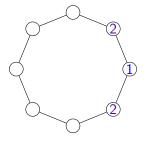
Connected Grundy number =?

8/28

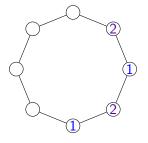
Grundy Coloring



Connected Grundy number =?



Connected Grundy number =?

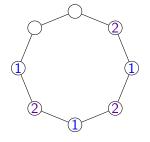


Connected Grundy number =?



Connected Grundy number =?

(even) Cycles



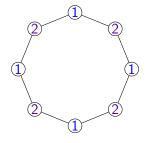
Connected Grundy number =?

(even) Cycles



Connected Grundy number =?

(even) Cycles



Connected Grundy number = 2



Grundy number =?

9/28

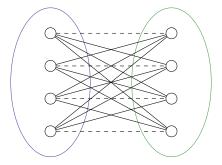
Grundy Coloring



Grundy number = 2

9/28

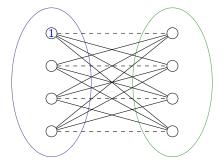
Grundy Coloring



Grundy number =?

10/28

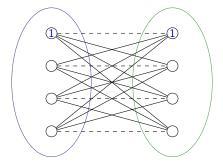
Grundy Coloring



Grundy number =?

10/28

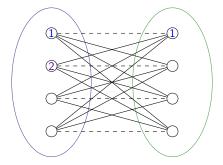
Grundy Coloring



Grundy number =?

10/28

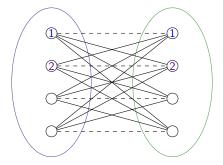
Grundy Coloring



Grundy number =?

10/28

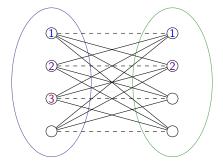
Grundy Coloring



Grundy number =?

10/28

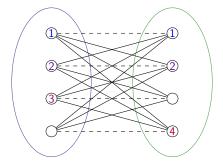
Grundy Coloring



Grundy number =?

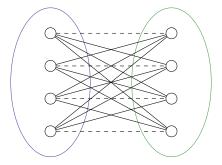
10/28

Grundy Coloring



Grundy number = p

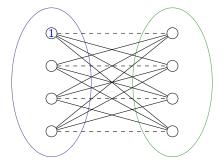
10/28



Connected Grundy number =?

11/28

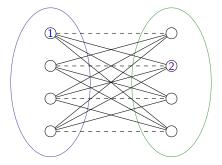
Grundy Coloring



Connected Grundy number =?

11/28

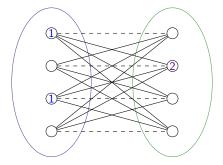
Grundy Coloring



Connected Grundy number =?

11/28

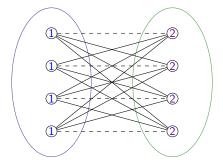
Grundy Coloring



Connected Grundy number =?

11/28

Grundy Coloring



Connected Grundy number = 2

11/28

Grundy Coloring

How many vertices (at least) did we need to achieve color k? (easy)

How many vertices (at least) did we need to achieve color k? (easy)

k (Clique of size k).

How many vertices (at most) did we need to achieve color k?

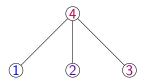
13/28

Grundy Coloring

(**4**)

How many vertices (at most) did we need to achieve color k?

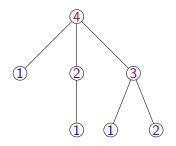
How many vertices (at most) did we need to achieve color k?



13/28

Grundy Coloring

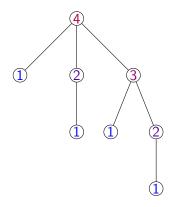
How many vertices (at most) did we need to achieve color k?



13/28

Grundy Coloring

How many vertices (at most) did we need to achieve color k?

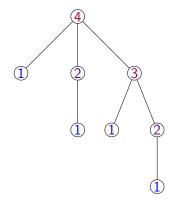


Binomial tree T_4 .

13/28

Grundy Coloring

How many vertices (at most) did we need to achieve color k?



• $|T_k| = \sum_{1 \le i \le k-1} |T_i|, |T_1| = 1.$ • So $|T_k| = 2^{k-1}$

Binomial tree T_4 .

13/28

Grundy Coloring

(minimal) Witnesses – Consequences

- Algorithm:
 - For every subset of 2^{k-1} vertices, check if there is a witness.

Theorem (Zaker '05)

The Grundy number can be computed in $O(f(k)n^{2^{k-1}})$.

XP algorithm: $O(f(k)n^{g(k)})$: polynomial for fixed values of k.

(minimal) Witnesses – Consequences

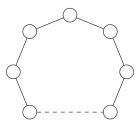
- Algorithm:
 - For every subset of 2^{k-1} vertices, check if there is a witness.

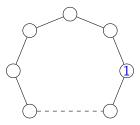
Theorem (Zaker '05)

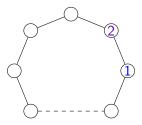
The Grundy number can be computed in $O(f(k)n^{2^{k-1}})$.

XP algorithm: $O(f(k)n^{g(k)})$: polynomial for fixed values of k.

Can we do the same for the connected Grundy number?

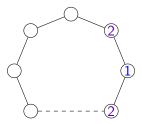


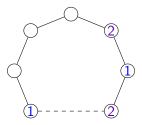




15/28

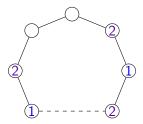
Grundy Coloring

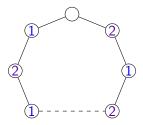




15/28

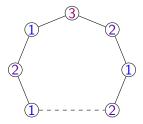
Grundy Coloring





15/28

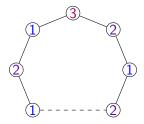
Grundy Coloring



Connected Grundy number = 3 but unbounded witness.

15/28

Grundy Coloring

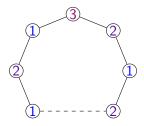


$\label{eq:connected} \begin{array}{l} \mbox{Connected Grundy number} = 3 \mbox{ but unbounded witness.} \\ \mbox{Can't do the previous trick!} \end{array}$

15/28

Grundy Coloring

Witness for the connected version



Connected Grundy number = 3 but unbounded witness. Can't do the previous trick!

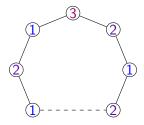
Theorem

CONNECTED GRUNDY COLORING is NP-complete

15/28

Grundy Coloring

Witness for the connected version



 $\label{eq:connected} \begin{array}{l} \mbox{Connected Grundy number} = 3 \mbox{ but unbounded witness.} \\ \mbox{Can't do the previous trick!} \end{array}$

Theorem

CONNECTED GRUNDY COLORING is NP-complete even for k = 7.

Outline

Warm Up

Exact algorithms

Weak Grundy Coloring

16/28

Grundy Coloring

Try all possible ordering of the vertices and check if at least k colors are used by the greedy coloring: $\Theta(n!)$ -time.

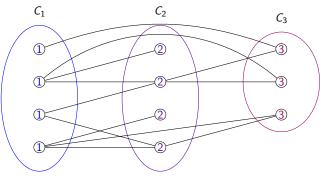
17/28

Grundy Coloring

Try all possible ordering of the vertices and check if at least k colors are used by the greedy coloring: $\Theta(n!)$ -time.

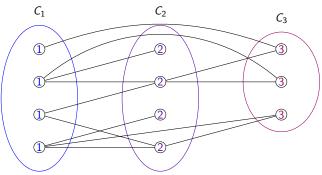
We can have a $O(c^n)$ algorithm.

In a witness:



Any color class is an independent dominating set in the graph induced by the next classes.

In a witness:



- Any color class is an independent dominating set in the graph induced by the next classes.
- $GN(S) = \max{GN(S \setminus X), X \text{ ind. dom. set of } G[S]} + 1.$

- A minimal independent dominating set is a maximal independent set.
- One can enumerate all maximal independent sets in O(1.45ⁿ) time.
 - Filling a cell in the table takes O(1.45ⁱ) time for a subset of size *i*.

- A minimal independent dominating set is a maximal independent set.
- One can enumerate all maximal independent sets in O(1.45ⁿ) time.
 - ► Filling a cell in the table takes O(1.45ⁱ) time for a subset of size *i*.

Theorem

One can solve grundy coloring in $\sum_{i=0}^{n} {n \choose i} 1.45^{i} = (1+1.45)^{n}$.

Grundy Coloring

- A minimal independent dominating set is a maximal independent set.
- One can enumerate all maximal independent sets in O(1.45ⁿ) time.
 - ► Filling a cell in the table takes O(1.45ⁱ) time for a subset of size *i*.

Theorem

One can solve grundy coloring in $\sum_{i=0}^{n} {n \choose i} 1.45^{i} = (1+1.45)^{n}$.

Cannot replace the *n* by the treewidth (even feedback vertex set).

Theorem Under the ETH, Grundy Coloring cannot be solved in $O^*(c^{tw})$ for any constant c (even $O^*(2^{o(tw \log tw)}))$).

19/28

Grundy Coloring

Outline

Warm Up

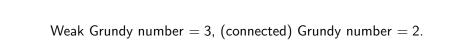
Exact algorithms

Weak Grundy Coloring

20/28

Grundy Coloring

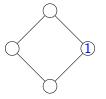
Warm Up	Exact algorithms	Weak Grundy Coloring



21/28

Grundy Coloring

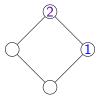
Warm Up	Exact algorithms	Weak Grundy Coloring



Weak Grundy number = 3, (connected) Grundy number = 2.

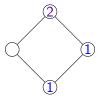
Grundy Coloring

Warm Up	Exact algorithms	Weak Grundy Coloring



Weak Grundy number = 3, (connected) Grundy number = 2.

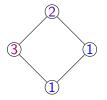
Warm Up	Exact algorithms	Weak Grundy Coloring



Weak Grundy number = 3, (connected) Grundy number = 2.

Grundy Coloring

Warm Up	Exact algorithms	Weak Grundy Coloring



Weak Grundy number = 3, (connected) Grundy number = 2.

21/28

florian.sikora@dauphine.fr

Grundy Coloring

Add colors between 1 and k uniformly at random to the instance.

- Add colors between 1 and k uniformly at random to the instance.
- The probability that a good solution was well colored is a function of k.

- Add colors between 1 and k uniformly at random to the instance.
- The probability that a good solution was well colored is a function of k.
- Solving the instance is easier with this extra information.

- ► Add colors between 1 and *k* uniformly at random to the instance.
- The probability that a good solution was well colored is a function of k.
- Solving the instance is easier with this extra information.
- ▶ Do a function of *k* tries to have a small probability of failure.

Theorem WEAK GRUNDY COLORING *is in* FPT.

FPT algorithm: $O(f(k)n^c)$.

Theorem WEAK GRUNDY COLORING *is in* FPT.

FPT algorithm: $O(f(k)n^c)$.

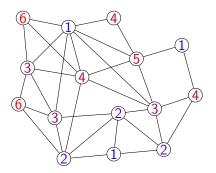
- Idea:
 - ▶ A witness is of size at most 2^{k-1}.
 - This witness is well colored with probability is $\frac{1}{L^{2^{k-1}}}$.

Theorem WEAK GRUNDY COLORING *is in* FPT.

FPT algorithm: $O(f(k)n^c)$.

- Idea:
 - ▶ A witness is of size at most 2^{k-1}.
 - This witness is well colored with probability is $\frac{1}{k^{2^{k-1}}}$.
 - After $\log(\frac{1}{\varepsilon})k^{2^{k-1}}$ tries, the probability of success is at least $1 \varepsilon, \forall \varepsilon > 0.$

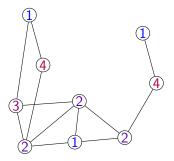
Guess #1



24/28

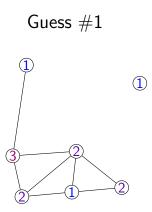
Grundy Coloring

Guess #1



24/28

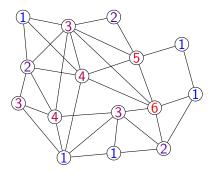
Grundy Coloring



24/28

Grundy Coloring

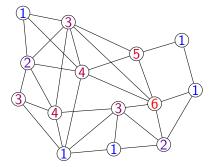
Guess #2



25/28

Grundy Coloring

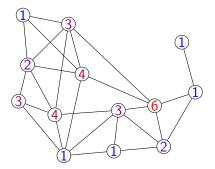
Guess #2



25/28

Grundy Coloring

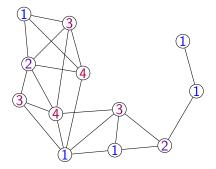
Guess #2



25/28

Grundy Coloring

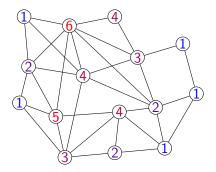
Guess #2



25/28

Grundy Coloring

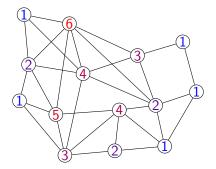
$\dots O(k^{2^k})$ unsuccessful guesses later \dots



26/28

Grundy Coloring

$\dots O(k^{2^k})$ unsuccessful guesses later \dots



26/28

Grundy Coloring

Open Problems

- ▶ Is GRUNDY COLORING solvable in $O(2^n)$?
- ▶ Is GRUNDY COLORING solvable in $O(f(tw)n^c)$?

27/28

Grundy Coloring

Open Problems

- ▶ Is GRUNDY COLORING solvable in $O(2^n)$?
- ▶ Is GRUNDY COLORING solvable in $O(f(tw)n^c)$?
- Is GRUNDY COLORING solvable in O(f(k)n^c)? Even for bipartite graph?
 - True for chordal, claw-free and bounded degree graphs or graph excluding a fixed graph as a minor.
 - ETH fails if GRUNDY COLORING is solvable in $O^*(2^{2^{o(k)}}2^{o(n+m)})$.

Merci !