
Linearity versus contiguity for encoding graphs

Tien-Nam Le

ENS de Lyon

With Christophe Cresspele, Kevin Perrot,
and Thi Ha Duong Phan

November 06, 2015

1 Contiguity

2 Linearity

3 Sketch of proof

4 Perspectives

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi

(represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Encoding graphs

a1 a2 a3
an/2

b1 b2 b3 bn/2

Figure: Bipartite graph on n vertices
where aibj ∈ E ⇔ i ≥ j .

Traditional scheme: adjacency-lists.

Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

• Store σ(V) = (a1, a2, ..., an/2, b1, b2, ..., bn/2),

• node ai : store b1, bi (represent interval [b1, b2, ..., bi]),

• node bj : store aj , an/2 (represent interval [aj , aj+1, ..., an/2]).

Space complexity = O(n).

Adjacency-intervals scheme

Adjacency-intervals scheme

1 Store a ”good” permutation σ(V).

2 For every vertex u, store all neighbor-intervals of u in σ (store the
first and last nodes).

σ
u

v

Observations:

• Complexity ≤ n + 2kσn, where kσ = maxu(# intervals of u in σ).

• The smaller kσ, the better encoding.

Adjacency-intervals scheme

Adjacency-intervals scheme

1 Store a ”good” permutation σ(V).

2 For every vertex u, store all neighbor-intervals of u in σ (store the
first and last nodes).

σ
u

v

Observations:

• Complexity ≤ n + 2kσn, where kσ = maxu(# intervals of u in σ).

• The smaller kσ, the better encoding.

Adjacency-intervals scheme

Adjacency-intervals scheme

1 Store a ”good” permutation σ(V).

2 For every vertex u, store all neighbor-intervals of u in σ (store the
first and last nodes).

σ
u

v

Observations:

• Complexity ≤ n + 2kσn, where kσ = maxu(# intervals of u in σ).

• The smaller kσ, the better encoding.

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min
σ

kσ.

Observation: Every graph G on n vertices can be encoded in complexity
O
(
cont(G)n

)
.

Advantages of Adjacency-intervals scheme:

• Fast encoding

• Fast querying

• Potential small space complexity.

Question: Which graphs have small contiguity?

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min
σ

kσ.

Observation: Every graph G on n vertices can be encoded in complexity
O
(
cont(G)n

)
.

Advantages of Adjacency-intervals scheme:

• Fast encoding

• Fast querying

• Potential small space complexity.

Question: Which graphs have small contiguity?

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min
σ

kσ.

Observation: Every graph G on n vertices can be encoded in complexity
O
(
cont(G)n

)
.

Advantages of Adjacency-intervals scheme:

• Fast encoding

• Fast querying

• Potential small space complexity.

Question: Which graphs have small contiguity?

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min
σ

kσ.

Observation: Every graph G on n vertices can be encoded in complexity
O
(
cont(G)n

)
.

Advantages of Adjacency-intervals scheme:

• Fast encoding

• Fast querying

• Potential small space complexity.

Question: Which graphs have small contiguity?

Contiguity of cographs

Theorem (Crespelle, Gambette’ 2014)

• Contiguity of any cograph on n vertices is O(log n).

• Contiguity of any cograph corrseponding to some complete
binary cotree is Θ(log n).

00 00a

11

b dc fe

b a
c

e

d

f

Figure: Example of a cograph and its cotree

Contiguity of cographs

Theorem (Crespelle, Gambette’ 2014)

• Contiguity of any cograph on n vertices is O(log n).

• Contiguity of any cograph corrseponding to some complete
binary cotree is Θ(log n).

00 00a

11

b dc fe

b a
c

e

d

f

Figure: Example of a cograph and its cotree

1 Contiguity

2 Linearity

3 Sketch of proof

4 Perspectives

Linearity of graph

Alternative adjacency-intervals scheme

1 Store a collection of permutations Σ = {σ1, σ2, ..., σk}.
2 For each u ∈ V and σi ∈ Σ, store one neighbor-interval of u per
σi .

σ1
u

σi
•

•

•

•

u

σk
u

Linearity of graph

Definition: Linearity

lin(G) = min
Σ
|Σ|.

Observation: Any graph G on n vertices can be encoded in complexity
O
(
lin(G)n

)
.

Proporsition: lin(G) ≤ cont(G)

σ
u

σ

•
•
•

cont(G) copies of σ

u

Linearity of graph

Definition: Linearity

lin(G) = min
Σ
|Σ|.

Observation: Any graph G on n vertices can be encoded in complexity
O
(
lin(G)n

)
.

Proporsition: lin(G) ≤ cont(G)

σ
u

σ

•
•
•

cont(G) copies of σ

u

Linearity of graph

Definition: Linearity

lin(G) = min
Σ
|Σ|.

Observation: Any graph G on n vertices can be encoded in complexity
O
(
lin(G)n

)
.

Proporsition: lin(G) ≤ cont(G)

σ
u

σ

•
•
•

cont(G) copies of σ

u

Linearity of graph

Definition: Linearity

lin(G) = min
Σ
|Σ|.

Observation: Any graph G on n vertices can be encoded in complexity
O
(
lin(G)n

)
.

Proporsition: lin(G) ≤ cont(G)

σ
u

σ

•
•
•

cont(G) copies of σ

u

Linearity vs. contiguity

Main question

Does there exist some graph G such that lin(G)� cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan’ 2015+)

Linearity of any cograph on n vertices is O
(

log n
log log n

)
.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary

cotree, lin(G) = O
(
cont(G)
log log n

)
= o(cont(G)).

Linearity vs. contiguity

Main question

Does there exist some graph G such that lin(G)� cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan’ 2015+)

Linearity of any cograph on n vertices is O
(

log n
log log n

)
.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary

cotree, lin(G) = O
(
cont(G)
log log n

)
= o(cont(G)).

Linearity vs. contiguity

Main question

Does there exist some graph G such that lin(G)� cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan’ 2015+)

Linearity of any cograph on n vertices is O
(

log n
log log n

)
.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary

cotree, lin(G) = O
(
cont(G)
log log n

)
= o(cont(G)).

Linearity vs. contiguity

Main question

Does there exist some graph G such that lin(G)� cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan’ 2015+)

Linearity of any cograph on n vertices is O
(

log n
log log n

)
.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary

cotree, lin(G) = O
(
cont(G)
log log n

)
= o(cont(G)).

1 Contiguity

2 Linearity

3 Sketch of proof

4 Perspectives

Sketch of proof

Definition: Double factorial tree

The double factorial tree F k is defined by induction:

• F 0 is a singleton.

• The root of F k has exactly 2k − 1 children, each is the root of a
copy of F k−1.

F 2

Figure: Double factorial tree F 3.

Sketch of proof

Definition: Double factorial tree

The double factorial tree F k is defined by induction:

• F 0 is a singleton.

• The root of F k has exactly 2k − 1 children, each is the root of a
copy of F k−1.

F 2

Figure: Double factorial tree F 3.

Sketch of proof

Definition: Rank

Let T be a rooted tree.

• The rank of T is the maximum k such that F k is a minor of T .

• The rank of a node u in T is rank of subtree Tu rooted at u.

Definition: Critical node

A node u in T is critical if its rank is strictly greater than the rank of
all its children.

Sketch of proof

Definition: Rank

Let T be a rooted tree.

• The rank of T is the maximum k such that F k is a minor of T .

• The rank of a node u in T is rank of subtree Tu rooted at u.

Definition: Critical node

A node u in T is critical if its rank is strictly greater than the rank of
all its children.

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k .

(i) lin(G) ≤ 2k + 1,

(ii) if the root is critical, then lin(G) ≤ 2k.

Proof of main theorem:

n =
∣∣V (G)

∣∣ = #leaves(T) ≥ #leaves(F k) = (2k + 1)!!

By Stirling’s approximation:

n ≥ 2
√
π

e

(
2k + 2

e

)k+1

=⇒ k = O

(
log n

log log n

)
.

Combine with (i) in key lemma, lin(G) = O
(

log n
log log n

)
. �

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k .

(i) lin(G) ≤ 2k + 1,

(ii) if the root is critical, then lin(G) ≤ 2k.

Proof of main theorem:

n =
∣∣V (G)

∣∣ = #leaves(T) ≥ #leaves(F k) = (2k + 1)!!

By Stirling’s approximation:

n ≥ 2
√
π

e

(
2k + 2

e

)k+1

=⇒ k = O

(
log n

log log n

)
.

Combine with (i) in key lemma, lin(G) = O
(

log n
log log n

)
. �

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k .

(i) lin(G) ≤ 2k + 1,

(ii) if the root is critical, then lin(G) ≤ 2k.

Proof of main theorem:

n =
∣∣V (G)

∣∣ = #leaves(T) ≥ #leaves(F k) = (2k + 1)!!

By Stirling’s approximation:

n ≥ 2
√
π

e

(
2k + 2

e

)k+1

=⇒ k = O

(
log n

log log n

)
.

Combine with (i) in key lemma, lin(G) = O
(

log n
log log n

)
. �

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k .

(i) lin(G) ≤ 2k + 1,

(ii) if the root is critical, then lin(G) ≤ 2k.

Proof of main theorem:

n =
∣∣V (G)

∣∣ = #leaves(T) ≥ #leaves(F k) = (2k + 1)!!

By Stirling’s approximation:

n ≥ 2
√
π

e

(
2k + 2

e

)k+1

=⇒ k = O

(
log n

log log n

)
.

Combine with (i) in key lemma, lin(G) = O
(

log n
log log n

)
. �

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k .

(i) lin(G) ≤ 2k + 1,

(ii) if the root is critical, then lin(G) ≤ 2k.

Proof of main theorem:

n =
∣∣V (G)

∣∣ = #leaves(T) ≥ #leaves(F k) = (2k + 1)!!

By Stirling’s approximation:

n ≥ 2
√
π

e

(
2k + 2

e

)k+1

=⇒ k = O

(
log n

log log n

)
.

Combine with (i) in key lemma, lin(G) = O
(

log n
log log n

)
. �

Proof of key lemma

Prove by induction: (ii1)→ (i1)→ (ii2)→ (i2)→ ...

Part 1. (iik)→ (ik): prove that G can be encoded by 2k + 1 permutations.

• A = {a1, a2, ...}: critical nodes of rank k (blue).

• B = {b1, b2, ...}: nodes of rank k − 1, whose parent is non-critical of
rank k (red).

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Prove by induction: (ii1)→ (i1)→ (ii2)→ (i2)→ ...

Part 1. (iik)→ (ik):

prove that G can be encoded by 2k + 1 permutations.

• A = {a1, a2, ...}: critical nodes of rank k (blue).

• B = {b1, b2, ...}: nodes of rank k − 1, whose parent is non-critical of
rank k (red).

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Prove by induction: (ii1)→ (i1)→ (ii2)→ (i2)→ ...

Part 1. (iik)→ (ik): prove that G can be encoded by 2k + 1 permutations.

• A = {a1, a2, ...}: critical nodes of rank k (blue).

• B = {b1, b2, ...}: nodes of rank k − 1, whose parent is non-critical of
rank k (red).

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Prove by induction: (ii1)→ (i1)→ (ii2)→ (i2)→ ...

Part 1. (iik)→ (ik): prove that G can be encoded by 2k + 1 permutations.

• A = {a1, a2, ...}: critical nodes of rank k (blue).

• B = {b1, b2, ...}: nodes of rank k − 1, whose parent is non-critical of
rank k (red).

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Prove by induction: (ii1)→ (i1)→ (ii2)→ (i2)→ ...

Part 1. (iik)→ (ik): prove that G can be encoded by 2k + 1 permutations.

• A = {a1, a2, ...}: critical nodes of rank k (blue).

• B = {b1, b2, ...}: nodes of rank k − 1, whose parent is non-critical of
rank k (red).

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Observation:

• |A| ≤ 2k , otherwise, rank(T) ≥ k + 1.

• Although |B| can be large, parent of any bj is ancestor of some ai .

• Contract Tai (res. Tbj) into ai (res. bj), we get a new cotree T ′ of a
cograph G ′. G ′ has |A|+ |B| vertices, each represents a component of
G .

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Observation:

• |A| ≤ 2k , otherwise, rank(T) ≥ k + 1.

• Although |B| can be large, parent of any bj is ancestor of some ai .

• Contract Tai (res. Tbj) into ai (res. bj), we get a new cotree T ′ of a
cograph G ′. G ′ has |A|+ |B| vertices, each represents a component of
G .

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Observation:

• |A| ≤ 2k , otherwise, rank(T) ≥ k + 1.

• Although |B| can be large, parent of any bj is ancestor of some ai .

• Contract Tai (res. Tbj) into ai (res. bj), we get a new cotree T ′ of a
cograph G ′.

G ′ has |A|+ |B| vertices, each represents a component of
G .

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Observation:

• |A| ≤ 2k , otherwise, rank(T) ≥ k + 1.

• Although |B| can be large, parent of any bj is ancestor of some ai .

• Contract Tai (res. Tbj) into ai (res. bj), we get a new cotree T ′ of a
cograph G ′. G ′ has |A|+ |B| vertices, each represents a component of
G .

bj bj ′b1a1 ai

Figure: Cotree T

Proof of key lemma

Claim

There exists an encoding of G ′ by Σ′ = {σ′1, ..., σ′2k+1} such that:

• Neighbor set of each ai is encoded by only one interval.

• Neighbor set of each bj is encoded by at most two intervals in two
distinct permutations.

σ′1
a1

σ′i

•

•
a1

N(a1)

σ′2k+1

a1

Proof of key lemma

• Let Ca1 be the component of G corresponding to a1.

• a1 is critical of rank k, so there are δ1(Ca1), ..., δ2k(Ca1) encoding Ca1

Replace a1 by δ1(Ca1), ..., δ2k(Ca1):

(Note that all vertices in Ca1 have the same neighbors outside Ca1).

σ′1
δ1(Ca1)

σ′i

•

•
δ∗(Ca1)

N(Ca1)

σ′2k+1

δ2k(Ca1)

Proof of key lemma

• Let Ca1 be the component of G corresponding to a1.

• a1 is critical of rank k, so there are δ1(Ca1), ..., δ2k(Ca1) encoding Ca1

Replace a1 by δ1(Ca1), ..., δ2k(Ca1):

(Note that all vertices in Ca1 have the same neighbors outside Ca1).

σ′1
δ1(Ca1)

σ′i

•

•
δ∗(Ca1)

N(Ca1)

σ′2k+1

δ2k(Ca1)

Proof of key lemma

• Let Ca1 be the component of G corresponding to a1.

• a1 is critical of rank k, so there are δ1(Ca1), ..., δ2k(Ca1) encoding Ca1

Replace a1 by δ1(Ca1), ..., δ2k(Ca1):

(Note that all vertices in Ca1 have the same neighbors outside Ca1).

σ′1
δ1(Ca1)

σ′i

•

•
δ∗(Ca1)

N(Ca1)

σ′2k+1

δ2k(Ca1)

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.

- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

Proof of key lemma

• Repeat the process for all ai .

• Repeat the process for all bj , notice that by induction Cbj can be
encoded by 2k − 1 permutations.

- Neighbors outside Cbj are encoded by 2 permutations.
- Neighbors inside Cbj are encoded by 2k − 1 others permutations.

• Finally, we obtains 2k + 1 permutations encoding G .

Part 2. (ik−1)→ (iik): same idea.

The lemma is proved. �

1 Contiguity

2 Linearity

3 Sketch of proof

4 Perspectives

Perspective

Question: Can we find more graphs with small contiguity and linearity?

Question: Does there exist some graph with bigger gap between lin-
earity and contiguity?

Perspective

Question: Can we find more graphs with small contiguity and linearity?

Question: Does there exist some graph with bigger gap between lin-
earity and contiguity?

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small,

and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G :

• Find a graph G ′ where cont(G ′) is small, and |V∆V ′|, |E∆E ′| are
small.

• Encode G ′ by adjacency-intervals (long-term storage)

• Encode V∆V ′ by list, and E∆E ′ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

• When temporary storage is full, re-encode G .

Perspective

Definition:

Let f be a function of n. A graph G is nearly f -contiguous if there
exists a graph G ′ such that

• |V∆V ′
⋃

E∆E ′| = O(fn),

• cont(G ′) = O(f).

Observation: Any nearly f -contiguous graph of order n can be encoded
by hybrid scheme in complexity O(fn).

Question: Which graphs are nearly log n-contiguous?

Perspective

Definition:

Let f be a function of n. A graph G is nearly f -contiguous if there
exists a graph G ′ such that

• |V∆V ′
⋃

E∆E ′| = O(fn),

• cont(G ′) = O(f).

Observation: Any nearly f -contiguous graph of order n can be encoded
by hybrid scheme in complexity O(fn).

Question: Which graphs are nearly log n-contiguous?

Perspective

Definition:

Let f be a function of n. A graph G is nearly f -contiguous if there
exists a graph G ′ such that

• |V∆V ′
⋃

E∆E ′| = O(fn),

• cont(G ′) = O(f).

Observation: Any nearly f -contiguous graph of order n can be encoded
by hybrid scheme in complexity O(fn).

Question: Which graphs are nearly log n-contiguous?

The end

Thank you.

	Contiguity
	Linearity
	Sketch of proof
	Perspectives

