Linearity versus contiguity for encoding graphs

Tien-Nam Le
ENS de Lyon

With Christophe Cresspele, Kevin Perrot,
and Thi Ha Duong Phan

November 06, 2015

© Contiguity

Encoding graphs

al as as an/2

b by b3 bn /2

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

Encoding graphs

a ar as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

b by b3 bn /2

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

r

Adjacency-intervals scheme:

e Store o(V) = (a1, a2, ..., any2, b1, b2, ..., by 2),

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

r

Adjacency-intervals scheme:
e Store o(V) = (a1, a2, ..., any2, b1, b2, ..., by 2),

® node a;: store by, b;

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

r

Adjacency-intervals scheme:
e Store o(V) = (a1, a2, ..., any2, b1, b2, ..., by 2),

e node a;: store by, b; (represent interval [by, ba, ..., bi]),

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

r

Adjacency-intervals scheme:
e Store o(V) = (a1, a2, ..., any2, b1, b2, ..., by 2),
e node a;: store by, b; (represent interval [by, ba, ..., bi]),

® node b;: store aj,a,/, (represent interval [aj, aj41, ..., a/2]).

Encoding graphs

al as as an/2

Traditional scheme: adjacency-lists.
Space complexity = O(m + n).

by by b3 bn/2 f .
Question: Can we do better?

Figure: Bipartite graph on n vertices
where a;b; € E & i > j.

r

Adjacency-intervals scheme:
e Store o(V) = (a1, a2, ..., any2, b1, b2, ..., by 2),
e node a;: store by, b; (represent interval [by, ba, ..., bi]),
® node b;: store aj,a,/, (represent interval [aj, aj41, ..., a/2]).

Space complexity = O(n).

Adjacency-intervals scheme

Adjacency-intervals scheme

@ Store a "good” permutation o(V).

@® For every vertex u, store all neighbor-intervals of u in o (store the
first and last nodes).

Adjacency-intervals scheme

Adjacency-intervals scheme

@ Store a "good” permutation o(V).

@® For every vertex u, store all neighbor-intervals of u in o (store the
first and last nodes).

Observations:

e Complexity < n+ 2k,n, where k, = max,(# intervals of u in o).

Adjacency-intervals scheme

Adjacency-intervals scheme

@ Store a "good” permutation o(V).

@® For every vertex u, store all neighbor-intervals of u in o (store the
first and last nodes).

Observations:
e Complexity < n+ 2k,n, where k, = max,(# intervals of u in o).

e The smaller k,, the better encoding.

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min k.

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min k.

Observation: Every graph G on n vertices can be encoded in complexity

O(cont(G)n).

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min k.

~

Observation: Every graph G on n vertices can be encoded in complexity
O(cont(G)n).

Advantages of Adjacency-intervals scheme:
e Fast encoding

e Fast querying

e Potential small space complexity.

Adjacency-intervals scheme

Definition: contiguity of graph

cont(G) = min k.

~

Observation: Every graph G on n vertices can be encoded in complexity
O(cont(G)n).

Advantages of Adjacency-intervals scheme:
e Fast encoding

e Fast querying

e Potential small space complexity.

Question: Which graphs have small contiguity?

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

e Contiguity of any cograph on n vertices is O(log n).

Figure: Example of a cograph and its cotree

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

e Contiguity of any cograph on n vertices is O(log n).

e Contiguity of any cograph corrseponding to some complete
binary cotree is O(log n).

Figure: Example of a cograph and its cotree

© Linearity

Linearity of graph

Alternative adjacency-intervals scheme

@ Store a collection of permutations ¥ = {01, 02, ..., 04 }.

@® For each u € V and g; € L, store one neighbor-interval of u per
;.

u

0-]_ EIIL S S O . S ——
u
0_, EIIN S S O S S E—

u

O_k I S - N S S ——

Linearity of graph

Definition: Linearity

lin(G) = min ||

Linearity of graph

Definition: Linearity

lin(G) = min ||

\.

Observation: Any graph G on n vertices can be encoded in complexity

O(lin(G)n).

Linearity of graph

Definition: Linearity

lin(G) = min ||

Observation: Any graph G on n vertices can be encoded in complexity
O(lin(G)n).

Proporsition: /in(G) < cont(G)

Linearity of graph

Definition: Linearity

lin(G) = min ||

Observation: Any graph G on n vertices can be encoded in complexity

O(lin(G)n).

Proporsition: /in(G) < cont(G)

u

Q

cont(G) copies of o

u

g ——— e S W S S E—

Linearity vs. contiguity

Main question

Does there exist some graph G such that /in(G) < cont(G)?

Linearity vs. contiguity

Main question

Does there exist some graph G such that /in(G) < cont(G)?

Answer: Yes!

Linearity vs. contiguity

Main question

Does there exist some graph G such that /in(G) < cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on n vertices is O(lolgoﬁ,gn).

Linearity vs. contiguity

Main question

Does there exist some graph G such that /in(G) < cont(G)?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on n vertices is O(lolgoﬁ,gn).

Direct corollary

For any cograph G on n vertices corresponding to some complete binary
cotree, lin(G) = O(M> = o(cont(G)).

loglog n

\

© Sketch of proof

Sketch of proof

Definition: Double factorial tree

The double factorial tree F* is defined by induction:

e FOis a singleton.

F2

Figure: Double factorial tree F3.

Sketch of proof

Definition: Double factorial tree

The double factorial tree F* is defined by induction:
e FOis a singleton.

e The root of FX has exactly 2k — 1 children, each is the root of a
copy of FK—1.

F2

Figure: Double factorial tree F3.

Sketch of proof

Definition: Rank

Let T be a rooted tree.
e The rank of T is the maximum k such that F¥ is a minor of T.

e The rank of a node u in T is rank of subtree T, rooted at w.

Sketch of proof

Definition: Rank

Let T be a rooted tree.
e The rank of T is the maximum k such that F¥ is a minor of T.

e The rank of a node u in T is rank of subtree T, rooted at w.

Definition: Critical node

A node v in T is critical if its rank is strictly greater than the rank of
all its children.

Let G be a cograph whose cotree T has rank k.
(1) Iin(G) <2k+1,
(ii) if the root is critical, then /in(G) < 2k.

Key lemma

Let G be a cograph whose cotree T has rank k.
(1) Iin(G) <2k+1,
(ii) if the root is critical, then /in(G) < 2k.

\

r

Proof of main theorem:

n=|V(G)| = #leaves(T) > #leaves(F*) = (2k + 1)!!

Key lemma

Let G be a cograph whose cotree T has rank k.
(1) Iin(G) <2k+1,
(ii) if the root is critical, then /in(G) < 2k.

\

r

Proof of main theorem:
n=|V(G)| = #leaves(T) > #leaves(F*) = (2k + 1)!!
By Stirling's approximation:

k+1
s VT <2k + 2)

@ e

Key lemma

Let G be a cograph whose cotree T has rank k.
(1) Iin(G) <2k+1,
(ii) if the root is critical, then /in(G) < 2k.

\

r

Proof of main theorem:
n=|V(G)| = #leaves(T) > #leaves(F*) = (2k + 1)!!

By Stirling's approximation:

k+1
n22ﬁ<2k+2) :>k:0(log n)

e e log log n

Key lemma

Let G be a cograph whose cotree T has rank k.
(1) Iin(G) <2k+1,
(ii) if the root is critical, then /in(G) < 2k.

\

r

Proof of main theorem:
n=|V(G)| = #leaves(T) > #leaves(F*) = (2k + 1)!!

By Stirling's approximation:

k+1
n22ﬁ<2k+2) :>k:0(log n)

e e log log n

Combine with (i) in key lemma, /in(G) = O(m?i&)- O

\.

Proof of key lemma

Prove by induction: (i) — (i) — (i) = (i2) — ...

Proof of key lemma

Prove by induction: (i) — (i) — (i) = (i2) — ...

Part 1. (Ilk) — (ik)i

LEELT

Figure: Cotree T

Proof of key lemma

Prove by induction: (i) — (i) — (i) = (i2) — ...

r

Part 1. (iix) — (ix): prove that G can be encoded by 2k + 1 permutations.

I~

ai bl bj aj bjl

Figure: Cotree T

Proof of key lemma

Prove by induction: (i) — (i) — (i) = (i2) — ...

r

Part 1. (iix) — (ix): prove that G can be encoded by 2k + 1 permutations.

o A={ay,a,...}: critical nodes of rank k (blue).

I~

ai bl bj aj bjl

Figure: Cotree T

Proof of key lemma

Prove by induction: (i) — (i) — (i) = (i2) — ...

r

Part 1. (iix) — (ix): prove that G can be encoded by 2k + 1 permutations.
o A={ay,a,...}: critical nodes of rank k (blue).

e B ={by,by,...}: nodes of rank k — 1, whose parent is non-critical of
rank k (red).

I~

ai bl bj aj bjl

Figure: Cotree T

Proof of key lemma

e

Observation:

o |A| < 2k, otherwise, rank(T) > k + 1.

I~

ai bl bj aj bj’

Figure: Cotree T

Proof of key lemma

e

Observation:
o |A| < 2k, otherwise, rank(T) > k + 1.

e Although |B| can be large, parent of any b; is ancestor of some a;.

I~

a1 b1 bj aj bjr

Figure: Cotree T

Proof of key lemma

e

Observation:
o |A| < 2k, otherwise, rank(T) > k + 1.
e Although |B| can be large, parent of any b; is ancestor of some a;.

e Contract T, (res. Tp,) into a; (res. b;), we get a new cotree T’ of a
cograph G'.

I~

a1 b1 bj aj bjr

Figure: Cotree T

Proof of key lemma

e

Observation:
o |A| < 2k, otherwise, rank(T) > k + 1.
e Although |B| can be large, parent of any b; is ancestor of some a;.

e Contract T, (res. Tp,) into a; (res. b;), we get a new cotree T’ of a

cograph G'. G’ has |A| + |B| vertices, each represents a component of
G.

I~

a1 b1 bj aj bjr

Figure: Cotree T

Proof of key lemma

There exists an encoding of G’ by ¥’ = {7, ..., 05, ., } such that:

e Neighbor set of each a; is encoded by only one interval.

e Neighbor set of each b; is encoded by at most two intervals in two
distinct permutations.

! al
0-1 I I I - . I I
[]
N(a1)
a1 —_—
O-l,. I I I - . I I
[]
a1

O'2k+1———II——

Proof of key lemma

e Let C,, be the component of G corresponding to aj.

Proof of key lemma

e Let C,, be the component of G corresponding to aj.

e a; is critical of rank k, so there are 91(C,,), ..., 02k(C,,) encoding C,,

Proof of key lemma

e Let C,, be the component of G corresponding to aj.

e a; is critical of rank k, so there are 91(C,,), ..., 02k(C,,) encoding C,,

Replace a; by 01(Ca,), ..., 92k (Cay):
(Note that all vertices in C,, have the same neighbors outside C,,).

p 61(Ca1)
Jl I I I - . I I
* N(Cs,)
[)
02k (Cay)

U£k+1 I S . O O . E——

Proof of key lemma

® Repeat the process for all a;.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

- Neighbors outside Cj, are encoded by 2 permutations.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

- Neighbors outside Cj, are encoded by 2 permutations.
- Neighbors inside Cp, are encoded by 2k — 1 others permutations.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

- Neighbors outside Cj, are encoded by 2 permutations.
- Neighbors inside Cp, are encoded by 2k — 1 others permutations.

e Finally, we obtains 2k + 1 permutations encoding G.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

- Neighbors outside Cj, are encoded by 2 permutations.
- Neighbors inside Cp, are encoded by 2k — 1 others permutations.

e Finally, we obtains 2k + 1 permutations encoding G.

Part 2. (ix—1) — (iix): same idea.

Proof of key lemma

® Repeat the process for all a;.

* Repeat the process for all b;, notice that by induction Cp, can be
encoded by 2k — 1 permutations.

- Neighbors outside Cj, are encoded by 2 permutations.
- Neighbors inside Cp, are encoded by 2k — 1 others permutations.

e Finally, we obtains 2k + 1 permutations encoding G.

Part 2. (ix—1) — (iix): same idea.

The lemma is proved. O

\.

@ Perspectives

[Question: Can we find more graphs with small contiguity and linearity?]

Question: Can we find more graphs with small contiguity and linearity?

\

Question: Does there exist some graph with bigger gap between lin-
earity and contiguity?

\.

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small,

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small, and |VAV'|,|EAE’| are
small.

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small, and |VAV'|,|EAE’| are
small.

e Encode G’ by adjacency-intervals (long-term storage)

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small, and |VAV'|,|EAE’| are
small.

e Encode G’ by adjacency-intervals (long-term storage)

e Encode VAV’ by list, and EAE’ by adjacency-list (temporary storage).

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small, and |VAV'|,|EAE’| are
small.

e Encode G’ by adjacency-intervals (long-term storage)
e Encode VAV’ by list, and EAE’ by adjacency-list (temporary storage).
Add/remove vertices/edges:

e Update in temporary storage.

Perspective

Drawback of adjacency-interval scheme:

e Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

e Find a graph G’ where cont(G’) is small, and |VAV'|,|EAE’| are
small.

e Encode G’ by adjacency-intervals (long-term storage)

e Encode VAV’ by list, and EAE’ by adjacency-list (temporary storage).
Add/remove vertices/edges:

e Update in temporary storage.

e When temporary storage is full, re-encode G.

Definition:

Let f be a function of n. A graph G is nearly f-contiguous if there
exists a graph G’ such that

o [VAV'(JEAE'| = O(fn),
e cont(G') = O(f).

Perspective

Let f be a function of n. A graph G is nearly f-contiguous if there
exists a graph G’ such that

o [VAV'(JEAE'| = O(fn),
e cont(G') = O(f).

\

Observation: Any nearly f-contiguous graph of order n can be encoded
by hybrid scheme in complexity O(fn).

.

Perspective

\

Let f be a function of n. A graph G is nearly f-contiguous if there
exists a graph G’ such that

o [VAV'(JEAE'| = O(fn),
e cont(G') = O(f).

r

\.

Observation: Any nearly f-contiguous graph of order n can be encoded
by hybrid scheme in complexity O(fn).

7

Question: Which graphs are nearly log n-contiguous?

Thank you.

	Contiguity
	Linearity
	Sketch of proof
	Perspectives

