Linearity versus contiguity for encoding graphs

Tien-Nam Le
ENS de Lyon
With Christophe Cresspele, Kevin Perrot, and Thi Ha Duong Phan

November 06, 2015
(1) Contiguity
(2) Linearity
(3) Sketch of proof

4 Perspectives

Encoding graphs

Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Adjacency-intervals scheme:

- Store $\sigma(V)=\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$,

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Adjacency-intervals scheme:

- Store $\sigma(V)=\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$,
- node $a_{i}:$ store b_{1}, b_{i}

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Adjacency-intervals scheme:

- Store $\sigma(V)=\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$,
- node a_{i} : store b_{1}, b_{i} (represent interval $\left[b_{1}, b_{2}, \ldots, b_{i}\right]$),

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Adjacency-intervals scheme:

- Store $\sigma(V)=\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$,
- node a_{i} : store b_{1}, b_{i} (represent interval $\left[b_{1}, b_{2}, \ldots, b_{i}\right]$),
- node b_{j} : store $a_{j}, a_{n / 2}$ (represent interval $\left[a_{j}, a_{j+1}, \ldots, a_{n / 2}\right]$).

Encoding graphs

Traditional scheme: adjacency-lists.
Space complexity $=O(m+n)$.

Question: Can we do better?
Figure: Bipartite graph on n vertices where $a_{i} b_{j} \in E \Leftrightarrow i \geq j$.

Adjacency-intervals scheme:

- Store $\sigma(V)=\left(a_{1}, a_{2}, \ldots, a_{n / 2}, b_{1}, b_{2}, \ldots, b_{n / 2}\right)$,
- node a_{i} : store b_{1}, b_{i} (represent interval $\left[b_{1}, b_{2}, \ldots, b_{i}\right]$),
- node b_{j} : store $a_{j}, a_{n / 2}$ (represent interval $\left[a_{j}, a_{j+1}, \ldots, a_{n / 2}\right]$).

Space complexity $=O(n)$.

Adjacency-intervals scheme

Adjacency-intervals scheme

(1) Store a "good" permutation $\sigma(V)$.

2 For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

Adjacency-intervals scheme

Adjacency-intervals scheme

(1) Store a "good" permutation $\sigma(V)$.

2 For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

Observations:

- Complexity $\leq n+2 k_{\sigma} n$, where $k_{\sigma}=\max _{u}(\#$ intervals of u in $\sigma)$.

Adjacency-intervals scheme

Adjacency-intervals scheme

(1) Store a "good" permutation $\sigma(V)$.

2 For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

Observations:

- Complexity $\leq n+2 k_{\sigma} n$, where $k_{\sigma}=\max _{u}(\#$ intervals of u in $\sigma)$.
- The smaller k_{σ}, the better encoding.

Adjacency-intervals scheme

Definition: contiguity of graph

$$
\operatorname{cont}(G)=\min _{\sigma} k_{\sigma}
$$

Adjacency-intervals scheme

Definition: contiguity of graph

$$
\operatorname{cont}(G)=\min _{\sigma} k_{\sigma}
$$

Observation: Every graph G on n vertices can be encoded in complexity $O(\operatorname{cont}(G) n)$.

Adjacency-intervals scheme

Definition: contiguity of graph

$$
\operatorname{cont}(G)=\min _{\sigma} k_{\sigma}
$$

Observation: Every graph G on n vertices can be encoded in complexity $O(\operatorname{cont}(G) n)$.

Advantages of Adjacency-intervals scheme:

- Fast encoding
- Fast querying
- Potential small space complexity.

Adjacency-intervals scheme

Definition: contiguity of graph

$$
\operatorname{cont}(G)=\min _{\sigma} k_{\sigma}
$$

Observation: Every graph G on n vertices can be encoded in complexity $O(\operatorname{cont}(G) n)$.

Advantages of Adjacency-intervals scheme:

- Fast encoding
- Fast querying
- Potential small space complexity.

Question: Which graphs have small contiguity?

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

- Contiguity of any cograph on n vertices is $O(\log n)$.

Figure: Example of a cograph and its cotree

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

- Contiguity of any cograph on n vertices is $O(\log n)$.
- Contiguity of any cograph corrseponding to some complete binary cotree is $\Theta(\log n)$.

Figure: Example of a cograph and its cotree

(1) Contiguity

(2) Linearity
(3) Sketch of proof

4 Perspectives

Linearity of graph

Alternative adjacency-intervals scheme

(1) Store a collection of permutations $\Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$.
(2) For each $u \in V$ and $\sigma_{i} \in \Sigma$, store one neighbor-interval of u per σ_{i}.

Linearity of graph

Definition: Linearity

$$
\operatorname{lin}(G)=\min _{\Sigma}|\Sigma| .
$$

Linearity of graph

Definition: Linearity

$$
\operatorname{lin}(G)=\min _{\Sigma}|\Sigma|
$$

Observation: Any graph G on n vertices can be encoded in complexity $O(\operatorname{lin}(G) n)$.

Linearity of graph

Definition: Linearity

$$
\operatorname{lin}(G)=\min _{\Sigma}|\Sigma|
$$

Observation: Any graph G on n vertices can be encoded in complexity $O(\operatorname{lin}(G) n)$.

Proporsition: $\operatorname{lin}(G) \leq \operatorname{cont}(G)$

Linearity of graph

Definition: Linearity

$$
\operatorname{lin}(G)=\min _{\Sigma}|\Sigma|
$$

Observation: Any graph G on n vertices can be encoded in complexity $O(\operatorname{lin}(G) n)$.

Proporsition: $\operatorname{lin}(G) \leq \operatorname{cont}(G)$

Linearity vs. contiguity

Main question

Does there exist some graph G such that $\operatorname{lin}(G) \ll \operatorname{cont}(G)$?

Linearity vs. contiguity

Main question

Does there exist some graph G such that $\operatorname{lin}(G) \ll \operatorname{cont}(G)$?

Answer: Yes!

Linearity vs. contiguity

Main question

Does there exist some graph G such that $\operatorname{lin}(G) \ll \operatorname{cont}(G)$?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on n vertices is $O\left(\frac{\log n}{\log \log n}\right)$.

Linearity vs. contiguity

Main question

Does there exist some graph G such that $\operatorname{lin}(G) \ll \operatorname{cont}(G)$?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on n vertices is $O\left(\frac{\log n}{\log \log n}\right)$.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary cotree, $\operatorname{lin}(G)=O\left(\frac{\operatorname{cont}(G)}{\log \log n}\right)=o(\operatorname{cont}(G))$.

(1) Contiguity

(2) Linearity
(3) Sketch of proof

4 Perspectives

Sketch of proof

Definition: Double factorial tree

The double factorial tree F^{k} is defined by induction:

- F^{0} is a singleton.

Figure: Double factorial tree F^{3}.

Sketch of proof

Definition: Double factorial tree

The double factorial tree F^{k} is defined by induction:

- F^{0} is a singleton.
- The root of F^{k} has exactly $2 k-1$ children, each is the root of a copy of F^{k-1}.

Figure: Double factorial tree F^{3}.

Sketch of proof

Definition: Rank

Let T be a rooted tree.

- The rank of T is the maximum k such that F^{k} is a minor of T.
- The rank of a node u in T is rank of subtree T_{u} rooted at u.

Sketch of proof

Definition: Rank

Let T be a rooted tree.

- The rank of T is the maximum k such that F^{k} is a minor of T.
- The rank of a node u in T is rank of subtree T_{u} rooted at u.

Definition: Critical node

A node u in T is critical if its rank is strictly greater than the rank of all its children.

Key lemma

Key lemma
Let G be a cograph whose cotree T has rank k.
(i) $\operatorname{lin}(G) \leq 2 k+1$,
(ii) if the root is critical, then $\operatorname{lin}(G) \leq 2 k$.

Key lemma

Key lemma
Let G be a cograph whose cotree T has rank k.
(i) $\operatorname{lin}(G) \leq 2 k+1$,
(ii) if the root is critical, then $\operatorname{lin}(G) \leq 2 k$.

Proof of main theorem:

$$
n=|V(G)|=\# \operatorname{leaves}(T) \geq \# \operatorname{leaves}\left(F^{k}\right)=(2 k+1)!!
$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k.
(i) $\operatorname{lin}(G) \leq 2 k+1$,
(ii) if the root is critical, then $\operatorname{lin}(G) \leq 2 k$.

Proof of main theorem:

$$
n=|V(G)|=\# \operatorname{leaves}(T) \geq \# \operatorname{leaves}\left(F^{k}\right)=(2 k+1)!!
$$

By Stirling's approximation:

$$
n \geq \frac{2 \sqrt{\pi}}{e}\left(\frac{2 k+2}{e}\right)^{k+1}
$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k.
(i) $\operatorname{lin}(G) \leq 2 k+1$,
(ii) if the root is critical, then $\operatorname{lin}(G) \leq 2 k$.

Proof of main theorem:

$$
n=|V(G)|=\# \operatorname{leaves}(T) \geq \# \operatorname{leaves}\left(F^{k}\right)=(2 k+1)!!
$$

By Stirling's approximation:

$$
n \geq \frac{2 \sqrt{\pi}}{e}\left(\frac{2 k+2}{e}\right)^{k+1} \Longrightarrow k=O\left(\frac{\log n}{\log \log n}\right)
$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k.
(i) $\operatorname{lin}(G) \leq 2 k+1$,
(ii) if the root is critical, then $\operatorname{lin}(G) \leq 2 k$.

Proof of main theorem:

$$
n=|V(G)|=\# \operatorname{leaves}(T) \geq \# \operatorname{leaves}\left(F^{k}\right)=(2 k+1)!!
$$

By Stirling's approximation:

$$
n \geq \frac{2 \sqrt{\pi}}{e}\left(\frac{2 k+2}{e}\right)^{k+1} \Longrightarrow k=O\left(\frac{\log n}{\log \log n}\right)
$$

Combine with (i) in key lemma, $\operatorname{lin}(G)=O\left(\frac{\log n}{\log \log n}\right)$.

Proof of key lemma

Prove by induction: $\left(i i_{1}\right) \rightarrow\left(i_{1}\right) \rightarrow\left(i i_{2}\right) \rightarrow\left(i_{2}\right) \rightarrow \ldots$

Proof of key lemma

Prove by induction: $\left(i i_{1}\right) \rightarrow\left(i_{1}\right) \rightarrow\left(i i_{2}\right) \rightarrow\left(i_{2}\right) \rightarrow \ldots$

Part 1. $\left(i i_{k}\right) \rightarrow\left(i_{k}\right):$

Figure: Cotree T

Proof of key lemma

Prove by induction: $\left(i i_{1}\right) \rightarrow\left(i_{1}\right) \rightarrow\left(i i_{2}\right) \rightarrow\left(i_{2}\right) \rightarrow \ldots$

Part 1. $\left(i i_{k}\right) \rightarrow\left(i_{k}\right)$: prove that G can be encoded by $2 k+1$ permutations.

Figure: Cotree T

Proof of key lemma

Prove by induction: $\left(i i_{1}\right) \rightarrow\left(i_{1}\right) \rightarrow\left(i i_{2}\right) \rightarrow\left(i_{2}\right) \rightarrow \ldots$

Part 1. $\left(i i_{k}\right) \rightarrow\left(i_{k}\right)$: prove that G can be encoded by $2 k+1$ permutations.

- $A=\left\{a_{1}, a_{2}, \ldots\right\}$: critical nodes of rank k (blue).

Figure: Cotree T

Proof of key lemma

Prove by induction: $\left(i i_{1}\right) \rightarrow\left(i_{1}\right) \rightarrow\left(i i_{2}\right) \rightarrow\left(i_{2}\right) \rightarrow \ldots$

Part 1. $\left(i_{k}\right) \rightarrow\left(i_{k}\right)$: prove that G can be encoded by $2 k+1$ permutations.

- $A=\left\{a_{1}, a_{2}, \ldots\right\}$: critical nodes of rank k (blue).
- $B=\left\{b_{1}, b_{2}, \ldots\right\}$: nodes of rank $k-1$, whose parent is non-critical of rank k (red).

Figure: Cotree T

Proof of key lemma

Observation:

- $|A| \leq 2 k$, otherwise, $\operatorname{rank}(T) \geq k+1$.

Figure: Cotree T

Proof of key lemma

Observation:

- $|A| \leq 2 k$, otherwise, $\operatorname{rank}(T) \geq k+1$.
- Although $|B|$ can be large, parent of any b_{j} is ancestor of some a_{i}.

Figure: Cotree T

Proof of key lemma

Observation:

- $|A| \leq 2 k$, otherwise, $\operatorname{rank}(T) \geq k+1$.
- Although $|B|$ can be large, parent of any b_{j} is ancestor of some a_{i}.
- Contract $T_{a_{i}}\left(\right.$ res. $\left.T_{b_{j}}\right)$ into $a_{i}\left(\right.$ res. $\left.b_{j}\right)$, we get a new cotree T^{\prime} of a cograph G^{\prime}.

Figure: Cotree T

Proof of key lemma

Observation:

- $|A| \leq 2 k$, otherwise, $\operatorname{rank}(T) \geq k+1$.
- Although $|B|$ can be large, parent of any b_{j} is ancestor of some a_{i}.
- Contract $T_{a_{i}}\left(\right.$ res. $\left.T_{b_{j}}\right)$ into $a_{i}\left(\right.$ res. $\left.b_{j}\right)$, we get a new cotree T^{\prime} of a cograph G^{\prime}. G^{\prime} has $|A|+|B|$ vertices, each represents a component of G.

Figure: Cotree T

Proof of key lemma

Claim

There exists an encoding of G^{\prime} by $\Sigma^{\prime}=\left\{\sigma_{1}^{\prime}, \ldots, \sigma_{2 k+1}^{\prime}\right\}$ such that:

- Neighbor set of each a_{i} is encoded by only one interval.
- Neighbor set of each b_{j} is encoded by at most two intervals in two distinct permutations.

Proof of key lemma

- Let $C_{a_{1}}$ be the component of G corresponding to a_{1}.

Proof of key lemma

- Let $C_{a_{1}}$ be the component of G corresponding to a_{1}.
- a_{1} is critical of rank k, so there are $\delta_{1}\left(C_{a_{1}}\right), \ldots, \delta_{2 k}\left(C_{a_{1}}\right)$ encoding $C_{a_{1}}$

Proof of key lemma

- Let $C_{a_{1}}$ be the component of G corresponding to a_{1}.
- a_{1} is critical of rank k, so there are $\delta_{1}\left(C_{a_{1}}\right), \ldots, \delta_{2 k}\left(C_{a_{1}}\right)$ encoding $C_{a_{1}}$ Replace a_{1} by $\delta_{1}\left(C_{a_{1}}\right), \ldots, \delta_{2 k}\left(C_{a_{1}}\right)$:
(Note that all vertices in $C_{a_{1}}$ have the same neighbors outside $C_{a_{1}}$).

$$
\begin{array}{cc}
\sigma_{1}^{\prime} & \delta_{1}\left(C_{a_{1}}\right) \\
\bullet & \delta^{*}\left(C_{a_{1}}\right) \frac{\mathrm{N}\left(C_{a_{1}}\right)}{} \begin{array}{c}
\square \\
\sigma_{i}^{\prime}
\end{array} \quad=-=\square \\
\sigma_{2 k+1}^{\prime} & \delta_{2 k}\left(C_{a_{1}}\right)
\end{array}
$$

Proof of key lemma

- Repeat the process for all a_{i}.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.
- Neighbors outside $C_{b_{j}}$ are encoded by 2 permutations.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.
- Neighbors outside $C_{b_{j}}$ are encoded by 2 permutations.
- Neighbors inside $C_{b_{j}}$ are encoded by $2 k-1$ others permutations.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.
- Neighbors outside $C_{b_{j}}$ are encoded by 2 permutations.
- Neighbors inside $C_{b_{j}}$ are encoded by $2 k-1$ others permutations.
- Finally, we obtains $2 k+1$ permutations encoding G.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.
- Neighbors outside $C_{b_{j}}$ are encoded by 2 permutations.
- Neighbors inside $C_{b_{j}}$ are encoded by $2 k-1$ others permutations.
- Finally, we obtains $2 k+1$ permutations encoding G.

Part 2. $\left(i_{k-1}\right) \rightarrow\left(i_{k}\right):$ same idea.

Proof of key lemma

- Repeat the process for all a_{i}.
- Repeat the process for all b_{j}, notice that by induction $C_{b_{j}}$ can be encoded by $2 k-1$ permutations.
- Neighbors outside $C_{b_{j}}$ are encoded by 2 permutations.
- Neighbors inside $C_{b_{j}}$ are encoded by $2 k-1$ others permutations.
- Finally, we obtains $2 k+1$ permutations encoding G.

Part 2. $\left(i_{k-1}\right) \rightarrow\left(i_{k}\right):$ same idea.
The lemma is proved.

(1) Contiguity

(3) Sketch of proof

4 Perspectives

Perspective

Question: Can we find more graphs with small contiguity and linearity?

Perspective

Question: Can we find more graphs with small contiguity and linearity?

Question: Does there exist some graph with bigger gap between linearity and contiguity?

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small,

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small, and $\left|V \Delta V^{\prime}\right|,\left|E \Delta E^{\prime}\right|$ are small.

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small, and $\left|V \Delta V^{\prime}\right|,\left|E \Delta E^{\prime}\right|$ are small.
- Encode G^{\prime} by adjacency-intervals (long-term storage)

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small, and $\left|V \Delta V^{\prime}\right|,\left|E \Delta E^{\prime}\right|$ are small.
- Encode G^{\prime} by adjacency-intervals (long-term storage)
- Encode $V \Delta V^{\prime}$ by list, and $E \Delta E^{\prime}$ by adjacency-list (temporary storage).

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small, and $\left|V \Delta V^{\prime}\right|,\left|E \Delta E^{\prime}\right|$ are small.
- Encode G^{\prime} by adjacency-intervals (long-term storage)
- Encode $V \Delta V^{\prime}$ by list, and $E \Delta E^{\prime}$ by adjacency-list (temporary storage).

Add/remove vertices/edges:

- Update in temporary storage.

Perspective

Drawback of adjacency-interval scheme:

- Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G^{\prime} where $\operatorname{cont}\left(G^{\prime}\right)$ is small, and $\left|V \Delta V^{\prime}\right|,\left|E \Delta E^{\prime}\right|$ are small.
- Encode G^{\prime} by adjacency-intervals (long-term storage)
- Encode $V \Delta V^{\prime}$ by list, and $E \Delta E^{\prime}$ by adjacency-list (temporary storage).

Add/remove vertices/edges:

- Update in temporary storage.
- When temporary storage is full, re-encode G.

Perspective

Definition:

Let f be a function of n. A graph G is nearly f-contiguous if there exists a graph G^{\prime} such that

- $\left|V \Delta V^{\prime} \cup E \Delta E^{\prime}\right|=O(f n)$,
- cont $\left(G^{\prime}\right)=O(f)$.

Perspective

Definition:

Let f be a function of n. A graph G is nearly f-contiguous if there exists a graph G^{\prime} such that

- $\left|V \Delta V^{\prime} \cup E \Delta E^{\prime}\right|=O(f n)$,
- cont $\left(G^{\prime}\right)=O(f)$.

Observation: Any nearly f-contiguous graph of order n can be encoded by hybrid scheme in complexity $O(f n)$.

Perspective

Definition:

Let f be a function of n. A graph G is nearly f-contiguous if there exists a graph G^{\prime} such that

- $\left|V \Delta V^{\prime} \cup E \Delta E^{\prime}\right|=O(f n)$,
- cont $\left(G^{\prime}\right)=O(f)$.

Observation: Any nearly f-contiguous graph of order n can be encoded by hybrid scheme in complexity $O(f n)$.

Question: Which graphs are nearly $\log n$-contiguous?

The end

Thank you.

