Linearity versus contiguity for encoding graphs

Tien-Nam Le ENS de Lyon

With Christophe Cresspele, Kevin Perrot, and Thi Ha Duong Phan

November 06, 2015

3 Sketch of proof

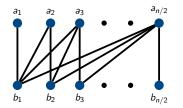
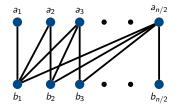


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.



Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Figure: Bipartite graph on *n* vertices where $a_i b_j \in E \Leftrightarrow i \ge j$.

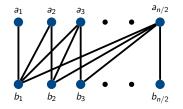


Figure: Bipartite graph on *n* vertices where $a_i b_j \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

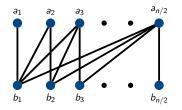


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

• Store
$$\sigma(V) = (a_1, a_2, ..., a_{n/2}, b_1, b_2, ..., b_{n/2})$$
,

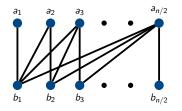


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

- Store $\sigma(V) = (a_1, a_2, ..., a_{n/2}, b_1, b_2, ..., b_{n/2})$,
- node *a_i*: store *b*₁, *b_i*

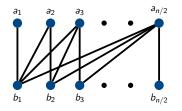


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

- Store $\sigma(V) = (a_1, a_2, ..., a_{n/2}, b_1, b_2, ..., b_{n/2})$,
- node a_i: store b₁, b_i (represent interval [b₁, b₂, ..., b_i]),

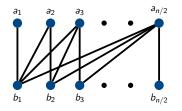


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

- Store $\sigma(V) = (a_1, a_2, ..., a_{n/2}, b_1, b_2, ..., b_{n/2})$,
- node a_i : store b_1, b_i (represent interval $[b_1, b_2, ..., b_i]$),
- node b_j : store $a_j, a_{n/2}$ (represent interval $[a_j, a_{j+1}, ..., a_{n/2}]$).

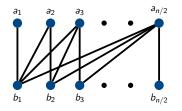


Figure: Bipartite graph on *n* vertices where $a_i b_i \in E \Leftrightarrow i \ge j$.

Traditional scheme: **adjacency-lists**. Space complexity = O(m + n).

Question: Can we do better?

Adjacency-intervals scheme:

- Store $\sigma(V) = (a_1, a_2, ..., a_{n/2}, b_1, b_2, ..., b_{n/2})$,
- node a_i : store b_1, b_i (represent interval $[b_1, b_2, ..., b_i]$),

• node b_j : store $a_j, a_{n/2}$ (represent interval $[a_j, a_{j+1}, ..., a_{n/2}]$).

Space complexity = O(n).

- **1** Store a "good" permutation $\sigma(V)$.
- **②** For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

- **1** Store a "good" permutation $\sigma(V)$.
- **②** For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

Observations:

• Complexity $\leq n + 2k_{\sigma}n$, where $k_{\sigma} = \max_{u}(\# \text{ intervals of } u \text{ in } \sigma)$.

- **1** Store a "good" permutation $\sigma(V)$.
- **2** For every vertex u, store all neighbor-intervals of u in σ (store the first and last nodes).

Observations:

- Complexity $\leq n + 2k_{\sigma}n$, where $k_{\sigma} = \max_{u}(\# \text{ intervals of } u \text{ in } \sigma)$.
- The smaller k_{σ} , the better encoding.

Definition: contiguity of graph

$$cont(G) = \min_{\sigma} k_{\sigma}.$$

Definition: contiguity of graph

$$cont(G) = \min_{\sigma} k_{\sigma}.$$

Observation: Every graph G on n vertices can be encoded in complexity O(cont(G)n).

Definition: contiguity of graph

$$cont(G) = \min_{\sigma} k_{\sigma}.$$

Observation: Every graph G on n vertices can be encoded in complexity O(cont(G)n).

Advantages of Adjacency-intervals scheme:

- Fast encoding
- Fast querying
- Potential small space complexity.

Definition: contiguity of graph

$$cont(G) = \min_{\sigma} k_{\sigma}.$$

Observation: Every graph G on n vertices can be encoded in complexity O(cont(G)n).

Advantages of Adjacency-intervals scheme:

- Fast encoding
- Fast querying
- Potential small space complexity.

Question: Which graphs have small contiguity?

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

• Contiguity of any **cograph** on *n* vertices is $O(\log n)$.

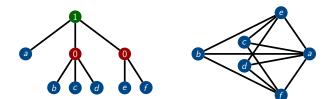


Figure: Example of a cograph and its cotree

Contiguity of cographs

Theorem (Crespelle, Gambette' 2014)

- Contiguity of any **cograph** on *n* vertices is $O(\log n)$.
- Contiguity of any cograph corresponding to some complete binary cotree is ⊖(log n).

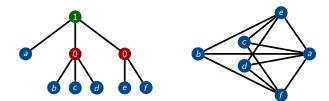


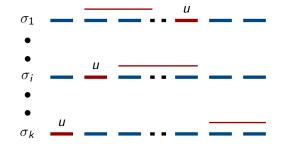
Figure: Example of a cograph and its cotree

3 Sketch of proof

Alternative adjacency-intervals scheme

• Store a collection of permutations $\Sigma = \{\sigma_1, \sigma_2, ..., \sigma_k\}$.

2 For each $u \in V$ and $\sigma_i \in \Sigma$, store **one** neighbor-interval of u per σ_i .



Definition: Linearity

$$lin(G) = \min_{\Sigma} |\Sigma|.$$

Definition: Linearity

$$lin(G) = \min_{\Sigma} |\Sigma|.$$

Observation: Any graph G on n vertices can be encoded in complexity O(lin(G)n).

Definition: Linearity

$$lin(G) = \min_{\Sigma} |\Sigma|.$$

Observation: Any graph G on n vertices can be encoded in complexity O(lin(G)n).

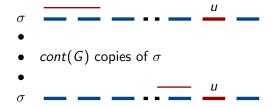
Proporsition: $lin(G) \leq cont(G)$

Definition: Linearity

$$lin(G) = \min_{\Sigma} |\Sigma|.$$

Observation: Any graph G on n vertices can be encoded in complexity O(lin(G)n).

Proporsition: $lin(G) \leq cont(G)$



Main question

Does there exist some graph G such that $lin(G) \ll cont(G)$?

Main question

Does there exist some graph G such that $lin(G) \ll cont(G)$?

Answer: Yes!

Main question

Does there exist some graph G such that $lin(G) \ll cont(G)$?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on *n* vertices is $O\left(\frac{\log n}{\log \log n}\right)$.

Main question

Does there exist some graph G such that $lin(G) \ll cont(G)$?

Answer: Yes!

Main theorem (Crespelle, L., Perrot, Phan' 2015+)

Linearity of any cograph on *n* vertices is $O\left(\frac{\log n}{\log \log n}\right)$.

Direct corollary

For any cograph G on n vertices corresponding to some complete binary cotree, $lin(G) = O\left(\frac{cont(G)}{\log \log n}\right) = o(cont(G)).$

Sketch of proof

Definition: Double factorial tree

The **double factorial tree** F^k is defined by induction:

• F^0 is a singleton.

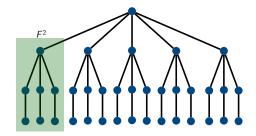


Figure: Double factorial tree F^3 .

Sketch of proof

Definition: Double factorial tree

The **double factorial tree** F^k is defined by induction:

- F^0 is a singleton.
- The root of F^k has exactly 2k 1 children, each is the root of a copy of F^{k-1}.

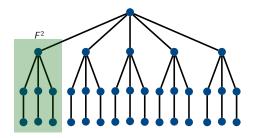


Figure: Double factorial tree F^3 .

Definition: Rank

Let T be a rooted tree.

- The rank of T is the maximum k such that F^k is a minor of T.
- The **rank** of a node u in T is rank of subtree T_u rooted at u.

Definition: Rank

Let T be a rooted tree.

- The rank of T is the maximum k such that F^k is a minor of T.
- The rank of a node u in T is rank of subtree T_u rooted at u.

Definition: Critical node

A node u in T is **critical** if its rank is strictly greater than the rank of all its children.

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k. (i) $lin(G) \le 2k + 1$, (ii) if the root is critical, then $lin(G) \le 2k$.

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k. (i) $lin(G) \le 2k + 1$, (ii) if the root is critical, then $lin(G) \le 2k$.

Proof of main theorem:

$$n = |V(G)| = \#leaves(T) \ge \#leaves(F^k) = (2k+1)!!$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k. (i) $lin(G) \le 2k + 1$, (ii) if the root is critical, then $lin(G) \le 2k$.

Proof of main theorem:

$$n = |V(G)| = \#leaves(T) \ge \#leaves(F^k) = (2k+1)!!$$

By Stirling's approximation:

$$n \geq \frac{2\sqrt{\pi}}{e} \left(\frac{2k+2}{e}\right)^{k+1}$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k. (i) $lin(G) \le 2k + 1$, (ii) if the root is critical, then $lin(G) \le 2k$.

Proof of main theorem:

$$n = |V(G)| = \#leaves(T) \ge \#leaves(F^k) = (2k+1)!!$$

By Stirling's approximation:

$$n \ge \frac{2\sqrt{\pi}}{e} \left(\frac{2k+2}{e}\right)^{k+1} \Longrightarrow k = O\left(\frac{\log n}{\log \log n}\right)$$

Key lemma

Key lemma

Let G be a cograph whose cotree T has rank k. (i) $lin(G) \le 2k + 1$, (ii) if the root is critical, then $lin(G) \le 2k$.

Proof of main theorem:

$$n = \left| V(G) \right| = \# \mathit{leaves}(T) \geq \# \mathit{leaves}(F^k) = (2k+1)!!$$

By Stirling's approximation:

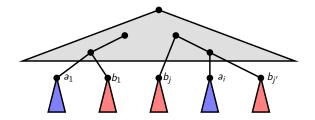
$$n \geq \frac{2\sqrt{\pi}}{e} \left(\frac{2k+2}{e}\right)^{k+1} \Longrightarrow k = O\left(\frac{\log n}{\log \log n}\right)$$

Combine with (i) in key lemma, $lin(G) = O\left(\frac{\log n}{\log \log n}\right)$.

Prove by induction: (ii₁) \rightarrow (i₁) \rightarrow (i₂) \rightarrow (i₂) \rightarrow ...

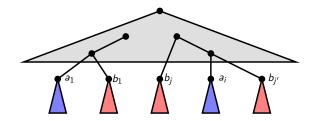
Prove by induction: (ii₁) \rightarrow (i₁) \rightarrow (i₂) \rightarrow (i₂) \rightarrow ...

Part 1.
$$(ii_k) \rightarrow (i_k)$$
:



Prove by induction: $(ii_1) \rightarrow (i_1) \rightarrow (ii_2) \rightarrow (i_2) \rightarrow ...$

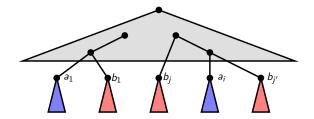
Part 1. $(ii_k) \rightarrow (i_k)$: prove that *G* can be encoded by 2k + 1 permutations.



Prove by induction: $(ii_1) \rightarrow (i_1) \rightarrow (ii_2) \rightarrow (i_2) \rightarrow ...$

Part 1. $(ii_k) \rightarrow (i_k)$: prove that *G* can be encoded by 2k + 1 permutations.

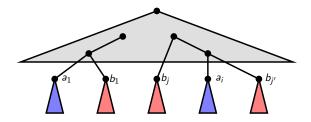
• $A = \{a_1, a_2, ...\}$: critical nodes of rank k (blue).



Prove by induction: $(ii_1) \rightarrow (i_1) \rightarrow (ii_2) \rightarrow (i_2) \rightarrow ...$

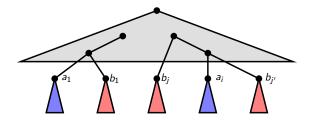
Part 1. $(ii_k) \rightarrow (i_k)$: prove that *G* can be encoded by 2k + 1 permutations.

- $A = \{a_1, a_2, ...\}$: critical nodes of rank k (blue).
- B = {b₁, b₂, ...}: nodes of rank k 1, whose parent is non-critical of rank k (red).



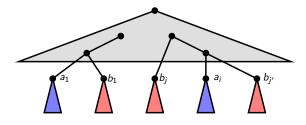
Observation:

• $|A| \leq 2k$, otherwise, $rank(T) \geq k+1$.



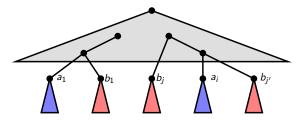
Observation:

- $|A| \leq 2k$, otherwise, $rank(T) \geq k + 1$.
- Although |B| can be large, parent of any b_i is ancestor of some a_i .



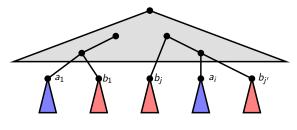
Observation:

- $|A| \leq 2k$, otherwise, $rank(T) \geq k+1$.
- Although |B| can be large, parent of any b_i is ancestor of some a_i .
- Contract T_{ai} (res. T_{bj}) into a_i (res. b_j), we get a new cotree T' of a cograph G'.



Observation:

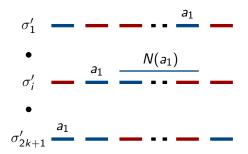
- $|A| \leq 2k$, otherwise, $rank(T) \geq k+1$.
- Although |B| can be large, parent of any b_i is ancestor of some a_i .
- Contract T_{ai} (res. T_{bj}) into a_i (res. b_j), we get a new cotree T' of a cograph G'. G' has |A| + |B| vertices, each represents a component of G.



Claim

There exists an encoding of G' by $\Sigma' = \{\sigma'_1, ..., \sigma'_{2k+1}\}$ such that:

- Neighbor set of each a_i is encoded by only **one interval**.
- Neighbor set of each b_j is encoded by at most **two intervals** in two distinct permutations.

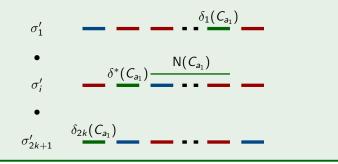


• Let C_{a_1} be the component of G corresponding to a_1 .

- Let C_{a_1} be the component of G corresponding to a_1 .
- a_1 is critical of rank k, so there are $\delta_1(C_{a_1}), ..., \delta_{2k}(C_{a_1})$ encoding C_{a_1}

- Let C_{a_1} be the component of G corresponding to a_1 .
- a_1 is critical of rank k, so there are $\delta_1(C_{a_1}), \dots, \delta_{2k}(C_{a_1})$ encoding C_{a_1}

Replace a_1 by $\delta_1(C_{a_1}), ..., \delta_{2k}(C_{a_1})$: (Note that all vertices in C_{a_1} have the same neighbors outside C_{a_1}).



• Repeat the process for all a_i .

- Repeat the process for all *a_i*.
- Repeat the process for all b_j , notice that by induction C_{b_j} can be encoded by 2k 1 permutations.

- Repeat the process for all *a_i*.
- Repeat the process for all b_j , notice that by induction C_{b_j} can be encoded by 2k 1 permutations.
 - Neighbors outside C_{b_i} are encoded by 2 permutations.

- Repeat the process for all *a_i*.
- Repeat the process for all b_j , notice that by induction C_{b_j} can be encoded by 2k 1 permutations.
 - Neighbors outside C_{b_i} are encoded by 2 permutations.
 - Neighbors inside C_{b_j} are encoded by 2k 1 others permutations.

- Repeat the process for all *a_i*.
- Repeat the process for all b_j, notice that by induction C_{b_j} can be encoded by 2k - 1 permutations.
 - Neighbors outside C_{b_i} are encoded by 2 permutations.
 - Neighbors inside C_{b_i} are encoded by 2k 1 others permutations.
- Finally, we obtains 2k + 1 permutations encoding G.

- Repeat the process for all *a_i*.
- Repeat the process for all b_j, notice that by induction C_{b_j} can be encoded by 2k - 1 permutations.
 - Neighbors outside C_{b_i} are encoded by 2 permutations.
 - Neighbors inside C_{b_i} are encoded by 2k 1 others permutations.
- Finally, we obtains 2k + 1 permutations encoding G.

Part 2. $(i_{k-1}) \rightarrow (ii_k)$: same idea.

- Repeat the process for all *a_i*.
- Repeat the process for all b_j, notice that by induction C_{b_j} can be encoded by 2k - 1 permutations.
 - Neighbors outside C_{b_i} are encoded by 2 permutations.
 - Neighbors inside C_{b_i} are encoded by 2k 1 others permutations.
- Finally, we obtains 2k + 1 permutations encoding G.

Part 2. $(i_{k-1}) \rightarrow (ii_k)$: same idea.

The lemma is proved.

2 Linearity

3 Sketch of proof

Question: Can we find more graphs with small contiguity and linearity?

Question: Can we find more graphs with small contiguity and linearity?

Question: Does there exist some graph with bigger gap between linearity and contiguity?

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

• Find a graph G' where cont(G') is small,

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

Find a graph G' where cont(G') is small, and |VΔV'|, |EΔE'| are small.

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G' where cont(G') is small, and |V∆V'|, |E∆E'| are small.
- Encode G' by adjacency-intervals (long-term storage)

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G' where cont(G') is small, and |VΔV'|, |EΔE'| are small.
- Encode G' by adjacency-intervals (long-term storage)
- Encode $V\Delta V'$ by list, and $E\Delta E'$ by adjacency-list (temporary storage).

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G' where cont(G') is small, and |VΔV'|, |EΔE'| are small.
- Encode G' by adjacency-intervals (long-term storage)
- Encode $V\Delta V'$ by list, and $E\Delta E'$ by adjacency-list (temporary storage).

Add/remove vertices/edges:

• Update in temporary storage.

Drawback of adjacency-interval scheme:

• Adding/removing vertices/edges at huge cost.

Hybrid scheme

Encode G:

- Find a graph G' where cont(G') is small, and |V∆V'|, |E∆E'| are small.
- Encode G' by adjacency-intervals (long-term storage)
- Encode $V\Delta V'$ by list, and $E\Delta E'$ by adjacency-list (temporary storage).

Add/remove vertices/edges:

- Update in temporary storage.
- When temporary storage is full, re-encode G.

Definition:

Let f be a function of n. A graph G is **nearly** f-contiguous if there exists a graph G' such that

•
$$|V\Delta V' \bigcup E\Delta E'| = O(fn),$$

•
$$cont(G') = O(f)$$
.

Definition:

Let f be a function of n. A graph G is **nearly** f-contiguous if there exists a graph G' such that

• $|V\Delta V' \bigcup E\Delta E'| = O(fn),$

•
$$cont(G') = O(f)$$
.

Observation: Any nearly *f*-contiguous graph of order *n* can be encoded by hybrid scheme in complexity O(fn).

Definition:

Let f be a function of n. A graph G is **nearly** f-contiguous if there exists a graph G' such that

• $|V\Delta V' \bigcup E\Delta E'| = O(fn),$

•
$$cont(G') = O(f)$$
.

Observation: Any nearly *f*-contiguous graph of order *n* can be encoded by hybrid scheme in complexity O(fn).

Question: Which graphs are nearly log *n*-contiguous?

Thank you.