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Introduction

Context:

Smart card are subject to physical attacks

Security is of main importance for the card industry

Adding security countermeasures

is not so obvious. . .
is an expensive and time consuming process
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Introduction - attacks

Two types of attacks to consider:

Side channel attacks

Fault injection attacks
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Introduction
Background

Towards a high level model of attacks
Using the model

Physical attacks
Authentication for smart card

Authentication for smart card

Memories

CPU

SMART CARD Internals

ROM

RAM

EPROM

Buffers

Circuit

BUS
Terminal

1 2 3

4 5 6

7 8 9

Vcc

CLK

IO

0
0
0
0

1
2
3
4

- Information Flow -
ROM function compares buffers
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Example of attacks

Let us consider such an authentication code:

uint user tries = 0; // initialization of the number of tries for this session
uint max tries = 3; // max number of tries
while (...) /∗ card life cycle: ∗/
{

incr tries(user tries);
res = get pin from terminal(); // receives 1234
pin = read secret pin(); // read real pin: 0000
if (compare(res, pin))
{ dec tries(user tries); }

if (user tries < max tries)
{ everything is fine(); }

else
{ killcard(); }

}

Simplified authentication code with pin check
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Berthomé - Heydemann - Kauffman - Lalande Sécurité des cartes à puce
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Example of attacks

Let us consider such an authentication code:

uint user tries = 0; // initialization of the number of tries for this session
uint max tries = 3; // max number of tries
while (...) /∗ card life cycle: ∗/
{

incr tries(user tries);
res = get pin from terminal(); // receives 1234
pin = read secret pin(); // read real pin: 0000 pin ← ”1234”
if (compare(res, pin)) // always true
{ dec tries(user tries); }

if (user tries < max tries)
{ everything is fine(); }

else
{ killcard(); }

}

Simplified authentication code with pin check
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Example: attack on card bus!

What about security?
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Security problems

Several questions appear:

How to explain low level attacks at source code level?

How to identifiy harmfull attacks?

How to implement countermeasures?

How to evalute the efficiency of countermeasures?

Two goals

Create a high level model of attacks (developer level)

Provide a security test methodology
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Berthomé - Heydemann - Kauffman - Lalande Sécurité des cartes à puce
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Introduction
Background

Towards a high level model of attacks
Using the model

Smart Card Development Process
Attack hypothesis

Smart Card Development Process

SOFTWARE
SPECIFICATIONS

SOFTWARE
DEVELOPMENT

EMBED SOFTWARE
ON CHIP

SOFTWARE
TEST

HARDWARE
SECURITY

TEST

CARD READY

Objectives:

Simulate hardware attacks at software level
Move some security hardware tests to software level
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Attack hypothesis

Attacks on smart cards in Common Criteria [1]:

modifying a value read from memory;

changing the quality of random numbers generated;

modifying the program flow.

Attack model in the literature [2]:

precise bit error;

precise byte error;

unknown byte error;

unknown error.
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Attack hypothesis

One or several consecutive bytes are overwritten:

bytes encode operations that are opcodes or operands

for example, one opcode and its operands may be deleted:
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Introduction
Background

Towards a high level model of attacks
Using the model

Smart Card Development Process
Attack hypothesis

Hypothesis and difficulties

Hypothesis:

One attack during one execution

One attack on one or several consecutive bytes

Difficulties:

What happens when an opcode is deleted?

What happens when an operand is deleted?

What happens when an opcode is replaced?
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Introduction
Background

Towards a high level model of attacks
Using the model

Studying low level attacks consequences
Flow shifting
Assembly attack analysis
Jump attack model

Example of high level model of a low level consequence

Assembly Chip

Smart card
compilation
+ deployment execution

Attack impactAttack model
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Flow shifting for opcode replacement

Opcode X becomes opcode Y

X arg1 arg2 ; → Y arg1 ; arg2

arg2 is viewed as an opcode and the instruction flow is shifted

X arg1 arg2 ; → Y ; arg1 arg2

arg1 is viewed as an opcode. Depending on the number of
bytes needed by arg1, arg2 is then either an operand or an
opcode. The instruction flow has also shifted.

X arg1 arg2 ; → Y arg1 arg2 ;

the instruction flow has not shifted.

Berthomé - Heydemann - Kauffman - Lalande Sécurité des cartes à puce
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But... shifted flows quickly recover

Lemma: A shifted flow recovers to the normal flow in 1/p
operations, with p the probability that a random byte is an opcode
in the original flow.

Using the 8051 assembly code, p = 0.64.

The flow recovers in 1.56 steps...

Are attacks always successful ?

new opcodes may crash the program

the original opcodes may suffer from missing opcodes
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Assembly attack consequences

Let us take the following example:

1 c = u + 5;
2 b = c < 10;
3 if (b){
4 res = c + 1;
5 }
6 else{
7 res = 0;
8 }

1mov r2,dpl // load the parameter in r2
2mov a,#0x05 // put 5 into a
3add a,r2 // compute u + 5 in a
4mov c,a // store c into RAM from a
5clr c // clear the carry
6subb a,#0x0A // computes b i. e. c−10
7jnc 00102$ // jumps to 102
8// if carry is not set
9mov a, c // load c into a
10inc a // a++ i.e c + 1
11mov r2,a // r2 stores a (res = c + 1)
12sjmp 00103$ // jump over else
1300102$:
14mov r2,#0x00 // r2 stores 0 (res = 0)
1500103$:
16mov dpl,r2 // push r2 on the stack
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Example 1: NOP insertion

1mov r2,dpl
2mov a,#0x05
3add a,r2
4mov c,a
5clr c
6subb a,#0x0A → NOP
7jnc 00102$
8mov a, c
9inc a
10mov r2,a
11sjmp 00103$
1200102$:
13mov r2,#0x00
1400103$:
15mov dpl,r2

1 c = u + 5;
2 b = c < 10;
3 if (b){ → if(false)
4
5 res = c + 1;
6 }
7 else{
8 res = 0;
9 }
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Example 1: NOP insertion

1mov r2,dpl
2mov a,#0x05
3add a,r2
4mov c,a
5clr c
6subb a,#0x0A → NOP
7jnc 00102$
8mov a, c
9inc a
10mov r2,a
11sjmp 00103$
1200102$:
13mov r2,#0x00
1400103$:
15mov dpl,r2

1 c = u + 5;
2 b = c < 10; goto label;
3 if (b){
4
5 res = c + 1;
6 }
7 else{ label :
8 res = 0;
9 }
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Example 2: NOP insertion (again !)

1mov r2,dpl
2mov a,#0x05 → NOP
3add a,r2
4mov c,a
5clr c
6subb a,#0x0A
7jnc 00102$
8mov a, c
9inc a
10mov r2,a
11sjmp 00103$
1200102$:
13mov r2,#0x00
1400103$:
15mov dpl,r2

1 c = u + 5;→ c = u+?
2 b = c < 10;
3 if (b){
4
5 res = c + 1;
6 }
7 else{
8 res = 0;
9 }
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Example 2: NOP insertion (again !)

1mov r2,dpl
2mov a,#0x05 → NOP
3add a,r2
4mov c,a
5clr c
6subb a,#0x0A
7jnc 00102$
8mov a, c
9inc a
10mov r2,a
11sjmp 00103$
1200102$:
13mov r2,#0x00
1400103$:
15mov dpl,r2

1 c = attack();
2 b = c < 10;
3 if (b){
4
5 res = c + 1;
6 }
7 else{
8 res = 0;
9 }
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Example 3: instruction override

1mov r2,dpl
2mov a,#0x05
3add a,r2
4mov c,a
5clr c
6subb a,#0x0A
7jnc 00102$
8mov a, c
9inc a
10mov r2,a
11sjmp 00103$
1200102$:
13mov r2,#0x00
1400103$:
15mov dpl,r2 → jmp 102

1 c = u + 5;
2 b = c < 10;
3 if (b){
4 res = c + 1;
5 }
6 else{
7 label:
8 res = 0;
9 }

10 goto label;
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High level attack model

The examples show that

the variables may be affected

the flow control may be changed

arbitrary jumps may be introduced

The high level attack model proposed is based on:

perturbating variables: a = attack();

introducing inconditional jumps: goto label;
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Principles of experiments

Principles:

Generate high-level attacks: new C source codes

Test exhaustively the resulting programs

How to classify attack effects ?

Good: the execution gives the expected output

Bad: the ouput is wrong or an error occured

Crash: the program crashed

Signal: a signal has been received (SIGSEGV)

Killed: an infinite loop occured
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Good candidates

Candidates:

Pure C programs with measurable input/output

⇒ SPEC 2006 benchmark suite

Jump attacks stay into a function

Bzip2:
107 functions, 8 643 C statements
assembly code: 26 103 instructions

Bzip2 Assembly code High level C

Source code size (lines) 26 103 8 643

Nb generated attacked codes 3 531 954 117 802

n2 attacks for each bzip2 function of size n
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Coverage

Statistics ASM C gdb

Code size 26 103 8 643 8 643
Simu. time 2d 18h 8h 2h
Nb of BADs 273 129 14 050 5 417
Uniq BADs 2 326 1245 852
ASM coverage 100% 21% 21%

Statistics for simulated attacks on bzip2
Coverage of uniq
bads

Berthomé - Heydemann - Kauffman - Lalande Sécurité des cartes à puce
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BZ2 compressBlock profile
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Spatial classification of good/bad/kill attacks according to source/dest.
lines, simulated in C against BZ2 compressBlock
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BZ2 blockSort profile
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Spatial classification of good/bad/kill attacks according to
source/destination lines, simulated in C against BZ2 blockSort
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Implementing countermeasures

4085 Original code /∗∗ Countermeasure ∗∗/
4086 /∗∗ kc(); = {perror(”KILLCARD”);exit(−1);} ∗∗/
4087 int security = 48;
4088 ...
4140 security++;
4141 s−>origPtr = −1;
4142 if (security != 49) kc(); security++;
4143 for (i = 0; i < s−>nblock; i++)
4144 { if (security != 50+2∗i) kc(); security++;
4145 if (ptr[i] == 0) {
4146 s−>origPtr = i;
4147 break;
4148 }; if (security != 51+2∗i) kc(); security++;
4149 }
4150 if (security < 50) kc();
4151 AssertH(s−>origPtr != −1, 1003);
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Implementing countermeasures: before
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BZ2 blockSort: before
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Implementing countermeasures: after
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BZ2 blockSort: after
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Results for an sensitive function of a smart card
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Spatial classification for a sensitive function of a smart card code
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Conclusion

Problems

How to model physical attacks at software level?

How to inject jump attacks?

How to classify the impact of attacks?

Contributions

Attack injection platform for C programs

Experimental results on bzip2 and smart card codes

Profiling of attacks
Identification of weak points in functions
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Questions

Common Criteria.

Application of Attack Potential to Smartcards.

Technical Report March, BSI, 2009.

A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet.

Automatic detection of fault attack and countermeasures.

In 4th Workshop on Embedded Systems Security, pages 1–7, New York
city, New York state, USA, 2009. ACM Press.
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