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Introduction and Context

DNA computing
Growth of a complex pattern from simple parts
expressing algorithms in a new formalism
Finite shapes: Turing
Tilings of the whole plane: ?
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Definition

A set of colored squares
(Wang tiles).

The colors are given an
integer strength (glues).
Two identical glues form a
bond whose strength is that
of the glues.
We draw tiles from the
tile-set and try to add them.
A tile is added to a pattern
if the sum of the new bonds
is greater than 2.
Starting with a single tile,
the seed.
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Productions and Dynamic

Adding a tile = transition
Pattern we get by transitions = production
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An example: a Sierpinsky Triangle (Temperature 2)
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As a Cellular Automaton

Getting a Wang tiling as the limit of a CA.
Explicit convergence.

Convergence time.
If convergence time = 0, no intermediary states, CA =
self-assembly.
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Infallible assembly and limits

Definition (Infallible assembly)

A self-assembling system is infallible if for any z ∈ Z2,
from any production p, there is a sequence of
productions which covers z.

Definition
We say that an infallible system assembles a set of
tilings T if there is a tilewise projection from the sets
of all limits of sequences which covers Z2 to T .

We want to (eventually) cover the whole plane
We might need several shades of each color

What tilings are self-assemblable?
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Tile Equivalence

Most trivial tilings: periodic tiling, “random” tiling.
Really different from a Kolmogorov angle.

Common point: no information transmission.
Two tiles are equivalent if substituting one for the other only
changes the immediate neighbors.
Random tilings are uniform under equivalence.
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Only Trivial Tilings can be Assembled

Theorem
Let T be a set of tilings assembled by an infallible temperature 1
system. Then T only has one (periodic) pattern under equivalence.

Idea: temperature 1 self-assembly works like a finite automaton.
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Proof Sketch

In the determinist case,
every tile only depends on
one neighbor.
Finite automaton compatible
with Z2 (states = tiles,
transition = adjacencies).
One periodic pattern.

General case:
non-deterministic finite
automaton.

Determinisation/minimisation
= take equivalence on tiles.
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Robinson’s Tiling is Assemblable

To show the undecidability of tiling problems, one uses
Robinson’s patterns
Quasi-periodic ⇒ computation everywhere, uniformly
The base pattern can be self-assembled
We can use quasi-periodic patterns to get complexity bounds
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More details on that
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Tiling Complexity

Complexity of a set of patterns = complexity of the language
of extracted squares
What if we start assembling in a region with “easy” squares?
Unavoidable complexity = complexity ◦ quasi-periodicity
Note: quasi-periodic set of tilings: a pattern that appears in
one of the tilings appears in every big enough square of each
of the tilings.
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Temperature 2 complexity

Theorem
Let T be a quasi-periodic set of tilings that is assembled by a
temperature 2. Then the complexity of deciding if a given n × n
square appears in the tilings is NEXPTIME (q(n)).
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Proof sketch

In order to decide if a n × n square appears near the seed in
the tilings of T , try to assemble it.
How long can that assembly take?

Just before you assemble a n × n square, you have a band of
width n.
This band has length at most 2O(n), otherwise it would be
periodic.
In order to decide if a n × n square appears in a limit of the
system, try all ways to tile a 2O(q(n)) × q(n) band, and see if
that square appears.
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Higher temperature (general case)

Largest shape before all information on a n × n square is
available: any graph of treewidth n.
What does this mean in terms of complexity?
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Conclusion

Self-assembly = less powerful model than Turing: a model of
complexity?
At temperature 2 (and more?), complexity bounds
Are they tight?
Are there other restrictions (communication schemes?)


	Self-assembly
	Temperature 1
	Temperature 2 and higher

