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I. Real Computation

@ Two independent approaches: Recursive Analysis &
Numerical Analysis

@ Recursive analysis investigates real computation using
classical recursion theory and its technologies

@ Numerical analysis is an algorithmic problem-oriented
approach

@ Compare with classical recursion theory vs. analysis and
design of algorithms

@ Recursive analysis is the focus of this presentation. It was

introduced by Turing [1936], Grzegorczyk [1955], and
Lacombe [1955].
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Representation of Real Numbers

@ Given x, several representations:
@ Binary expansion: BEx:N - {0,1}
o Leftcut: LCx = {r e Q:r <x}
@ Cauchy Sequence: CF:N - Q

@ Recursively-wise they are equivalent

@ However, they differ on the sub-recursive as well as the
complexity-theoretic level
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Cauchy Sequence Representation

@ Let D be the set of dyadic rationals, i.e, any d € Q with
finite binary representation d = 2Lm

@ Binary converging Cauchy sequences are adopted:

ox:N—->D
lox(n) = x| <27"
{ex(n)} ~ x
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Computability of Real Numbers

@ X € R is computable if it has a computable Cauchy
sequence

@ Transcendental numbers such as «, e are computable

@ The set of computable real numbers forms a real closed
field
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Complexity of Real Numbers

@ X e R is in complexity class C if x has a Cauchy sequence
inC

@ The class of polytime computable real numbers forms a
real closed field

o PTime!BE] = PTimeltC] ¢ PTimelCF]
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Computability of Real Functions

@ Type 2 Turing machine model
@ Itis a Type 1 machine equipped with function oracles

@ The oracles are Cauchy functions for the real input
arguments

Definition

A real function f is computable over a compact domain iff there
exists a T2 machine M" such that for every x e dom(f) there
exists o € CFy such that for every n e N, M” (n) computes d € D
with [f(x) -d|<2™"
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Char. of Computable Real Functions in Recursive

Analysis

@ Let D c R be compact

f:D - R is computable iff
© f has a recursive modulus of continuity m: N — N:

vx,y edom(f): [x —y| <27 — |f(x) - f(y)| < 27"

@ f has a recursive approximation function :D x N — I:

vdeD:VneN:|yp(d,n) -f(d) <2™"
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Modulus of Continuity

Given the the distance between x and its approximation d € D,
the modulus is used to estimate how good is the approximating
value f(d) to the desired value f(x)

d=~X

b(d.n) = f(d)
£(d) ~ f(x)
sb(d.n) = (x)
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Proof of the Theorem

@ Given x e dom(f), ¢ € CFyx, and n e N:
@ M’ computes m(n + 1) and writes it on the oracle tape
© The oracle responds with d = p(m(n + 1))
© M’ computes and outputs e = ¢(d,n + 1)

by definiton of 1) by modulus M
— —

o le—f(x)|<|e—f(d)|+[f(d)-f(x)|< 27(mD) 4 2=(n+1) _ p-n
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Computability Implies Continuity

Let f be a real function. If f is computable, then it is continuous.
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Polytime Complexity of Computable Real Functions

@ Assume compact domains

@ Complexity as a function of n rather than |n|, = O(logn)

f:D - R is PTime-computable iff
© The modulus of f over D is a polynomial function

@ The approximation function is polynomial time computable
inn
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[I. Function Algebras

@ Machine independent resource-free algebraic
characterization of computational and complexity classes

@ Descriptive complexity is a model-theoretic resource-free
characterization of complexity classes

@ Problem with descriptive complexity: characterization of
relations rather than functions
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Function Algebras Cont'd

F=[B;0]

@ B is a set of basic functions
@ (O is a set of operations

@ F consists of B and its closure under O
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Algebraic Char. of Discrete Computability

@ The class of elementary functions:
£=0,s,u,e; Comp,BSum,BProd] = £2

@ o is the cutoff subtraction: x ey = max{0,x -y}
o Bounded Sum: f = BSum(g), (X,y) —— ¥, 9(X,2)

@ Bounded Product: f =BProd(g), (X,y) L [T,y 9(X,2).

@ £2: second level of Grzegorczyk hierarchy
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Algebraic Char. of Discrete Computability Cont'd

@ The class of primitive recursive functions:
PR =[0,s,u; Comp,Rec]
@ Primitive recursive: h = Rec(g,f),

h(0.y) =g(¥)
h(X + 17)7) = f(vavh(va))

@ PR gives all total recursive functions
@ PR is the union of the Grzegorczyk hierarchy

@ PR is closed under space and time complexity
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Algebraic Char. of Discrete Complexity
Capturing polynomial time

@ Cobham'’s class [1964]: no machine model, but it contains
explicit resource bounds

@ Bellantoni-Cook class [BC92]

B =[0,u,s;,pr,cond; SComp, SRN |
@ Successor over notation: sj(;X) =X oi =2X +i
@ Predecessor: pr(;xi) =x

@ Conditional:

y x=0

cond(;x,y,z) :{
z ow
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Capturing Polynomial Time Cont'd

@ Safe composition: from h,g;,0, € B
F(X:¥) = h(1(X;); G2(X:¥))
- Safe arguments can’t be placed in normal positions, but the
opposite can occur
- Asymmetry in the definition, hence adding a function

operating on safe arguments is generally more powerful
than adding the same function on normal arguments
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Capturing Polynomial Time Cont'd

@ Safe Predicative recursion: from g,hg,h; € B

f(0,y:2) =9(y;2)
f(si(;x),¥:2) =hi(x,¥:Z,f(x,¥:2))
- The recurrence variable must be in normal position on the
LHS
- The recurred value must be in safe position on the RHS,
this what actually controls the growth rate of the function by

preventing nested recursions

- Operations of safe inputs do not increase the input length
by more than an additive constant
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add(0;y) =y
add(x +1;y) = s(;add(x;y))
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add(0;y) =y

add(x +1;y) =s(;add(x;y))

mul(0;y) =0

mul(x +1;y) = add (;mul(x,y)) can’t be done
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add(0;y) =y

add(x +1;y) =s(;add(x;y))

mul(0;y) =0

mul(x +1;y) = add (;mul(x,y)) can’t be done
mul(0,y;)=0

mul(x +1,y;) = add (y; mul(x,y))

no safe argument in mul, hence exponentiation can not be
defined
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Algebraic Char. of Real Computability

@ The class of functions built in analogy with £ [CO1]:
£=0,1,-1,7,u,63;,Comp,LI]

@ #5 is a C? function gives a physically realistic way to sense
inequalities without introducing discontinuities:

x3 x>0
03(x) = {O ow

@ Linear integration: f = LI(g,hy,hy) is the maximal solution
of

f(0,¥) =9(y)
oxf(X,¥) =h (X, y)f(X,y) +ha(x,y)

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



All of the following functions are in L:
Q f(x) =exp(x), solution of

f(0)=1
£ =f

Q f(x) = exp[™(x), by composition

@ f(x) =sin(x), first component of the solution of

h1(0) = 0, hy(0) = 1
h, = h,
hy = —hy
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Relationship with Disc. Classes & Rec. Analysis(1)

- &= [O, S,u,o; Comp, BSum, BPTOd] =£&? (elementary functions over N)
- L= [O, 1,-1,m,u,06s3; Comp, Ll] (built in analogy with &)

- g(R) Elementary functions over R (the corresponding functional is elementary)

O DP(L)=¢
Q L:ER)
Q@ L+Lim=&(R) (over compact domains)
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Extending with Unique Minimalization

© LetD x| be a compact set where D c R and | ¢ R
f:Dxl->R
@ vx eD, f(X,y) is monotonically increasing on |
@ vx eD, f(X,y) has a unique root yq in the interior of |
Q 5 f(X,y) ly,> 0
Unique Min:
In(f):D - R

X = Yo
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Relationship with Disc. Recursive Classes (2)

- L+'u=10,1,-1,m,u,603; Comp, LI, !u]

- Rec: recursive functions over N

Theorem (BHO06)

Rec =DP(L+!1)
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The Limit Schema: Lim

-f:Dxl—R
- forallXx e D, |[&f(X,t)[| ~0ast ~ oo

Limit:

Lim(f):D - R
X »—>t|im f(X,t)

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



Relationship with Recursive Analysis

!*u = [Oﬂ 17 U,93; Comp, LI, IILL, le]

- ReC(R): Recursive functions over R (the corresponding functional is recursive)

Theorem (BHO06)

L}, = Rec(R)
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Algebraic Char. of Real Complexity

@ Undergoing project with M. Bournez and M. Hainry

@ Focus on PTime

General plan:

© Definition of polynomial time computation over open
bounded domains

@ Definition of polynomial computation over open unbounded
domains

© PTime basic functions

@ Operations that sustain feasibility and strong enough to
capture to the whole PTime
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