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I. Real Computation

Two independent approaches: Recursive Analysis &
Numerical Analysis

Recursive analysis investigates real computation using
classical recursion theory and its technologies

Numerical analysis is an algorithmic problem-oriented
approach

Compare with classical recursion theory vs. analysis and
design of algorithms

Recursive analysis is the focus of this presentation. It was
introduced by Turing [1936], Grzegorczyk [1955], and
Lacombe [1955].
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Representation of Real Numbers

Given x , several representations:

Binary expansion: BEx ∶N → {0,1}

Left cut: LCx = {r ∈ Q∶ r < x}

Cauchy Sequence: CFx ∶N → Q

Recursively-wise they are equivalent

However, they differ on the sub-recursive as well as the
complexity-theoretic level
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Cauchy Sequence Representation

Let D be the set of dyadic rationals, i.e, any d ∈ Q with
finite binary representation d = k

2m

Binary converging Cauchy sequences are adopted:

ϕx ∶N→ D

∣ϕx(n) − x ∣ ≤ 2−n

{ϕx(n)} ↝ x
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Computability of Real Numbers

x ∈ R is computable if it has a computable Cauchy
sequence

Transcendental numbers such as π,e are computable

The set of computable real numbers forms a real closed
field
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Complexity of Real Numbers

x ∈ R is in complexity class C if x has a Cauchy sequence
in C

The class of polytime computable real numbers forms a
real closed field

PTime[BE] ≡ PTime[LC] ⊊ PTime[CF ]
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Computability of Real Functions

Type 2 Turing machine model

It is a Type 1 machine equipped with function oracles

The oracles are Cauchy functions for the real input
arguments

Definition

A real function f is computable over a compact domain iff there
exists a T2 machine M

()
such that for every x ∈ dom(f ) there

exists ϕ ∈ CFx such that for every n ∈ N, M
ϕ

(n) computes d ∈ D

with ∣f (x) − d ∣ ≤ 2−n
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Char. of Computable Real Functions in Recursive
Analysis

Let D ⊆ R be compact

Theorem

f ∶D → R is computable iff
1 f has a recursive modulus of continuity m∶N→ N:

∀x ,y ∈dom(f )∶ ∣x − y ∣ ≤ 2−m(n) Ô⇒ ∣f (x) − f (y)∣ ≤ 2−n

2 f has a recursive approximation function ψ∶D ×N→ D:

∀d ∈ D ∶ ∀n ∈ N∶ ∣ψ(d ,n) − f (d)∣ ≤ 2−n
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Modulus of Continuity

Given the the distance between x and its approximation d ∈ D,
the modulus is used to estimate how good is the approximating
value f (d) to the desired value f (x)

d ≈ x

ψ(d ,n) ≈ f (d)

f (d) ≈ f (x)

∴ ψ(d ,n) ≈ f (x)
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Proof of the Theorem

Given x ∈ dom(f ), ϕ ∈ CFx , and n ∈ N:

1 M
ϕ

computes m(n + 1) and writes it on the oracle tape

2 The oracle responds with d = ϕ(m(n + 1))

3 M
ϕ

computes and outputs e = ψ(d ,n + 1)

∣e−f (x)∣ ≤ ∣e−f (d)∣+∣f (d)−f (x)∣ ≤

by definition ofψ
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
2−(n+1) +

by modulus m
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
2−(n+1) = 2−n
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Computability Implies Continuity

Theorem

Let f be a real function. If f is computable, then it is continuous.

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



Polytime Complexity of Computable Real Functions

Assume compact domains

Complexity as a function of n rather than ∣n∣2 = O(log n)

Theorem

f ∶D → R is PTime-computable iff
1 The modulus of f over D is a polynomial function
2 The approximation function is polynomial time computable

in n

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



II. Function Algebras

Machine independent resource-free algebraic
characterization of computational and complexity classes

Descriptive complexity is a model-theoretic resource-free
characterization of complexity classes

Problem with descriptive complexity: characterization of
relations rather than functions
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Function Algebras Cont’d

F = [B;O]

B is a set of basic functions

O is a set of operations

F consists of B and its closure under O
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Algebraic Char. of Discrete Computability

The class of elementary functions:

E = [0,s,u,⊖;Comp,BSum,BProd] = E2

⊖ is the cutoff subtraction: x ⊖ y =max{0,x − y}

Bounded Sum: f = BSum(g), (x̄ ,y)
f
z→∑z<y g(x̄ ,z)

Bounded Product: f = BProd(g), (x̄ ,y)
f
z→∏z<y g(x̄ ,z).

E2: second level of Grzegorczyk hierarchy

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



Algebraic Char. of Discrete Computability Cont’d

The class of primitive recursive functions:

PR = [0,s,u;Comp,Rec]

Primitive recursive: h = Rec(g, f ),

h(0, ȳ) = g(ȳ)

h(x + 1, ȳ) = f (x , ȳ ,h(x , ȳ))

PR gives all total recursive functions

PR is the union of the Grzegorczyk hierarchy

PR is closed under space and time complexity
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Algebraic Char. of Discrete Complexity
Capturing polynomial time

Cobham’s class [1964]: no machine model, but it contains
explicit resource bounds

Bellantoni-Cook class [BC92]

B = [0,u,si ,pr ,cond ;SComp,SRN]

Successor over notation: si(;x) = x ○ i = 2x + i

Predecessor: pr(;xi) = x

Conditional:

cond(;x ,y ,z) =
⎧⎪⎪
⎨
⎪⎪⎩

y x ≡2 0

z ow
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Capturing Polynomial Time Cont’d

Safe composition: from h, ḡ1, ḡ2 ∈ B

f (x̄ ; ȳ) = h(ḡ1(x̄ ; ); ḡ2(x̄ ; ȳ))

- Safe arguments can’t be placed in normal positions, but the
opposite can occur

- Asymmetry in the definition, hence adding a function
operating on safe arguments is generally more powerful
than adding the same function on normal arguments
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Capturing Polynomial Time Cont’d

Safe Predicative recursion: from g,h0,h1 ∈ B

f (0, ȳ ; z̄) = g(ȳ ; z̄)

f (si(;x), ȳ ; z̄) = hi(x , ȳ ; z̄, f (x , ȳ ; z̄))

- The recurrence variable must be in normal position on the
LHS

- The recurred value must be in safe position on the RHS,
this what actually controls the growth rate of the function by
preventing nested recursions

- Operations of safe inputs do not increase the input length
by more than an additive constant
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Examples

add(0;y) = y

add(x + 1;y) = s(;add(x ;y))

mul(0;y) = 0

mul(x + 1;y) = add(;mul(x ,y)) can′t be done

mul(0,y ; ) = 0

mul(x + 1,y ; ) = add(y ;mul(x ,y))

no safe argument in mul , hence exponentiation can not be
defined
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Algebraic Char. of Real Computability

The class of functions built in analogy with E [C01]:

L = [0,1,−1, π,u, θ3;Comp,LI]

θ3 is a C2 function gives a physically realistic way to sense
inequalities without introducing discontinuities:

θ3(x) =
⎧⎪⎪
⎨
⎪⎪⎩

x3 x ≥ 0

0 ow

Linear integration: f = LI(g,h1,h2) is the maximal solution
of

f (0, ȳ) = g(ȳ)

δx f (x , ȳ) = h1(x , ȳ)f (x , ȳ) + h2(x , ȳ)

Walid Gomaa Algebraic Char. of Comp. and Complexity-Theoretic Analysis



Examples

All of the following functions are in L:
1 f (x) = exp(x), solution of

f (0) = 1

f ′ = f

2 f (x) = exp[m](x), by composition

3 f (x) = sin(x), first component of the solution of

h1(0) = 0, h2(0) = 1

h′1 = h2

h′2 = −h1
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Relationship with Disc. Classes & Rec. Analysis(1)

- E = [0,s,u,⊖;Comp,BSum,BProd] = E2
(elementary functions over N)

- L = [0,1,−1, π,u, θ3;Comp,LI] (built in analogy with E)

- E(R): Elementary functions over R (the corresponding functional is elementary)

Theorem
1 DP(L) = E
2 L ⊊ E(R)

3 L + Lim = E(R) (over compact domains)
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Extending with Unique Minimalization

1 Let D × I be a compact set where D ⊆ Rk and I ⊆ R

f ∶D × I → R

2 ∀x̄ ∈ D, f (x̄ ,y) is monotonically increasing on I

3 ∀x̄ ∈ D, f (x̄ ,y) has a unique root y0 in the interior of I

4 δy f (x̄ ,y) ∣y0
> 0

Unique Min:

!µ(f )∶D → R

x̄ ↦ y0
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Relationship with Disc. Recursive Classes (2)

- L+!µ = [0,1,−1, π,u, θ3;Comp,LI, !µ]

- Rec: recursive functions over N

Theorem (BH06)

Rec = DP(L+!µ)
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The Limit Schema: Lim

- f ∶D × I Ð→ R

- for all x̄ ∈ D, ∥δt f (x̄ , t)∥ ↝ 0 as t ↝∞

Limit:

Lim(f )∶D → R

x̄ z→ lim
t→∞

f (x̄ , t)
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Relationship with Recursive Analysis

- L∗
!µ
= [0,1,u, θ3;Comp,LI, !µ,Lim]

- Rec(R): Recursive functions over R (the corresponding functional is recursive)

Theorem (BH06)

L∗
!µ =Rec(R)
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Algebraic Char. of Real Complexity

Undergoing project with M. Bournez and M. Hainry

Focus on PTime

General plan:

1 Definition of polynomial time computation over open
bounded domains

2 Definition of polynomial computation over open unbounded
domains

3 PTime basic functions

4 Operations that sustain feasibility and strong enough to
capture to the whole PTime
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