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Quantum Computing Basics

State space
in a classical world of computation: countable A.
in a quantum world: Hilbert space CA

ket map
|l):A—CA
s.t. {|z),x € A} is an orthonormal basis of C*

Arbitrary states

‘I>:Za$|x)

st Y ealoaa?=1



Quantum Computing Basics

bra map
(] : A — L(CA0C)
s.t. Va,y € A,
1 ifze=y . .,
(yl|zy = ; Kronecker
0 otherwise

Vo,t € A,J0)(t] : €4 — CA:
(o)t J) = o) ({¢]J2)) = {

|v) ift=ux
0  otherwise

o)t~ v
Evolution of isolated systems: Linear map U € L(C#,C#4)

U= ) tayly)al

z,y€A

which is an isometry (UTU = I).



Observation

Let ® = Zaﬂm)

T€A

(Full) measurement in standard basis:
The probability to observe a € A is |a,|?.

If a € A is observed, the state becomes &, = |a).
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T€A

(Full) measurement in standard basis:
The probability to observe a € A is |a,|?.

If a € A is observed, the state becomes &, = |a).

Partial measurement in standard basis: Let K = {K\,A\ € A} be a
partition of A.

The probability to observe A € A is px = >, |oal®

If A € A is observed, the state becomes

where Py ="



Deterministic Turing Machine (DTM)

Classical Turing machine (Q, %, ):

§:QxX—QxXx{-1,0,1}

=D
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(¢, T,x) € Q x X* x Z is a classical configuration.
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Quantum Turing Machine (QTM)

Quantum Turing machine M = (Q, %, 9):

0:QxE¥xQxEx{-1,0,1} - C

[ofofo]ofofajo]ofofafo]o]a]0]

A quantum configuration is a superposition of classical configurations

XX X7
E : Qq, T, |Q? T, JJ> € (CQ
q€Q,TEX* z€L



Evolution operator

UM: Z 5(p7TI7q7Uad) an;7x+d> <p,T,Z‘|
P,qEQ,0€X,de{—1,0,1}, TEX* ,x€Z

A QTM (Q, %, 9) has to satisfy some well-formedness conditions...



Well-formedness conditions

Definition: A QTM M is well-formed iff Uy, is an isometry, i.e. UITVIUM =1

e The evolution of the machine does not violate the postulates of
quantum mechanics.

e During the computation, the machine is isolated from the rest of
the universe.
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Definition: A QTM M is well-formed iff Uy is an isometry, i.e. UITVIUM =1
e The evolution of the machine does not violate the postulates of
quantum mechanics.

e During the computation, the machine is isolated from the rest of
the universe.

Environment
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Halting of QTM
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At the end of the computation, the QTM is ‘observed’.
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Halting of QTM

@ I

[of1]1]of1]ofo]1]

Environment

If the halting state is not reached, the computation is useless.



Environment

Halting of QTM
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Halting qubit (Ad hoc)
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Halting qubit (Ad hoc)



Environment

) el

ToTo] 1 o] 1]1]0]0]

Halting qubit (Ad hoc)



‘Un-isolated’ QTM

Isolation assumption is probably too strong
o technical issues like the halting of QTM,

e models of QC (one-way model, measurement-only model) based on
measurements.

e PTM and DTM are not well-formed QTM (reversible DTM does)

e quest of a universal QTM: a classical control is required.
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Modelling Environment: Observed QTM

Environment is modelled as a partial measurement of the configuration,
characterised by a partition K = {K)}aep of Q@ X X* X Z.

Definition: For a given QTM M = (Q, 3, 0) and a given partition
K ={Kx}xen of Q x X* X Z, [M|f is an Observed Quantum Turing
Machine (OQTM).



Evolution of OQTM

One transition of [M]f is composed of:
1. partial measurement K of the quantum configuration;
2. transition of M;
3. partial measurement K of the quantum configuration.

Definition: An OQTM [M]k is well-observed iff

> PULUMPy =1
AEA

where PA = E(p,T,w)EKA |p7 T; Z‘> <pa T7 x|



a weaker condition

Lemma: If a QTM M is well-formed then [M]k is a well-observed
OQTM for any K.



a weaker condition

Lemma: If a QTM M is well-formed then [M]k is a well-observed
OQTM for any K.

Proof:

EAGAPAUJTWUMPA = EAGAPAP/\
= Yaeabx
= ZAGA Zp,T,rGKk |p7 T7 x> <p7 Ta :E|
= ZP,T,ZEEQXE*XZ |p7 Ta x> <p,T,x|
I



Example: halting of QTM

For a given QTM M = (Q, X, 0) s.t. gn € Q is the unique halting state.

Ky,
Ky,

{qh}XE*XZ
K\ Kp,

[M]{k, ;1 evolves as follows:
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Example: halting of QTM

For a given QTM M = (Q, X, 0) s.t. gn € Q is the unique halting state.

Ky,
Ky,

{qh}XE*XZ
K\ K,
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OQTM more expressive than QTM

Lemma: For any DTM M = (@, %,6), [M]{{c},ceqxs+xz} is a
well-observed OQTM.



OQTM, a too powerful model ?!7?

Theorem: There is a well-observed OQTM [M},] g, for deciding (with
high probability), for any DTM M and any input u, whether M halts on
input u.



(Proof) Hadamard QTM

Let My = ({90, q1, 42, 90, G5, }, 2, 0n) be a well-formed QTM, s.t. g5, and
g5, are the halting states and for 0 €

5h((]0,0 q1,0, 0) = 1/\/5
0n(qo, 0, q2,0,0) = 1/v/2
on(qr,o,qn,0,0) = 1/V2
5h((I1,U 45, 0, 0) = 1/\/5
on(ge,0,qn,0,0) = 1/v/2
5h((]2,0 45, 0, 0) = _]‘/\/5
Yw € ¥*,
Uiy, lqo, w) = UMh(\/—(|Q17 w) + |g2, w)))

s(an, w) + lgp, w) + |qn, w) — |gz, w))
= g, w)



For any DTM M and any input u, let wys,., € ¥* be an ‘encoding’ of M and w.

Ko = {(q1,wmu)s.t. M(u) does not halt} U {(g5,w)}
K {(q;w) st. (q,w) & K1}

What is the evolution of [Mp](x, .y if the initial configuration is (qo,was,u)?
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For any DTM M and any input u, let war,, € ¥* be an ‘encoding’ of M and u.

Ko = {(q1,wmu)s.t. M(u) does not halt} U {(g5,w)}
K {(q;w) st. (q,w) & K1}

What is the evolution of [Mp](x, .y if the initial configuration is (qo,was,u)?

Evolution of Mp: |qo, waru) — J5(la1, waru) + a2, warw)) = lan, waru)

o If M(u) halts, then (g1, waru), (¢2, war,u) € K1, thus the evolution
of [Mh]{KmKl} is

lg0, War,u) =" |qn, Waru)

e If M(u) does not halt, then (g1, war) € Ko, and (g2, warw) € K1
moreover (g7, warw) € Ko and (g, wary) € K1, thus:

| )t |gn, war,u)  with probability 1/2
s WM u) — . .
do- 1, |gn, war,w) Wwith probability 1/2
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Towards a new definition of OQTM

e |[nitial proposition: K is a partition of @ x ¥* x Z.

e Focus on the (classical) control: K is a partition of Q x Z.
Theorem: There is a QTM M], and a partition K of Q X Z, s.t.
[M}]x is well observed and decides (with high probability), for any
DTM M and any input u, whether M halts on input u.

e Finite partition: K is a partition of @ x X. (Q: internal states; X:
symbol pointed out by the head.)



Simulation

Theorem: For any well-observed OQTM [M]k there exists a well-formed
QTM M’ which simulates [M]x within a quadratic slowdown.



Step one

If M = (Q,%,6) and K = {Kx}xca, let M = (Q,%, A, d) be a 2-tape
QTM s.t.

~ 5p77-aQ7U7d if b, T EK}‘
5(p7 T, '—‘aQ7U7)\’d’+1) = { ( ) ot}(1erw)ise

[ofofofofo]ofo]0]

Lemma: M is well formed.



Step two

Lemma: [M]; simulates [M]f, where K = {Q x ¥ x {\}}aea

[n A ] -] -] ]-]

[ofofofofo]ofo]o] [ofo]ofofo]ofo]o]




Step three

Since they act on distinct systems (the second head always moves to the
right), the measurements can be postponed to the end of the
computation:

Lemma: M simulates [M] .

Lemma: There exists a well-formed 1-tape QTM M’ which simulates M
within a quadratic slowdown.



Conclusion

e OQTM: extension of QTM with measurements;

e a more expressive (but not overpowerfull) machine: QTM, DTM,
halting QTM.

Perspectives:
e Universal quantum Turing machine;

e what is the minimal & for which any OQTM [M]k can be efficiently
simulated by an OQTM [M'] ks where all regions of K’ have a size
less than k ?



