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Introduction

Spatial Computing and Cellular Automata

Spatial Computing: focus on space

Cellular Automata: simple framework, precise results
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Global Statement

In the same manner that geometry is deeply based on distances,
basing spatial algorithmics on the intrinsic metric of the spatial

computers leads to more precise and generic formulation.
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Space, Time, and Cellular Automata

Classical Considerations

Cellular Automata and Distances

Directions and Distances

Traditionnaly, neighbors are named North, South, East, West

In this work, no direction, only the graph and its metric

Distances only ⇔ Rotational invariance

4-Square 8-Square Hexagonal
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Distance Fields and Gradients

Classical Definition and Computation

Classical Definition and Computation

Definition (Distance Map)

The distance map DP of a given set of particles P associates to
each point x its distance d(x , y) to the closest particle y ∈ P .

DP(x) = d(P , x) = min{ d(x , y) | y ∈ P }.

Classical Distance Field

D[P]t+1(x) =

{

0 if x ∈ Pt else:

min{ 1 + D[P]t(y) | y ∈ N(x) }.
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We have: distances locally, globally, and dynamically
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Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field

Checkpoint

We have: distances locally, globally, and dynamically

We don’t have: finite number of states

Bounded information

No bound on distances

Bounded gradient (differences between neighboring sites)

What about modulo ?
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Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

Particles maximal speed determines maximal gradient
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Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

Particles maximal speed determines maximal gradient

In this case: 2 consecutive moves ⇒ gradient bound of 3
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Distance Fields and Gradients

From Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

Particles maximal speed determines maximal gradient

In this case: gradient bound of 3 ⇒ modulo 7
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Distance Fields and Gradients

From Infinite To Finite Field

Building on top of distances

Distance fields as building blocks

Moving according to the distance field

Detecting patterns of distances and particles

Case Study

Density Uniformisation (unidimensional)

Convex Hull (multidimensional)

Gabriel Graph (multidimensional)
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16 / 45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

Density Uniformisation

Problem Statement

Problem Statement

Problem Definition

Move the particles to a uniform distribution

Input:

Output:
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Density Uniformisation

Problem Analysis

Problem Analysis

Intuition

Each particle needs to occupy its space

Boundary between individual spaces ⇔ middles

Occupy its space ⇔ be at the middles
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Density Uniformisation

Problem Analysis

Application: 1D Uniformisation

Solution
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Density Uniformisation

Solution Description

The resulting system

Initial system state

{

p0(x) = x ∈ P

w0(x) = x 6∈ P

System fields composition















dp = D[p]
dw = D[w]
p = M[p0,B[dp] ∧ Dir[dw,≤]]
w = M[w0,B[dw] ∧ Dir[dp,≤]]
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Density Uniformisation

Solution Description

Space-time diagram of the uniformisation
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Convex Hulls
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Convex Hulls

Definition and Problem Statement

Convexity in Euclidean Space

Definition (Euclidean convex region)

A convex region contains all segments joining two of its points

Convex Polygon Concave Polygon
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Convex Hulls

Definition and Problem Statement

Convexity in Cellular Space

Definition (Metric convex region)

A convex region contain all shortest paths joining two of its points

Convexity for Metric Cellular Space
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Convex Hulls

Definition and Problem Statement

Convexity in Cellular Space (Cont.)

Shortest paths between two points

Many shortest path between two points: Interval

[x , y ] = { z ∈ S | d(x , z) + d(z , y) = d(x , y) }
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Convex Hulls

Last Step: Global Convexity for Many Particles

Last Step: Global Convexity for Many Particles

Convex Hull of Two Points

Grow a distance field modulo 3

Detect the middles of the shortest paths

Go back from the middles to the points
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Convex Hulls

Last Step: Global Convexity for Many Particles

Last Step: Global Convexity for Many Particles

Convex Hull of Many Points

Grow a distance field modulo 3

Detect the middles of the shortest paths

Go back from the middles to the points
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Convex Hulls

Solution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Distance Field and Voronoi Diagram
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Proximity Graph Characterisation

Gabriel Graph !
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Gabriel graphs

Original Gabriel graphs

Original Gabriel graphs

Definition (Gabriel Graph)

Euclidean spaces

Connects two particles x and y if and only if the ball using the
segment [xy ] as diameter does not contain any other particle.

Gabriel graphs on Cellular Spaces

Connected for Euclidean... and for cellular spaces ?
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Gabriel graphs

Original Gabriel graphs

Gabriel graphs on Cellular Spaces

(a) Each point (b) Each line (c) Each
diagonal

(d) Subcase of
(c)

Generalisation

Connectedness is not ensured in general

The cause is the non-uniqness of diameters and minimal balls

We need to generalize the definition
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Gabriel graphs

Metric Gabriel Graphs

Principles of Gabriel Graphs

Connectedness, Minimality, and Locality

Minimality and connectedness:

minimum spanning trees

Locality and connectedness :

arbitrarily choice implies global coherence
union of all minimum spanning trees

Locality and minimality :

Edge decision should be local
union of all local minimum spanning trees
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Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition

Definition (Metric Gabriel Graph)

Any metric space

Connects two particles x and y if and only if there is a ball
B(c , r) such that d(x , y) = 2r and {x , y} is an edge of a
minimum spanning tree of P ∩ B(c , r).
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Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

Any metric space

Connects two particles x and y of P if and only if there is a
ball B(c , r) such that there is a cut {P0,P1} of P ∩ B(c , r)
with (x , y) ∈ P0 × P1 and d(P0,P1) = 2r .
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Gabriel graphs

Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

Any metric space

Connects two particles x and y of P if and only if there is a
ball B(c , r) such that there is a cut {P0,P1} of P ∩ B(c , r)
with (x , y) ∈ P0 × P1 and d(P0,P1) = 2r .

Preservation of the Properties

Metric Gabriel graphs are always connected

On Euclidean spaces, they are Gabriel graphs
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Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations

Example of a metric Gabriel ball center
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Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations (Cont.)

Example of a non-metric Gabriel ball center
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Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

Dilations and interval slices

One particle Two particles r = 4 r = 3
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Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

The metric Gabriel ball centers field

centt(x) =























⊥ if t = 0

⊤ if centt(x , x)

⊤ if ∃y ∈ N(x), centt(x , y)

⊥ otherwise;

centt(x , y) = |Qt(x , y)/C
+
2rxy

| ≥ 2

Qt(x , y) = { z ∈ B(xy , rxy ) | D[P]t−1(z) + rxy = D[P]t−1(x , y) }

42 / 45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

Gabriel graphs

Metric Gabriel Graphs on Cellular Automata

The resulting cellular automaton
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Conclusion and Perpectives

Perspectives

In the same framework

Voronoi Diagram Field

Firing Squad Synchronisation Problem

Extending the framework

Cayley Graphs

Asynchronicity

Amorphous Computers
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