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Introduction

Spatial Computing and Cellular Automata

m Massively Distributed Systems = Spatial Features
m Why? Physics and Locality
m Exemple? Computer Architecture, Communication
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Introduction

Spatial Computing and Cellular Automata

m Spatial Computing: focus on space

m Cellular Automata: simple framework, precise results
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Global Statement

In the same manner that geometry is deeply based on distances,
basing spatial algorithmics on the intrinsic metric of the spatial
computers leads to more precise and generic formulation.
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LSpace, Time, and Cellular Automata

L Classical Considerations

Cellular Automata

Cellular Automata

m Regular lattice of cells, also called sites, (or points)

m All sites states are updated synchronously

m State updates depends only on neighborhood sites states
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LSpace, Time, and Cellular Automata

L Classical Considerations

Cellular Automata and Distances

Directions and Distances

m Traditionnaly, neighbors are named North, South, East, West

m In this work, no direction, only the graph and its metric

m Distances only < Rotational invariance
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LDistance Fields and Gradients
L Classical Definition and Computation
pi

Classical Definition and Computation

Definition (Distance Map)

The distance map Dp of a given set of particles P associates to
each point x its distance d(x, y) to the closest particle y € P.

Dp(x) = d(P,x) =min{d(x,y) |y € P}.

Classical Distance Field

0if x € P; else:
DIP]es1(x) = {min{ 1+ D[P]e(y) | y € N(x) }.
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L Classical Definition and Computation

Distance Field Evolution

Classical Distance Field

0 if x € P; else:
DIP]e41(x) = {min{ 1+ D[P]e(y) | y € N(x) }.
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L Classical Definition and Computation

Distance Field Evolution

Classical Distance Field
D[P]t41(x) = {

0 if x € Py else:
min{1+ D[P]¢(y) | ¥ € N(x) }.
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Corrected Distance Field Evolution

Corrected Distance Field

0 if x € Pryq else:
D[P]t+1(x) = { 0.5 if x € P; else:
min{1+ D[P]¢(y) | y € N(x) }.
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0 if x € P11 else:
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From Infinite To Finite Field

Checkpoint

m We have: distances locally, globally, and dynamically
m We don't have: finite number of states
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LDistance Fields and Gradients
LFrom Infinite To Finite Field

From Infinite To Finite Field

Checkpoint

m We have: distances locally, globally, and dynamically

m We don’t have: finite number of states

Bounded information

m No bound on distances
m Bounded gradient (differences between neighboring sites)
m What about modulo ?

13 /45
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From Infinite To Finite Field (Cont.)

Modulo in action

m Particles maximal speed determines maximal gradient
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From Infinite To Finite Field (Cont.)

Modulo in action

m Particles maximal speed determines maximal gradient

m In this case: 2 consecutive moves = gradient bound of 3
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LFrom Infinite To Finite Field

From Infinite To Finite Field (Cont.)

Modulo in action

m Particles maximal speed determines maximal gradient

m In this case: gradient bound of 3 = modulo 7
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LDistance Fields and Gradients
LFrom Infinite To Finite Field

Building on top of distances

Distance fields as building blocks

m Moving according to the distance field

m Detecting patterns of distances and particles

m Density Uniformisation (unidimensional)
m Convex Hull (multidimensional)

m Gabriel Graph (multidimensional)
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Density Uniformisation
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LDensity Uniformisation

L Problem Statement

Problem Statement

Problem Definition

m Move the particles to a uniform distribution

m [nput:
P1=2  P2=5 ——> p=3 <—— P3=18
(T@ @[T TTTTTTTTE@TTIIT]
n=24
m Output:
P1=n/6 P2=3n/6 P3=5n/6
(ITT@ITTTTTI@ITTITTITI@®ITT]
n/3 n/3 n/3
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Problem Analysis

m Each particle needs to occupy its space
m Boundary between individual spaces < middles

m Occupy its space < be at the middles
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LProblem Analysis

Application: 1D Uniformisation

2n 6 3n/6 4n/6 5n/6
| | . | | | | . [ [ [<D] [ ] . | |
n/3 n/3 n/3

JNEEL JENDNEEL JENDNEEL JEEDY

> <€ > <€ >
> <€ > <€ »<€

321 123321 123321 123
[ T®T] [T®7T] EL4N

012332100123321001233210
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LDensity Uniformisation
LSolution Description

The resulting system

Initial system state

{PO(X) = x€eP
wo(x) = x¢P

System fields composition

dp = DIp]
dw = Diw]
p = M]lpy, B[dp] A Dir[dw, <]]

w = Mjwg, B[dw] A Dir[dp, <]|



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

RPN I o A
BRR~ N0/ A A A

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

| I 1T LT | 21/45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

e AN A AN N - .

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals
m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals
m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals
m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation

LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

LDensity Uniformisation

LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

LDensity Uniformisation

LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space

m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
LDensity Uniformisation
LSctlutic'n Description

The resulting evolution

Signal and Dynamics

m We can see that signals travels through the space
m We can assign energy and momentum to these signals

m Defined by fields; composed for global system

21 /45



22 /45

1Isation

eSS
.uu.wﬂ\q\%\? ‘.'Q"O \‘”

«l ‘

R 3
SRR

R ;foxf‘
3RS )/.3/?'

SRS

LSolution Description

"
2
£
=
]
=
o
50
<
s
5
@
(=%
%]
g
s
v
T
5
2
£
o
3
(V]
e
8
5
£
o
k=4
<
k]
=
Kl
o
i
5
"
I
°
5
g
2
[a)
I
4
£
o
[a

Space-time diagram of the uniform

LDensity Uniformisation




Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls

Convex Hulls

23 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LDefinition and Problem Statement

Convexity in Euclidean Space

Definition (Euclidean convex region)

A convex region contains all segments joining two of its points

Convex Polygon Concave Polygon
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L Convex Hulls
LDefinition and Problem Statement

Convexity in Cellular Space

Definition (Metric convex region)

A convex region contain all shortest paths joining two of its points

Convexity for Metric Cellular Space




Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LDefinition and Problem Statement

Convexity in Cellular Space (Cont.)

Shortest paths between two points

m Many shortest path between two points: Interval
m[x,y]={ze€S|d(x,2) +d(z,y) =d(x,y) }
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First Step: Local convexity

conve(x) = Iyo, y1 € {y € N(x) | y € PtV convi_1(y)}; x € [yo, v1]
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m Grow a distance field modulo 3 (static particles)

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)




Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)
m Detect the middles of the shortest paths

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)
m Detect the middles of the shortest paths

m Go back from the middles to the particles

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)
m Detect the middles of the shortest paths

m Go back from the middles to the particles

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)
m Detect the middles of the shortest paths

m Go back from the middles to the particles

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
LSecond Step: Global Convexity for Two Particles

Second Step: Global Convexity for Two Particles

Required Fields:

m Grow a distance field modulo 3 (static particles)
m Detect the middles of the shortest paths

m Go back from the middles to the particles

29 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Convex Hulls
L Last Step: Global Convexity for Many Particles

Last Step: Global Convexity for Many Particles

Convex Hull of Two Points

m Grow a distance field modulo 3
m Detect the middles of the shortest paths
m Go back from the middles to the points
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L Convex Hulls
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Last Step: Global Convexity for Many Particles

Convex Hull of Points

m Grow a distance field modulo 3
m Detect the middles of the shortest paths
m Go back from the middles to the points
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Global Convexity for Many Particles

LSctlutic'n Description:

Real Challenge: Global Convexity
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LSctlutic'n Description:

Real Challenge: Global Convexity
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L Convex Hulls
LSolution Description: Global Convexity for Many Particles

Proximity Graph Characterisation

Gabriel Graph
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

L Gabriel graphs

LOriginal Gabriel graphs

Original Gabriel graphs

Definition (Gabriel Graph)

m Euclidean spaces

m Connects two particles x and y if and only if the ball using the
segment [xy]| as diameter does not contain any other particle.

Gabriel graphs on Cellular Spaces

m Connected for Euclidean... and for cellular spaces 7
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
LOriginal Gabriel graphs

Gabriel graphs on Cellular Spaces

(b) Each line (c) Each (d) Subcase of
diagonal (c)

Generalisation

m Connectedness is not ensured in general

(a) Each point

m The cause is the non-unigness of diameters and minimal balls

m We need to generalize the definition
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

L Gabriel graphs

L Metric Gabriel Graphs

Principles of Gabriel Graphs

Connectedness, Minimality, a ocality

m Minimality and connectedness:
= minimum spanning trees
m Locality and connectedness :

m arbitrarily choice implies global coherence
= union of all minimum spanning trees

m Locality and minimality :

m Edge decision should be local
m union of all local minimum spanning trees
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
L Metric Gabriel Graphs

From Principles to Definition

Definition (Metric Gabriel Graph)

® Any metric space

m Connects two particles x and y if and only if there is a ball
B(c, r) such that d(x,y) = 2r and {x, y} is an edge of a
minimum spanning tree of PN B(c, r).
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L Gabriel graphs
L Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

m Any metric space

m Connects two particles x and y of P if and only if there is a
ball B(c, r) such that there is a cut {Pg, P1} of PN B(c,r)
with (x,y) € Py x P; and d(Po, Pl) = 2r.
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L Gabriel graphs
L Metric Gabriel Graphs

From Principles to Definition (Cont.)

Definition (Metric Gabriel Graph)

® Any metric space

m Connects two particles x and y of P if and only if there is a
ball B(c, r) such that there is a cut {Pg, P1} of PN B(c,r)
with (x,y) € Py x P; and d(Po, Pl) = 2r.

Preservation of the Properties

m Metric Gabriel graphs are always connected

m On Euclidean spaces, they are Gabriel graphs
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L Gabriel graphs

L Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations

Example of a ball center
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L Gabriel graphs

L Metric Gabriel Graphs on Cellular Automata

Distance fields and dilations (Cont.)

Example of a ball center
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
LMetric Gabriel Graphs on Cellular Automata

Dilations and interval slices

One particle Two particles
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Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics
L Gabriel graphs
L Metric Gabriel Graphs on Cellular Automata

The metric Gabriel ball centers field

Lift=0
T if cent
cente(x) = | centy(x, x) -
T if 3y € N(x), cent(x, y)
L otherwise;
cente(x,y) = [Q:(x,¥)/Cop | >2
Qulx,y) = {z€ B0, ny) | DIPle-1(2) + ny = D[Ple-a(x.) }
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L Gabriel graphs

L Metric Gabriel Graphs on Cellular Automata

The resulting cellular automaton

O Y v -y g ly yCy e Oy S SO0
) | p u p cocuousCco p p =
“";COLC OO

m

VAVAYAYAVAVAVAVAYAYAYAVAVAVA
AVAVAVAVAVAVAVAVAVAVAYAVAYAY
VAVAVAVAVAVAVAVAVAYAYAYAVAYA
AVAVAVAVAVAVAVAVAVAYAYAVAVAY
VAVAYAVAVAVAVAYAYAYAYAVAVAYA
AVAVAYAVAVAVAVAYAYAYAYAYAVAY
VAVAVAVAVAVAVAVAVAVAYAYAYAYA

AVAVAVAVAVAVAVAVAVAYAYAVAVAY
VAVAYAVAVAVAVAVAYAYAYAVAVAYA
AVAYAYAVAVAVAYAYAYAYAYAYAVAY
VAVAYAVAVAVAVAYAYAYAYAYAVAVA
AVAVAVAVAVAVAVAVAVAYAYAVAVAY
VAVAVAVAVAVAVAVAYAYAYAVAVAYA
AVAVAYAVAVAVAVAVAVAYAYAYAVAY

/ﬁf C
oc C TAE O TAZATATATATAZ O o

43 /45



Points, Distances, and Cellular Automata: Geometric and Spatial Algorithmics

L Gabriel graphs

L Metric Gabriel Graphs on Cellular Automata

The resulting cellular automaton
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Perspectives

In the same framework

m Voronoi Diagram Field

m Firing Squad Synchronisation Problem

Extending the framework

m Cayley Graphs
m Asynchronicity

m Amorphous Computers
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