

Vaguenes

Many-valued Logics
Supervaluationism

Fuzzy (Sub)se

Fuzzy Turin Machines

uzzy P Syster

Fuzzy Chemical Abstract Machin

Computing under Vagueness

Apostolos Syropoulos

Xanthi, Greece
asyropoulos@yahoo.com

Second international workshop
New Worlds of Computation 2011
LIFO, University of Orléans (France)
Monday, May 23, 2011

Outline

Computing under Vagueness

Vagueness

Many-valued Log

Supervaluationism

Fuzzy (Sub)set

Machines

Fuzzy P System

- 1 Vaqueness
 - General Ideas
 - Many-valued Logics
 - Supervaluationism
 - Contextualism
 - Fuzzy (Sub)sets
- 2 Fuzzy Turing Machines
- 3 Fuzzy P Systems
- 4 Fuzzy Chemical Abstract Machine

Computing under Vagueness

Vaguene

General Ide

Many-valued Logics

Contextualism

Fuzzy (Sub)se

Fuzzy Turin

Errani D Cristan

Ap. Syropoulos

...

General Ide

Many-valued Log

COMERCIA

Fuzzy (Sub)

Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin It is widely accepted that a term is vague to the extent that it has borderline cases.

vaguenes

General Ideas

Many-valued Log

a . . .

Fuzzy (Sub)s

Fuzzy Turir

Fuzzy P System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

F D.C.

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turii

Fuzzv P Svster

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.

Vaguenes:

General Ideas

Many-valued Logic

Supervaluationism

Fuzzy (Sub)sel

Machines

Fuzzy P System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzv P Svste

1 uzzy 1 System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzv P Svste

1 uzzy 1 System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzy P System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?
 - Is Betelgeuse a huge star?

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi Machines

Fuzzy P System

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?
 - Is Betelgeuse a huge star?
 - If you cut one head off of a two headed man, have you decapitated him?

Ap. Syropoulos

Vaquenes

General Ideas

Many-valued Logid

Supervaluationism

Contextualism

Fuzzy Turi Machines

Fuzzy P Syster

_ _ _ _

- It is widely accepted that a term is vague to the extent that it has borderline cases.
- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?
 - Is Betelgeuse a huge star?
 - If you cut one head off of a two headed man, have you decapitated him?
 - Eubulides of Miletus: The Sorites Paradox.

Ap. Syropoulos

Vaquenes

General Ideas

Many-valued Logi
Supervaluationism
Contextualism

Fuzzy Turii

Fuzzy P Syster

Fuzzy Chemical

 It is widely accepted that a term is vague to the extent that it has borderline cases.

- What is a borderline case?.
- A case in which it seems impossible either to apply or not to apply a vague term.
- The adjective "tall" is a typical example of a vague term.
- Examples
 - Serena is 1,75 m tall, is she tall?
 - Is Betelgeuse a huge star?
 - If you cut one head off of a two headed man, have you decapitated him?
 - Eubulides of Miletus: The Sorites Paradox.
 - The old puzzle about bald people.

Computing under Vagueness

Vaguenes

General Ide

Many-valued Logic

Contentralism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzy P System

Fuzzy Chemical

Vaguenes

Many-valued Log

Contextualish

Fuzzy (Sub)se

Fuzzy Turin Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin Bertrand Russell: Per contra, a representation is vague when the relation of the representing system to the represented system is not one-one, but one-many.

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)se

Fuzzy Turing Machines

Fuzzy P Syster

- Bertrand Russell: Per contra, a representation is vague when the relation of the representing system to the represented system is not one-one, but one-many.
- Example: A small-scale map is usually vaguer than a large-scale map.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi
Supervaluationism
Contextualism

Fuzzy Turi

F D.C

Tuzzy i Systi

- Bertrand Russell: Per contra, a representation is vague when the relation of the representing system to the represented system is not one-one, but one-many.
- Example: A small-scale map is usually vaguer than a large-scale map.
- Charles Sanders Peirce: A proposition is vague when there are possible states of things concerning which it is intrinsically uncertain whether, had they been contemplated by the speaker, he would have regarded them as excluded or allowed by the proposition. By intrinsically uncertain we mean not uncertain in consequence of any ignorance of the interpreter, but because the speaker's habits of language were indeterminate.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi
Supervaluationism
Contextualism

Fuzzy Turi

Fuzzy P Syst

- Bertrand Russell: Per contra, a representation is vague when the relation of the representing system to the represented system is not one-one, but one-many.
- Example: A small-scale map is usually vaguer than a large-scale map.
- Charles Sanders Peirce: A proposition is vague when there are possible states of things concerning which it is intrinsically uncertain whether, had they been contemplated by the speaker, he would have regarded them as excluded or allowed by the proposition. By intrinsically uncertain we mean not uncertain in consequence of any ignorance of the interpreter, but because the speaker's habits of language were indeterminate.
- Max Black demonstrated this definition using the word chair.

Computing under Vaguenes

Vaguene

General Ideas

Many-valued Logic

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Machines

ruzzy r System

Abstract Machine

Ap. Syropoulos

vagaene

General Idea

Many-valued Logic

Contextualism

Fuzzy (Sub)s

Fuzzy Turin

Fuzzy P Syster

Fuzzy Chemical Abstract Machin Vagueness, ambibuity, and generality are entirely different notions.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Machines

Fuzzy P System

- Vagueness, ambibuity, and generality are entirely different notions.
- A term of phrase is ambiguous if it has at least two specific meanings that make sense in context.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logice
Supervaluationism
Contextualism

Fuzzy (Sub)se

Machines

- Vagueness, ambibuity, and generality are entirely different notions.
- A term of phrase is ambiguous if it has at least two specific meanings that make sense in context.
- Example: He ate the cookies on the couch.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turino Machines

uzzy P Syste

- Vagueness, ambibuity, and generality are entirely different notions.
- A term of phrase is ambiguous if it has at least two specific meanings that make sense in context.
- Example: He ate the cookies on the couch.
- Bertrand Russell: "A proposition involving a general concept—e.g., 'This is a man'—will be verified by a number of facts, such as 'This' being Brown or Jones or Robinson."

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Machines

uzzy P Syste

- Vagueness, ambibuity, and generality are entirely different notions.
- A term of phrase is ambiguous if it has at least two specific meanings that make sense in context.
- Example: He ate the cookies on the couch.
- Bertrand Russell: "A proposition involving a general concept—e.g., 'This is a man'—will be verified by a number of facts, such as 'This' being Brown or Jones or Robinson."
- Example: Again consider the word chair.

Computing under Vaguenes

Vaguene

General Ide

Many-valued Logic

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzy P System

vagueness

General Idea

Many-valued Logi

Supervaluationism Contextualism

Fuzzy (Sub)s

Fuzzy Turir

Fuzzv P System

Fuzzy Chemical Abstract Machin Many-valued Logics and Fuzzy Set Theory

Computing under Vaguene

Ap. Syropoulos

*ugue...

General Ide

Many-valued Log

Contextualism

Fuzzy (Sub)s

Fuzzy Turi

Fuzzy P Syster

- Many-valued Logics and Fuzzy Set Theory
- Supervaluationism

Computing under Vaguene

Ap. Syropoulos

Vaguen

General Ide

Many-valued Logic Supervaluationism

-

ruzzy (Subjec

- Many-valued Logics and Fuzzy Set Theory
- Supervaluationism
- Contextualism

Computing nder Vaguenes

Ap. Syropoulos

vaguenes

General Idea

Many-valued Logi

Supervaluationis

Contextualism

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P System

Ap. Syropoulos

Vagueness

General Ideas

Many-valued Logic

Contextualism

Fuzzy (Sub)s

Fuzzy Turir Machines

Fuzzy P System

Fuzzy Chemical Abstract Machin Aristotle in Περὶ ἐρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).

Computing under Vagueness

Ap. Syropoulos

Vaquenes:

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy Turing

Fuzzy P System

- Aristotle in Περὶ ἐρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).
- Can someone tell us what is the truth value of the proposition "The Higgs boson exists?"

Ap. Syropoulos

Vaquenes

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy Turi Machines

Fuzzy P Syster

- Aristotle in Περὶ έρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).
- Can someone tell us what is the truth value of the proposition "The Higgs boson exists?"
- Jan Łukasiewicz defined a three-valued logic to deal with future contingencies.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzy P Systen

- Aristotle in Περὶ έρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).
- Can someone tell us what is the truth value of the proposition "The Higgs boson exists?"
- Jan Łukasiewicz defined a three-valued logic to deal with future contingencies.
- Emil Leon Post introduced the formulation of n truth values, where $n \ge 2$.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy Turir Machines

Fuzzy P System

- Aristotle in Περὶ ἐρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).
- Can someone tell us what is the truth value of the proposition "The Higgs boson exists?"
- Jan Łukasiewicz defined a three-valued logic to deal with future contingencies.
- Emil Leon Post introduced the formulation of n truth values, where $n \ge 2$.
- C.C. Chang proposed MV-algebras, that is, an algebraic model of many-valued logics.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy Turii

Fuzzy P Syste

- Aristotle in Περὶ ἐρμηνεῖας (De Interpretatione) discussed the problem of future contingencies (i.e., what is the truth value of a proposition about a future event?).
- Can someone tell us what is the truth value of the proposition "The Higgs boson exists?"
- Jan Łukasiewicz defined a three-valued logic to deal with future contingencies.
- Emil Leon Post introduced the formulation of n truth values, where $n \ge 2$.
- C.C. Chang proposed MV-algebras, that is, an algebraic model of many-valued logics.
- In 1965, Lotfi A. Zadeh introduced his fuzzy set theory and its accompanying fuzzy logic.

Computing under Vagueness

vaguenes

Many-valued Log

Supervaluationism

Contextualism

Fuzzy (Sub)s

Fuzzy Luri Machines

Fuzzy P System

Fuzzy Chemical

Ap. Syropoulos

Vagueness

Many-valued Lo

Supervaluationism

Contextualism

Fuzzy (Sub):

Fuzzy Turir Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin Supervaluationism is a special kind of classical indeterminacy theory.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

Many-valued Log

Contextualism

F ...

Machines

Fuzzy P Syste

- Supervaluationism is a special kind of classical indeterminacy theory.
- Each predicate P is associated with two non-overlapping sets $E^+(P)$, the **determinate extension**, and $E^-(P)$, the **determinate anti-extension**.

Ap. Syropoulos

Vaguene:

General Ideas
Many-valued Logi
Supervaluationism

Fuzzy (Sub)se

Fuzzy Tur

Fuzzy P Syste

- Supervaluationism is a special kind of classical indeterminacy theory.
- Each predicate P is associated with two non-overlapping sets $E^+(P)$, the **determinate extension**, and $E^-(P)$, the **determinate anti-extension**.
- The candidate extension of P are sets X that extend $E^+(P)$ and are disjoint from $E^-(P)$.

Ap. Syropoulos

Vaguenes

Many-valued Logi Supervaluationism

Fuzzy (Sub)se

Machines

1 uzzy i Systei

- Supervaluationism is a special kind of classical indeterminacy theory.
- Each predicate P is associated with two non-overlapping sets $E^+(P)$, the **determinate extension**, and $E^-(P)$, the **determinate anti-extension**.
- The candidate extension of P are sets X that extend $E^+(P)$ and are disjoint from $E^-(P)$.
- Truth is defined relative to each choice of candidate extensions.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Contextualism

Fuzzy Tur

Fuzzy P Syste

- Supervaluationism is a special kind of classical indeterminacy theory.
- Each predicate P is associated with two non-overlapping sets $E^+(P)$, the **determinate extension**, and $E^-(P)$, the **determinate anti-extension**.
- The candidate extension of P are sets X that extend $E^+(P)$ and are disjoint from $E^-(P)$.
- Truth is defined relative to each choice of candidate extensions.
- A sentense is "super-true" if it comes out true realtive to each choice of candidate extensions for its predicates.

Computing under Vagueness

Vaguenes

General Ideas

Many-valued Log

Supervaluationism

Furni (Sub)ea

Fuzzy Turi

Machines

Fuzzy P System

Ap. Syropoulos

Vagueness

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Furry P System

Fuzzy Chemical Abstract Machin • The correct application of a vague predicate varies with context.

Vaqueness

General Ideas

Many-valued Logic
Supervaluationism

Furry (Sub)ra

Fuzzy Turin

Fuzzy P System

- The correct application of a vague predicate varies with context.
- Example: A person may be tall relative to American men but short relative to NBA players.

Computing inder Vagueness

Ap. Syropoulos

Vagueness

General Ideas

Many-valued Logics

Supervaluationism

Fuzzy (Sub)set

Fuzzy Turing

FII77V P System

- The correct application of a vague predicate varies with context.
- Example: A person may be tall relative to American men but short relative to NBA players.
- Epistemological contextualism maintains the general idea that whether one knows is somehow relative to context.

Computing under Vagueness

Vaguenes:

vaguenes

General Ideas

- Intally-valued D

Supervaluationisr

F (C. 1)

Fuzzy Turii

iviacnines

r uzzy r System

Computing under Vaguenes

Ap. Syropoulos

Vagueness

General Ideas Many-valued Log

Supervaluationism
Contextualism

Fuzzy (Sub)se

Fuzzy Turir Machines

Fuzzv P Syste

Fuzzy Chemical Abstract Machin Fuzzy set theory is based on the idea that elements may belong to sets to a degree

Computing under Vagueness

Ap. Syropoulos

Vaguenes

Many-valued Logic
Supervaluationism
Contextualism

Fuzzy (Sub)set

Fuzzy Turin Machines

Fuzzv P Syste

- Fuzzy set theory is based on the idea that elements may belong to sets to a degree
- Given a universe X, a **fuzzy subset** A of X is characterized by a function $A: X \to I$, I = [0,1], where A(x) = i means that x belongs to A with degree equal to i.

Ap. Syropoulos

Vaguenes

Many-valued Logics
Supervaluationism

Fuzzy (Sub)set

1-lacililes

ruzzy r Systei

- Fuzzy set theory is based on the idea that elements may belong to sets to a degree
- Given a universe X, a **fuzzy subset** A of X is characterized by a function $A: X \to I$, I = [0,1], where A(x) = i means that x belongs to A with degree equal to i.
- Example: One can easily build a fuzzy subset of the tall students of a class.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)set

Machines

ruzzy P Syster

- Fuzzy set theory is based on the idea that elements may belong to sets to a degree
- Given a universe X, a **fuzzy subset** A of X is characterized by a function $A: X \to I$, I = [0,1], where A(x) = i means that x belongs to A with degreee equal to i.
- Example: One can easily build a fuzzy subset of the tall students of a class.
- When A(x) = 0 we say that x belongs to A with degree equal to 0 not that x does not belong to A!

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logics

Supervaluationism

Contextualism

Fuzzy (Sub)set

Machines

ruzzy P Syster

- Fuzzy set theory is based on the idea that elements may belong to sets to a degree
- Given a universe X, a **fuzzy subset** A of X is characterized by a function $A: X \to I$, I = [0,1], where A(x) = i means that x belongs to A with degree equal to i.
- Example: One can easily build a fuzzy subset of the tall students of a class.
- When A(x) = 0 we say that x belongs to A with degree equal to 0 not that x does not belong to A!
- A consequence of this is that one cannot build a topos of all fuzzy subsets.

Computing ander Vaguenes

Ap. Syropoulos

Vaguenes

~

Manuscolond I as

-

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Machines

Fuzzy P System

Ap. Syropoulos

Vaguenes

Many-valued Lo

Supervaluationism

E..... /C..L\..

Fuzzy Turir

Machines

r uzzy r System

Fuzzy Chemical Abstract Machine Assume that A and B are two fuzzy subsets of X. Then

Ap. Syropoulos

Vaguenes

Many-valued Lo

Supervaluationism

Fuzzy (Sub)set

Fuzzy Turir Machines

Fuzzy P Syste

Fuzzy Chemical Abstract Machin Assume that A and B are two fuzzy subsets of X. Then

o their union is

$$(A \cup B)(x) = \max\{A(x), B(x)\};$$

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Fuzzy Turine Machines

Fuzzy P Syste

Fuzzy Chemical Abstract Machin Assume that A and B are two fuzzy subsets of X. Then

o their union is

$$(A \cup B)(x) = \max\{A(x), B(x)\};$$

their intersection is

$$(A \cap B)(x) = \min\{A(x), B(x)\};$$

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism

Fuzzy (Sub)se

. ---, (----,--

F D.C.

Fuzzy Chemica Abstract Machi Assume that A and B are two fuzzy subsets of X. Then

o their union is

$$(A \cup B)(x) = \max\{A(x), B(x)\};$$

their intersection is

$$(A \cap B)(x) = \min\{A(x), B(x)\};$$

 \circ the **complement** of A is

$$1 - A(x)$$
 for $x \in X$;

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

- - -

ruzzy P Systei

Fuzzy Chemical Abstract Machi Assume that A and B are two fuzzy subsets of X. Then

o their union is

$$(A \cup B)(x) = \max\{A(x), B(x)\};$$

their intersection is

$$(A \cap B)(x) = \min\{A(x), B(x)\};$$

 \circ the **complement** of A is

$$1 - A(x)$$
 for $x \in X$;

 \circ A is a **subset** of B and write $A \subseteq B$ iff

$$A(x) \le B(X) \quad \forall x \in X \text{ and;}$$

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

F. D. C. ...

1 uzzy 1 Dysici

Fuzzy Chemica Abstract Machi Assume that A and B are two fuzzy subsets of X. Then

o their union is

$$(A \cup B)(x) = \max\{A(x), B(x)\};$$

o their intersection is

$$(A \cap B)(x) = \min\{A(x), B(x)\};$$

 \circ the **complement** of A is

$$1 - A(x)$$
 for $x \in X$;

• A is a **subset** of B and write $A \subseteq B$ iff $A(x) \le B(X) \quad \forall x \in X$ and:

 \circ the **scalar** cardinality of A is

$$|A| = \sum_{x \in X} A(X).$$

Computing der Vaguenes

Ap. Syropoulos

Vaguenes

...

Manuscolum I as

C

Contextualism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzy P Systen

Ap. Syropoulos

Vagueness

General Ideas

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir Machines

Fuzzy P System

Fuzzy Chemical Abstract Machin Let's **transform** the statement "Serena is tall to a degree of 0,70" into the "Serena is 70% tall!"

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P Syste

- Let's **transform** the statement "Serena is tall to a degree of 0,70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)set

Fuzzy Turin

Fuzzy P Syste

- Let's transform the statement "Serena is tall to a degree of 0,70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"
- The statement "Serena is 70% tall" can be either true or false!

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Fuzzy Turi Machines

Fuzzy P Syste

- Let's **transform** the statement "Serena is tall to a degree of 0,70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"
- The statement "Serena is 70% tall" can be either true or false!
- The statement "Serena is tall to a degree of 0,70" says that Serena is tall and the truth value of this statement is 0,70!

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism

Fuzzy (Sub)set

Fuzzy Tur Machines

Euzzy P Syste

- Let's **transform** the statement "Serena is tall to a degree of 0.70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"
- The statement "Serena is 70% tall" can be either true or false!
- The statement "Serena is tall to a degree of 0,70" says that Serena is tall and the truth value of this statement is 0,70!
- How can we express in probability theory judgments like tomorrow will be a warm day or there will be a strong earthquake in the near future, etc.?

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism

Fuzzy (Sub)set

Machines

Fuzzy P Syste

- Let's **transform** the statement "Serena is tall to a degree of 0.70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"
- The statement "Serena is 70% tall" can be either true or false!
- The statement "Serena is tall to a degree of 0,70" says that Serena is tall and the truth value of this statement is 0,70!
- How can we express in probability theory judgments like tomorrow will be a warm day or there will be a strong earthquake in the near future, etc.?
- It it possible to perform estimations that involve fuzzy probabilities expressed as likely, unlikely, not very likely, etc.?

Ap. Syropoulos

Vaguenes

Many-valued Logic Supervaluationism

Fuzzy (Sub)set

Machines

Fuzzy P Syste

- Let's **transform** the statement "Serena is tall to a degree of 0.70" into the "Serena is 70% tall!"
- So is fuzzy sets just an "elementary mistake of logic?"
- The statement "Serena is 70% tall" can be either true or false!
- The statement "Serena is tall to a degree of 0,70" says that Serena is tall and the truth value of this statement is 0,70!
- How can we express in probability theory judgments like tomorrow will be a warm day or there will be a strong earthquake in the near future, etc.?
- It it possible to perform estimations that involve fuzzy probabilities expressed as likely, unlikely, not very likely, etc.?
- Bart Kosko advocates the idea that fuzziness is a basic characteristic of our cosmos! (I agree with Kosko!)

Computing ander Vaguenes

Vaguenes:

vagaenes.

deneral racas

Many-valued Lo

Supervaluationis

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P System

Vagueness

General Ideas

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzv P Svste

Fuzzy Chemical Abstract Machin In 1968, Zadeh informally introduced the notions of fuzzy algorithm and fuzzy Turing machine.

Computing under Vagueness

Ap. Syropoulos

Vaquenes

Many-valued Logi Supervaluationism

Fuzzy (Sub)se

Machines

Fuzzy P Syste

- In 1968, Zadeh informally introduced the notions of fuzzy algorithm and fuzzy Turing machine.
- A fuzzy algorithm contains fuzzy commands.

Computing under Vagueness

Ap. Syropoulos

Vaquenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism

Fuzzy Turin

Fuzzy P Syste

- In 1968, Zadeh informally introduced the notions of fuzzy algorithm and fuzzy Turing machine.
- A fuzzy algorithm contains fuzzy commands.
- A fuzzy command uses fuzzy sets: Make y approximately equal to 10, if x is approximately equal to 5.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syster

- In 1968, Zadeh informally introduced the notions of fuzzy algorithm and fuzzy Turing machine.
- A fuzzy algorithm contains fuzzy commands.
- A fuzzy command uses fuzzy sets: Make y approximately equal to 10, if x is approximately equal to 5.
- Zadeh argued that everyday activities can be viewed as fuzzy algorithms, but Carol E. Cleland argued that recipes are algorithms!!!

Zadeh's Fuzzy Algorithms and Turing Machines

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syster

- In 1968, Zadeh informally introduced the notions of fuzzy algorithm and fuzzy Turing machine.
- A fuzzy algorithm contains fuzzy commands.
- A fuzzy command uses fuzzy sets: Make y approximately equal to 10, if x is approximately equal to 5.
- Zadeh argued that everyday activities can be viewed as fuzzy algorithms, but Carol E. Cleland argued that recipes are algorithms!!!
- A fuzzy Turing machine is Turing machine where $q^{n+} = f(q^n, s^n)$ is associated with a feasability degree.

Computing under Vagueness

Vaguenes:

....

delicial lucas

-

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turing

Fuzzy P System

Computing under Vaguenes

Vagueness

General Ideas Many-valued Log

Contextualism

Fuzzy (Sub)set

Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin Shi-Kuo Chang used a finite-state machine and a fuzzy machine to define the execution of fuzzy algorithms.

Computing under Vagueness

Vaquenes

General Ideas

Many-valued Logi
Supervaluationism
Contextualism

Fuzzy Turin

Fuzzy P Syste

- Shi-Kuo Chang used a finite-state machine and a fuzzy machine to define the execution of fuzzy algorithms.
- Kokichi Tanaka and Masaharu Mizumoto defined an extended fuzzy machine, which is based on a generalization of Chang's machine.

Computing under Vagueness

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism

Fuzzy Turir

Fuzzy P System

- Shi-Kuo Chang used a finite-state machine and a fuzzy machine to define the execution of fuzzy algorithms.
- Kokichi Tanaka and Masaharu Mizumoto defined an extended fuzzy machine, which is based on a generalization of Chang's machine.
- Eugene S. Santos reformulated fuzzy programs using Dana Scott's work and defined W-machines that are able to execute them.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Machines

Fuzzy P System

- Shi-Kuo Chang used a finite-state machine and a fuzzy machine to define the execution of fuzzy algorithms.
- Kokichi Tanaka and Masaharu Mizumoto defined an extended fuzzy machine, which is based on a generalization of Chang's machine.
- Eugene S. Santos reformulated fuzzy programs using Dana Scott's work and defined W-machines that are able to execute them.
- The formulations of Chang and Tanaka-Mizumoto are special cases of Santos's formulation.

Computing under Vagueness

Vaqueness

vagaenes.

deneral racas

Many-valued Lo

Supervaluationis

Comenanian

Fuzzy Turin

F..... D. C. ...t.

Vagueness

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir Machines

Fuzzy P Syste

Fuzzy Chemical Abstract Machi A Santos type fuzzy Turing machine is a septuple $(S, Q, q_i, q_f, \delta, W, \delta_W)$ where:

 \circ S represents a finite non-empty set of input symbols;

Computing under Vaguene:

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy Turin

Fuzzy P Syste

Fuzzy Chemical Abstract Machi

- \circ S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy (Sub)sets

1-lacililes

Fuzzy Chemica Abstract Mach

- \circ S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;
- $q_{i'}q_f \in Q$ are symbols designating the initial and final state, respectively;

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)s

Placinics

Fuzzy P Syste

Fuzzy Chemical Abstract Machi

- S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;
- $q_{i'}q_f \in Q$ are symbols designating the initial and final state, respectively;
- δ ⊂ (Q × S) × (Q × (S × {L, N, R})) is the next-move relation;

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)s

Fuzzy Turin Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machi

- S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;
- $q_{i'}q_f \in Q$ are symbols designating the initial and final state, respectively;
- δ ⊂ (Q × S) × (Q × (S × {L, N, R})) is the next-move relation;
- W is the semiring (W, \land, \lor) ;

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Furny Turin

Fuzzy P Syste

- C

- S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;
- $q_{i'}q_f \in Q$ are symbols designating the initial and final state, respectively;
- δ ⊂ (Q × S) × (Q × (S × {L, N, R})) is the next-move relation;
- W is the semiring (W, \land, \lor) ;
- $\delta_W: (Q \times S) \times (Q \times (S \times \{L, N, R\})) \to W$ is a W-function that assigns a degree of certainty to each machine transition.

Ap. Syropoulos

Vaguene:

General Ideas

Many-valued Logic
Supervaluationism
Contextualism

Fuzzv Turin

Fuzzy P Syste

Fuzzy Chemical Abstract Machin A Santos type fuzzy Turing machine is a septuple $(S,Q,q_i,q_f,\delta,W,\delta_W)$ where:

- S represents a finite non-empty set of input symbols;
- Q denotes a finite non-empty set of states such that $S \cap Q = \emptyset$;
- $q_{i'}q_f \in Q$ are symbols designating the initial and final state, respectively;
- δ ⊂ (Q × S) × (Q × (S × {L, N, R})) is the next-move relation;
- W is the semiring (W, \land, \lor) ;
- $\delta_W: (Q \times S) \times (Q \times (S \times \{L, N, R\})) \to W$ is a W-function that assigns a degree of certainty to each machine transition.

Nowadays, we use t-norms and t-conorms instead of semirings.

Computing under Vaguenes

Vaqueness

........

many-valued Loi

Supervaluationisn

Fuzzy (Sub)se

Fuzzy Turin

Fuzzv P System

Ap. Syropoulos

Vaquenes

General Ideas

Many-valued Log

Supervaluationism

F (C. 1)

Fuzzy Turin

Fuzzy P Syster

Fuzzy Chemical Abstract Machin • There is no universal fuzzy Turing machine!

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)set

Fuzzy Turir

Fuzzy P System

- There is no universal fuzzy Turing machine!
- Selim Akl had argued that the concept of a universal computer cannot be realized.

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turir Machines

Fuzzv P Syste

- There is no universal fuzzy Turing machine!
- Selim Akl had argued that the concept of a universal computer cannot be realized.
- Jiří Wiedermann had shown that fuzzy languages accepted by these machines with a computable t-norm correspond exactly to the union $\Sigma^0_1 \cup \Pi^0_1$ of recursively enumerable languages and their complements.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syster

- There is no universal fuzzy Turing machine!
- Selim Akl had argued that the concept of a universal computer cannot be realized.
- Jiří Wiedermann had shown that fuzzy languages accepted by these machines with a computable t-norm correspond exactly to the union $\Sigma^0_1 \cup \Pi^0_1$ of recursively enumerable languages and their complements.
- Benjamín Callejas Bedregal and Santiago Figueira argue that they have found flaws in Wiedermann proof though they did not refute his original argument.

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syster

- There is no universal fuzzy Turing machine!
- Selim Akl had argued that the concept of a universal computer cannot be realized.
- Jiří Wiedermann had shown that fuzzy languages accepted by these machines with a computable t-norm correspond exactly to the union $\Sigma^0_1 \cup \Pi^0_1$ of recursively enumerable languages and their complements.
- Benjamín Callejas Bedregal and Santiago Figueira argue that they have found flaws in Wiedermann proof though they did not refute his original argument.
- Later on Yongming Li showed that Wiedermann's results is true for *L*-fuzzy Turing machines.

Computing under Vagueness

Vaquenes

vugue...es.

Many-valued Lo

Supervaluationism

- ...

Fuzzy Turin

Fuzzy P Syster

Computing under Vagueness

Vaqueness

General Ideas

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzy P System

Fuzzy Chemical Abstract Machin A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.

Computing under Vagueness

Vaguenes

Many-valued Logi Supervaluationism

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P Syster

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A **compartment** is space that is surrounded by a porous membrane.

Computing under Vagueness

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy Turir

Fuzzy P System

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A **compartment** is space that is surrounded by a porous membrane.
- Nested compartments make a P system. Each compartment is a multiset.

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism

Fuzzy Turir

Fuzzy P Systen

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A **compartment** is space that is surrounded by a porous membrane.
- Nested compartments make a P system. Each compartment is a multiset.
- Data flow from one compartment to another according to some multiset processing rules.

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic:
Supervaluationism
Contextualism

Fuzzy Turir Machines

Fuzzy P Systen

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A **compartment** is space that is surrounded by a porous membrane.
- Nested compartments make a P system. Each compartment is a multiset.
- Data flow from one compartment to another according to some multiset processing rules.
- · Computation stops when no rule can be applied.

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syster

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A compartment is space that is surrounded by a porous membrane.
- Nested compartments make a P system. Each compartment is a multiset.
- Data flow from one compartment to another according to some multiset processing rules.
- · Computation stops when no rule can be applied.
- The result of the computation is equal to the cardinality of the multiset contained in a special compartment called the **output** compartment.

Ap. Syropoulos

Vaquenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism
Fuzzy (Subheats

Fuzzy Turir Machines

Fuzzy P Systen

- A model of computation mimicking the way cells function which was proposed by Gheorghe Păun.
- A **compartment** is space that is surrounded by a porous membrane.
- Nested compartments make a P system. Each compartment is a multiset.
- Data flow from one compartment to another according to some multiset processing rules.
- Computation stops when no rule can be applied.
- The result of the computation is equal to the cardinality of the multiset contained in a special compartment called the **output** compartment.
- Processing takes place in discrete steps but rules are applied in parallel.

Computing under Vagueness

Vaguenes:

.

deneral racas

Many-valued Lo

Supervaluationis

F (C. 1)

Fuzzy Turir

Machines

ruzzy P System

Ap. Syropoulos

Vaguenes

Many-valued Log

Supervaluationism Contextualism

Fuzzy (Sub)se

Fuzzy Turin Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Log

Supervaluationism

Furry (Sub)ea

Fuzzy (Sub)s

_ ...

Fuzzy Chemica Abstract Machi A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

where

• O is the alphabet of **objects**;

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

Many-valued Logi Supervaluationism

Fuzzy (Sub)se

Fuzzy Tu

.

Fuzzy Chemical Abstract Machi A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

- O is the alphabet of **objects**;
- \circ μ is the membrane structure;

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)se

Machines

Fuzzy P System

Fuzzy Chemical Abstract Machin A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

- O is the alphabet of **objects**;
- \circ μ is the membrane structure;
- $w^{(i)}: O \to \mathbb{N} \times I$, $1 \le i \le m$, represent multi-fuzzy sets over O associated with the region surrounded by membrane i;

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)s

Machines

Fuzzy P System

Fuzzy Chemical Abstract Machin A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

- O is the alphabet of **objects**;
- \circ μ is the membrane structure;
- $w^{(i)}: O \to \mathbb{N} \times I$, $1 \le i \le m$, represent multi-fuzzy sets over O associated with the region surrounded by membrane i;
- R_i , $1 \le i \le m$, are finite sets of multiset rewriting rules of the form $u \to v$, $u \in O^*$ and $v \in O^*_{TAR}$, where $O_{TAR} = O \times TAR$, and $TAR = \{\text{here, out}\} \cup \{\text{in}_i | 1 \le j \le m\}$.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi
Supervaluationism

Fuzzy (Sub)se

Fuzzy Turi

Fuzzy P System

Fuzzy Chemical Abstract Machin A P system with fuzzy data is a n-tuple

$$(O,\mu,w^{(1)},\dots,w^{(m)},R_1,\dots,R_m,i_0)$$

- O is the alphabet of objects;
- \circ μ is the membrane structure;
- $w^{(i)}: O \to \mathbb{N} \times I$, $1 \le i \le m$, represent multi-fuzzy sets over O associated with the region surrounded by membrane i;
- R_i , $1 \le i \le m$, are finite sets of multiset rewriting rules of the form $u \to v$, $u \in O^*$ and $v \in O^*_{TAR}$, where $O_{TAR} = O \times TAR$, and $TAR = \{\text{here, out}\} \cup \{\text{in}_i | 1 \le j \le m\}$.
- $i_0 \in \{1, 2, ..., m\}$ is the label of a compartment called the **output** membrane.

Computing under Vagueness

Vaguenes:

vagueries.

General Ideas

irially-valued LO

Supervaluationism

F (C. 1)

Fuzzy Turin

Fuzzy P Systen

Computing under Vagueness

Vaqueness

Many-valued Loc

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Furry D Syston

Fuzzy Chemical Abstract Machin • A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both.

Computing under Vagueness

Ap. Syropoulos

Vaquenes:

Many-valued Logi

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P Syster

- A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both.
- Fuzzy rewrite rules have attached a feasability degree.

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy (Sub)se

- A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both.
- Fuzzy rewrite rules have attached a feasability degree.
- P systems that process fuzzy multisets can compute real numbers, therefore are more expressive than Turing machines.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzy P System

- A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both
- Fuzzy rewrite rules have attached a feasability degree.
- P systems that process fuzzy multisets can compute real numbers, therefore are more expressive than Turing machines.
- Conjecture P systems with fuzzy processing rules that process fuzzy data should have at least the computational power of fuzzy Turing machines.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzy P System

- A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both
- Fuzzy rewrite rules have attached a feasability degree.
- P systems that process fuzzy multisets can compute real numbers, therefore are more expressive than Turing machines.
- Conjecture P systems with fuzzy processing rules that process fuzzy data should have at least the computational power of fuzzy Turing machines.
- By replaceing fuzzy multisets with L-fuzzy multisets, we get L-fuzzy P systems.

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turii

Fuzzy P System

- A P system is fuzzy when it uses fuzzy multisets, fuzzy rewrite rules or both
- Fuzzy rewrite rules have attached a feasability degree.
- P systems that process fuzzy multisets can compute real numbers, therefore are more expressive than Turing machines.
- **Conjecture** P systems with fuzzy processing rules that process fuzzy data should have at least the computational power of fuzzy Turing machines.
- \cdot By replaceing fuzzy multisets with L-fuzzy multisets, we get L-fuzzy P systems.
- Analogously, L-fuzzy P systems should be as powerful as L-fuzzy Turing machines. Maybe, they are more powerful.

Computing under Vagueness

Vaqueness

vagaciicss

Manager

Supervaluationisr

Contextualism

Fuzzy (Sub)set

Fuzzy Turir

Fuzzy P System

Computing under Vaguenes

Vagueness

General Ideas

Many-valued Logic

Contextualism

Fuzzy (Sub)se

Fuzzy Turin Mashinas

Fuzzy P Systen

Fuzzy Chemical Abstract Machine • Typically, programs are viewed as types and processes as tokens.

Computing under Vagueness

Ap. Syropoulos

Vagueness

General Ideas

Many-valued Logic
Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir Machines

Fuzzy P System

- Typically, programs are viewed as types and processes as tokens.
- But, for example, different people that use a particular web browser view different web pages and have different numbers of tabs open at any given moment.

Computing under Vagueness

Ap. Syropoulos

Vaguenes:

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy Turir

Fuzzy P Syster

- · Typically, programs are viewed as types and processes as tokens.
- But, for example, different people that use a particular web browser view different web pages and have different numbers of tabs open at any given moment.
- Thus, we cannot talk about processes that are identical, but we can surely talk about processes that are similar.

Computing under Vagueness

Ap. Syropoulos

Vaquenes

General Ideas
Many-valued Logic:
Supervaluationism
Contextualism
Fuzzy (Sub)sets

Fuzzy Turir Machines

Fuzzy P Syste

- Typically, programs are viewed as types and processes as tokens.
- But, for example, different people that use a particular web browser view different web pages and have different numbers of tabs open at any given moment.
- Thus, we cannot talk about processes that are identical, but we can surely talk about processes that are similar.
- How can we compare processes?

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic
Supervaluationism
Contextualism

Fuzzy Turi Machines

Fuzzy P Syste

- Typically, programs are viewed as types and processes as tokens.
- But, for example, different people that use a particular web browser view different web pages and have different numbers of tabs open at any given moment.
- Thus, we cannot talk about processes that are identical, but we can surely talk about processes that are similar.
- How can we compare processes?
- Assume that p is an executable program for some computational platform (operating system, CPU, etc.). Then an archetypal process π of p is the program p running with minimum resources.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logic:
Supervaluationism
Contextualism
Fuzzy (Subbets

Fuzzy Turi Machines

Fuzzy P System

- Typically, programs are viewed as types and processes as tokens.
- But, for example, different people that use a particular web browser view different web pages and have different numbers of tabs open at any given moment.
- Thus, we cannot talk about processes that are identical, but we can surely talk about processes that are similar.
- How can we compare processes?
- Assume that p is an executable program for some computational platform (operating system, CPU, etc.). Then an archetypal process π of p is the program p running with minimum resources.
- The term **minimum resources** means that the archetypal process consumes the least possible resources (e.g., memory, CPU time, etc.).

Computing under Vagueness

Vagueness

....

territoria racas

- .

Contextualism

Fuzzy (Sub)se

Fuzzy Turii

F. D. C. ...t.

Computing under Vagueness

Ap. Syropoulos

Vaquenes:

General Ideas Many-valued Log

Contextualism

Fuzzy (Sub)se

Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machine Assume that \boldsymbol{p}_1 and \boldsymbol{p}_2 are two processes initiated from the same binary \boldsymbol{p} .

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)se

Fuzzy Turin Machines

Fuzzy P System

- Assume that p_1 and p_2 are two processes initiated from the same binary p.
- Also assume that π is an archetypal process and that δ_π is a method that measures the similarity degree of some process p_i to π .

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy (Sub)se

Machines

Fuzzy P Syste

- Assume that p_1 and p_2 are two processes initiated from the same binary p.
- Also assume that π is an archetypal process and that δ_π is a method that measures the similarity degree of some process p_i to π .
- That is, $\delta_{\pi}(p) = i$ means that p is similar with πi to a degree equal to i.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas
Many-valued Logics
Supervaluationism
Contextualism

Fuzzy Turi

Fuzzy P Syst

Fuzzy P Syste

- Assume that p_1 and p_2 are two processes initiated from the same binary p.
- Also assume that π is an archetypal process and that δ_π is a method that measures the similarity degree of some process p_i to π .
- That is, $\delta_{\pi}(p) = i$ means that p is similar with πi to a degree equal to i.
- If $\Delta_\pi(p_1,p_2)$ denotes the degree to which the two processes p_1 and p_2 are similar, then

$$\Delta_{\pi}(p_1, p_2) = 1 - |\delta_{\pi}(p_1) - \delta_{\pi}(p_2)|.$$

Computing under Vaguenes

Ap. Syropoulos

Vaguenes:

General Ideas

Many-valued Lor

Supervaluationism

Contextualism

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P System

Vagueness

General Ideas Many-valued Log

Supervaluationism

Fuzzy (Sub)s

Fuzzy Turir

Fuzzy P Syster

Fuzzy Chemical Abstract Machine \circ A fuzzy labeled transition system over a crisp set of actions $\mathscr A$ is a pair $(\mathscr Q,\mathscr T)$ consisting of

Computing nder Vagueness

Ap. Syropoulos

Vaqueness

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Fuzzy Turi

E. D. C. ...to

- A fuzzy labeled transition system over a crisp set of actions $\mathscr A$ is a pair $(\mathscr Q,\mathscr T)$ consisting of
- o a set @ of states;

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy (Sub)set

Fuzzy Turin Machines

Fuzzy P System

- A fuzzy labeled transition system over a crisp set of actions $\mathscr A$ is a pair $(\mathscr Q,\mathscr T)$ consisting of
- a set @ of states;
- a fuzzy relation $\mathcal{T}(\mathcal{Q},\mathcal{A},\mathcal{Q})$ called the **fuzzy transition relation**.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

ruzzy (Sub)sei

Fuzzy Turi Machines

Fuzzy P Syste

- A fuzzy labeled transition system over a crisp set of actions $\mathscr A$ is a pair $(\mathscr Q,\mathscr T)$ consisting of
- a set @ of states;
- o a fuzzy relation $\mathcal{T}(\mathcal{Q},\mathcal{A},\mathcal{Q})$ called the **fuzzy transition relation**.
- If the membership degree of (q, α, q') is d, $q \xrightarrow[d]{\alpha} q'$ denotes that the plausibility degree to go from state q to state q' by action α is d.

Computing under Vagueness

Vaqueness

General Ideas

Many-valued Log

Supervaluationism

Fuzzy (Sub)se

T....

Machines

Fuzzy P System

Abstract Machine

Computing inder Vagueness

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Log

Supervaluationism

F (C .1)

Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machine • Let $(\mathcal{Q}, \mathcal{T})$ be an FLTS.

Computing under Vagueness

Vagueness

General Ideas Many-valued Log

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

Fuzzy P System

- Let $(\mathcal{Q}, \mathcal{T})$ be an FLTS.
- Let $\mathcal S$ is a fuzzy binary relation over $\mathscr Q$.

Computing under Vagueness

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Contextualism

Fuzzy (Sub)set

1-lacilites

- Let $(\mathcal{Q}, \mathcal{T})$ be an FLTS.
- Let $\mathcal S$ is a fuzzy binary relation over $\mathscr Q$.
- $\mathcal S$ is a strong fuzzy simulation over $(\mathscr Q,\mathcal T)$ with simulation degree s if, whenever $\mathcal S(p,q)\geq s$ if $p\overset{\alpha}{\underset{d_1}{\longrightarrow}}p'$, then there exists

$$q' \in \mathcal{Q}$$
 such that $q \xrightarrow{\alpha}_{d_2} q'$, $d_2 \ge d_1$, and $\mathcal{S}(p', q') \ge \mathcal{S}(p, q)$.

Computing inder Vaguenes

Vaqueness

3...

Manager

Many-valued Lo

Supervaluationis

Furni (Sub)er

ruzzy (Sub)se

Machines

Fuzzy P System

Computing under Vaguenes

Ap. Syropoulos

Vagueness

Many-valued Logic

Contextualism

Fuzzy (Sub)se

Machines

Fuzzy P System

Fuzzy Chemical Abstract Machine $(m_i)_{i=1,\dots,k}$ and $(m'_j)_{j=1,\dots,l}$ are archetypal molecules, then

$$m_1, \ldots, m_k \xrightarrow[\lambda]{} m_1', \ldots, m_l',$$

is an ideal fuzzy reaction rule;

Ap. Syropoulos

Vaguenes:

General Ideas

Many-valued Logic

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turi Machines

Fuzzy P Syster

Fuzzy Chemical Abstract Machin $(m_i)_{i=1,\dots,k}$ and $(m'_j)_{j=1,\dots,l}$ are archetypal molecules, then

$$m_1, \ldots, m_k \xrightarrow[\lambda]{} m_1', \ldots, m_l',$$

is an ideal fuzzy reaction rule;

· Let M_i be an instance of m_i to degree $\lambda_\pi(M_i)$. Then

$$[M_1,\ldots,M_k] \underset{\lambda}{\to} [M_1',\ldots,M_l']$$

is **feasible** with feasibility degree equal to λ if $\min\{\delta_{\pi}(M_1), \dots, \delta_{\pi}(M_k)\} \geq \lambda$.

Ap. Syropoulos

Vagueness

General Ideas

Many-valued Logic

Supervaluationism

Contextualism

Fuzzy Turi

Fuzzy P Syste

Fuzzy Chemical Abstract Machin $(m_i)_{i=1,\dots,k}$ and $(m_j')_{j=1,\dots,l}$ are archetypal molecules, then

$$m_1, \dots, m_k \xrightarrow{\lambda} m'_1, \dots, m'_l,$$

is an ideal fuzzy reaction rule;

· Let M_i be an instance of m_i to degree $\lambda_\pi(M_i)$. Then

$$[M_1,\ldots,M_k]\underset{\lambda}{\to} [M_1',\ldots,M_l']$$

is **feasible** with feasibility degree equal to λ if $\min\{\delta_{\pi}(M_1), \dots, \delta_{\pi}(M_k)\} \geq \lambda$.

 If some reacting molecules may be able to yield different molecules, then the reaction rule with the highest feasibility degree is really applicable.

Computing under Vaguenes

Vaguenes:

vaguenes

General Ideas

Many-valued Log

Supervaluationis

F (C. 1)

Machines

Fuzzy P System

Computing under Vaguenes

Vaguenes:

Many-valued Logi

Supervaluationism

F (C. 1)

Fuzzy (Sub)se

Machines

Fuzzy P Syster

$$\frac{\left(S_1 \underset{\lambda}{\rightarrow} S_2\right) \quad \left(\forall m_i \in S_3 : \delta_{\pi}(m_i) \geq \lambda\right)}{S_1 \uplus S_3 \underset{\lambda}{\rightarrow} S_2 \uplus S_3}$$

Computing inder Vaguenes:

Ap. Syropoulos

Vaguenes:

Many-valued Logic

Contextualism

Fuzzy (Sub)se

Fuzzy Turi

Fuzzy P Syste

$$\frac{\left(S_1 \underset{\lambda}{\rightarrow} S_2\right) \quad \left(\forall m_i \in S_3 : \delta_{\pi}(m_i) \geq \lambda\right)}{S_1 \uplus S_3 \underset{\lambda}{\rightarrow} S_2 \uplus S_3}$$

Let
$$\Delta_{\delta}(S) = \min \Big\{ \delta_{\pi}(p) \mid p \in S \Big\}$$
, then
$$\frac{\lambda \leq \min \Big\{ \Delta_{\delta}(S), \delta_{\pi}(m) \Big\}}{[m] \uplus S \underset{\lambda}{\leftrightarrow} [m \lhd S]}$$

Computing under Vaguenes:

Ap. Syropoulos

Vagueness

Many-valued Logic

Contextualism

Fuzzy (Sub)se

Machines

ruzzy P Syster

$$\frac{\left(S_1 \underset{\lambda}{\rightarrow} S_2\right) \quad \left(\forall m_i \in S_3 : \delta_{\pi}(m_i) \geq \lambda\right)}{S_1 \uplus S_3 \underset{\lambda}{\rightarrow} S_2 \uplus S_3}$$

Let
$$\Delta_{\delta}(S) = \min \left\{ \delta_{\pi}(p) \mid p \in S \right\}$$
, then
$$\frac{\lambda \leq \min \left\{ \Delta_{\delta}(S), \delta_{\pi}(m) \right\}}{[m] \uplus S \leftrightarrow [m \lessdot S]}$$

$$\frac{\left(S \underset{\lambda}{\to} S'\right) \quad \left(\lambda \leq \min\left\{\Delta_{\delta}(S), \delta_{\pi}(C())\right\}\right)}{[C(S)] \underset{\lambda}{\to} [C(S')]}$$

Computing under Vagueness

Vaguenes

Connect Ideas

Many-valued Lo

Supervaluationis

. ---, (----,--

Machines

Fuzzy P System

Computing under Vagueness

Ap. Syropoulo

Manager

- .

Contextualism

Fuzzy (Sub)se

Machines

Fuzzy P System

Fuzzy Chemical Abstract Machine

Computing under Vagueness

Vaqueness

Manuschied Lea

Many-valued Log

Contextualism

Fuzzy (Sub)se

Fuzzy Turin

Fuzzy P System

Fuzzy Chemical Abstract Machine

I have briefly presented

• The notion of vagueness.

Computing under Vaguene

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Fuzzy (Sub)set

Fuzzy Turii

Fuzzy P System

Fuzzy Chemical Abstract Machine

- The notion of vagueness.
- Fuzzy Turing Machines.

Computing under Vaguenes

Vaqueness

Many-valued Logic Supervaluationism

Fuzzy (Sub)se

Fuzzy Turir

FILTZV P Sveta

Fuzzy Chemical Abstract Machin

- The notion of vagueness.
- Fuzzy Turing Machines.
- Fuzzy P Systems.

Computing inder Vaguenes

Vaguenes

General Ideas

Many-valued Logic

Supervaluationism

Fuzzy (Sub)se

Fuzzy Turin

E.m. D. Create

Fuzzy Chemical Abstract Machine

- The notion of vagueness.
- Fuzzy Turing Machines.
- Fuzzy P Systems.
- The Fuzzy Chemical Abstract Machine.

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)se

Machines

Fuzzy P System

Fuzzy Chemical Abstract Machine

I have briefly presented

- The notion of vagueness.
- Fuzzy Turing Machines.
- Fuzzy P Systems.
- The Fuzzy Chemical Abstract Machine.

More about fuzzy computability in my forthcoming book!

Computing under Vaguenes

Ap. Syropoulos

Vaguenes

General Ideas

Many-valued Logi

Supervaluationism

Fuzzy (Sub)

Machines

Fuzzy P System:

Fuzzy Chemical Abstract Machine

I have briefly presented

- The notion of vagueness.
- Fuzzy Turing Machines.
- Fuzzy P Systems.
- The Fuzzy Chemical Abstract Machine.

More about fuzzy computability in my forthcoming book! Thank you so much for your attention!