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Vector Addition Systems with States (VASS)

t1:(1,1,-1) ts:(0,-1,0)

()13 (1,0,0)

t) 1 (0,0,0)
ty: (— 101)

Figure: A 3-dimensional VASS.
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Central Problems

Many problems are decidable on VASS, notably
INPUT: V a VASS, c, ¢’ two configurations.

Reachability: ¢ = ¢’ ?

Coverability: ¢ = ¢” for some configuration ¢’ J ¢’ ?



Well Structure Transition Systems (WSTYS)

WSTS [Abdulla & Cerans & Jonsson & Tsay 2000][Finkel & Schnoebelen
2001]:

@ Many problems are decidable, including coverability.
@ Based on a well quasi-order (wqo) on configurations.
@ VASS are WSTS.

= The VASS coverability problem is decidable.



Coverability Set

V a VASS, c a configuration.

Cover(c) & {c'|3c" T3 ¢ 5 "}

Computable thanks to a coverability tree [Karp & Miller 1969]:
o Forward exploration of a reachability tree.

@ A finite description of Cover(c) is obtained from nodes’ labels.



Complete WSTS

Ingredient for defining a coverability tree algorithm [Finkel &
Goubault-Larrecq 2009,2012]:

@ An acceleration procedure.

@ A way to represent downward-closed sets of configurations.
= wqo ideals are the right objects.



VASS Reachability Problem

Decidable:

@ Several attempts and partial solutions, notably by Sacerdote & Tenney
in 1977.

@ First proved by Mayr in 1981.
@ Clarified by Kosaraju in 1982 and Lambert in 1992.

We call the resulting algorithm, the KLMST:
@ Refinement of a finite set of structures following some conditions.
o At first sight little to do with WSTS.

= wqo ideals are the right objects [Leroux & Schmitz 2015].



Overview of the Talk

Ideals provide the data structures involved:

e Karp & Miller's coverability tree algorithm which computes the ideal
decomposition of the coverability set using configuration ideals.

@ The KLMST algorithm, which computes the ideal decomposition of
the downward-closure of the set of runs using run ideals.

This talk:
@ Present wqo ideals.

@ Overview algorithmic applications through two algorithms.
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Well Quasi-Orders

A relation < on a set X is a wqo if:

reflexive: x < x

o < is a quasi-order : ..
- q {tran5|t|ve:x<y/\y<z:>x<z

o Infinite sequences xi, xo, ... are good: x; < x; for some i < j.



Well Quasi-Orders

A relation < on a set X is a wqo if:

reflexive: x < x

o < is a quasi-order : ..
- q {tran5|t|ve:x<y/\y<z:>x<z

o Infinite sequences xi, xo, ... are good: x; < x; for some i < j.

Example

(Q,=) is wqo if Q is finite.
(N, <) is wqo.

(Z,<) is not a wqo since 0,—1,—2,... is a bad sequence.



Downward-Closed Sets

Let (X, <) be a quasi-ordered set.
The downward-closure of S C X:

1S={xeX|3IseSx<s}

D C X is downward-closed if |D = D.

Lemma

A quasi-ordered set is wqo if, and only if, it satisfies the descending chain
property: chains Dy 2 Dy 2 - - of downward-closed sets are finite.



ldeals

(X, <) a wao.
A set S C X is directed if Vx,y € S Is € S such that x,y <s.

An ideal is a non-empty directed downward-closed set.



ldeals

(X, <) a wao.
A set S C X is directed if Vx,y € S Is € S such that x,y <s.

An ideal is a non-empty directed downward-closed set.

Example
(Q,=) with Q finite. Ideals are {g} with g € Q.

(N, <): Ideals are N and {0, ..., n} with n € N.



|deal Decomposition

Theorem ([Kabil & Pouzet : 1992],[Finkel & Goubault-Larrecq :
2009], [Goubault-Larrecq & Karandikar & Narayan Kumar &
Schnoebelen : In preparation])

Every downward-closed set is the union of a unique finite family of
incomparable for the inclusion ideals.

Application:

o Effective way for representing downward-closed sets.



Dickson's Lemma

The Cartesian product (X3, <1) X (X2, <2) of two quasi-ordered sets is the
quasi-ordered set (X, <) defined by:

(x1, %) < (y1,)2) <= xi<iy1 A xx<oy



Dickson's Lemma

The Cartesian product (X3, <1) X (X2, <2) of two quasi-ordered sets is the
quasi-ordered set (X, <) defined by:

(x1, %) < (y1,)2) <= xi<iy1 A xx<oy

Lemma (Dickson’'s Lemma)

(Xl, Sl) and (XQ, Sz) wqo —> ()(17 gl) X (XQ, Sz) wqo.



Ideals( X1, <1) x (X2, <2)

{/1 X /2

l, € Ideals(X1, <1)A
h € Ideals(Xz, <5)




Higman's Lemma

Given a quasi-ordered set (X, <), we define (X, <)* as the set X* of words
over X quasi-ordered by <, defined by:

X1 Xp ZsV1---VYm
<~
dip < -+ <y |X1§yi1/\"‘/\xn§)/in



Higman's Lemma

Given a quasi-ordered set (X, <), we define (X, <)* as the set X* of words
over X quasi-ordered by <, defined by:

X1 Xp ZsV1---VYm
<~

E|i1<"'<in | X1 Sy,-lA--‘/\XnS)/in

Lemma (Higman's Lemma)

(X, <) wgo = (X, <)" wqo.



(X, <) a wqo.

An atom of (X, <) is a language of the form:
o {e} U/ where [ is an ideal of (X, <), or
o (hu...Ul,)* where I1,..., 1, are ideals of (X, <).

Theorem ([Jullien 1969], [Kabil & Pouzet : 1992], [Finkel &
Goubault-Larrecq : 2009])

Ideals of (X, <)* are the finite product of atoms of (X, <).
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Ordering Configurations

V a VASS with:
o Q@ finite set of control states.
@ d counters.

The set of configurations is equipped with C defined by:

(Confs, C) & (Q,=) x (Nvﬁ)d



Coverability Set As Downward-Closed Sets

The coverability set is downward-closed:

Cover(c) & {c' |3c" 2 ¢S "}

:\L{C//‘CQC//}

= Cover(c) is a finite union of configuration ideals.



We introduce w ¢ N and N,, & N U {w} ordered by:

i £ s

Ideals of (N, <) are:
{neN|n<x}

Where x € N,,.



Representing Configuration Ideals

(Confs,C) ¥ (Q,=) x (N, <)?

Ideals of (Confs, C) are the sets:

[[qyx]]Confs = {q} X {V e N9 ‘ v < X}

where (g, x) is an extended configuration in @ x N¢.



Extending the Step Relation

t1:(1,1,-1) ts:(0,-1,0)

()13 (1,0,0)

t) 1 (0,0,0)
ty: (— 101)

Figure: A 3-dimensional VASS.
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The Coverability Tree Construction

1q0,101) ts
e
(wo) EID

b @0,1,1,) @0,2 0,1)
@O,M)@,so)@o,gl)@o,m) e

t1/2 It tl/z Its tl/2 A

qi1, 3, 1,0

A prefix of the tree computed by the Karp and Miller algorithm.

Cover(qo,1,0,1) = [qo,w,w,w]confs U [q1,w, w,w] conts



Applications

Once the decomposition of the coverability set into ideals is computed:

@ The coverability problem reduces to find an ideal that contains a
configuration.

@ The place boundedness problem reduces to check that every ideal
satisfies the place boundedness condition.



Complexity View Point

The size of the coverability set &' size of the decomposition into maximal
ideals (numbers encoded in binary).

@ There exists a family of initialized VASS with finite but
Ackermannian-sized reachability sets [Cardoza & Lipton & Meyer
1976].

@ Lower-bound tight since the Karp and Miller algorithm is terminating
in at most an Ackermannian number of steps [Figueira & Figueira &
Schmitz & Schnoebelen 2011].

= The Karp and Miller algorithm is optimal.
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Ordering Runs

V is a VASS with a set T of transitions.

(PreSteps, <) = (Confs,C) x (T,=) x (Confs, C)
(PreRuns, <) < (Confs, C) x (PreSteps, <)* x (Confs, C)

A run is a prerun of the following form:
(c,(c1,t1,¢1) .. (cks e, ci), )

with:
ti, !
C=C—>C=C " C—>C =C

Runs(c, c’) is the set of runs from ¢ to ¢’.



Reachability Problem

Reduces to the emptyness of:

| Runs(c, )

This set can be uniquely decomposed as maximal prerun ideals.



Prestep Ideals

Ideals of (PreSteps, <) have the following form, where e = (c, t,c’) is an
extended prestep, i.e. ¢, ¢’ are extended configurations, and t € T:

[[eﬂ PreSteps = [[C]] Confs X {t} X IIC/H Confs -



Prerun ldeals

Ideals of (PreRuns, <) have the following form, where p is a regular

expression denoting a product over extended steps and c, ¢’ are extended
configurations:

[[Ca P, C,]] PreRuns — [[Cﬂ Confs X [[P]] PreSteps* X [[C/]] Confs -

with:
pui=ai---an, at=e+e|E”

where e ranges over extended presteps and E over finite sets of extended
presteps, with semantics:

[[31 s a,,]] PreStep* < [[alﬂPreStep* T [[an]]PreStep*

[[e + 6]] PreStep* = [[e]] PreSteps U {5}

*
[[E*]]PreStep* = ( U [e] PreSteps)
eckE



Example

t1:(1,1,-1) ts:(0,—1,0)

()13 (1,0,0)
¢ = (@.1.0.1)

) t5:(0,0,0)
tr: (—1,0, 1)
Any sequence of transitions in
{tita, 11} "2 131]

for n > 0 provides runs in Runs(c, c’).

C/ = (ql, 2,2, ].)



Example

t : (1, 1, —1) ty : (0, —1,0)

() 13 (1,0,0)
C:(q071707 1) C,: (q172727 ]‘)

t) 1 (0,0,0)
ty: (— 101)

ty
0
t;
- ”q0717W7143’CI1727W71’””’C/
el

LRuns(c,c’) = [c,E5-(e1+¢) - Ef, '] preRuns



The KLMST Algorithm

Theorem (Leroux & Schmitz 2015)
The KLMST algorithm computes an ideal decomposition of {Runs(c, c).

— the decomposition of [Runs(c, ¢’) into maximal ideals is effectively
computable.



Applications

Once the decomposition of | Runs(c, ¢’) into ideals is computed:
@ The reachability problem reduces to the emptyness of the
decomposition.

@ Provide a way to compute the downward-closure of the set of words of
transitions from ¢ to ¢/, first proved in [Habermehl & Meyer &
Wimmel 2012][Zetzsche 2015].



Complexity

@ The ideal decomposition of [Runs(c, c’) is at least Ackermannian. We
exhibit in [Leroux & Schmitz 2015] a cubic-Ackermannian
upper-bound.

@ The reachability problem may have a better complexity. The best
lower bound in exponential space [Cardoza & Lipton & Meyer 1976].
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Overview

Coverability tree algorithm
Karp and Miller

The KLMST algorithm
Mayr, Kosaraju, and Lambert

configuration ideals

run ideals

1 reachability set

J runs



VASS Extensions

The ideal framework provides abstract fundations for generalizing classical
algorithms to VASS extensions. The coverability tree construction has been
recently extended to:
@ Unordered data Petri nets [Hofman & Lasota & Lazi¢ & Leroux &
Schmitz & Totzke 2016]
@ Branching VASS [Verma & Goubault-Larrecq 2005],[Jacobé de
Naurois 2014].

@ Pushdown VASS [Leroux & Praveen & Sutre 2014].



Other Applications

Other recent applications of wqo ideals:
o Lazi¢ and Schmitz in 2015 revisited the backward coverability
algorithm for VASS.
@ Use of ideal decompositions for computing the downward-closure of
formal languages by Zetzsche in 2015.

@ Decidability of separation by piecewise testable languages by
Czerwinski, Martens, van Rooijen, Zeitoun, and Zetzsche in 2015.
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