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Abstract

In this extended abstract, we give an overview of the techniques and results introduced in the
thesis entitled Algorithmes de noyau pour des problèmes d’éditions de graphes et autres struc-
tures [58]. This work has been done under the supervision of Stéphane Bessy and Christophe
Paul, at LIRMM (Montpellier, France). The results developed in this thesis belong to the
framework of parameterized complexity, and more precisely kernelization algorithms. Given an
instance (I, k) of a parameterized problem, a kernelization algorithm is a polynomial-time algo-
rithm (in |I|+k) that outputs an equivalent instance (I ′, k′) (the kernel) that satisfies |I| 6 f(k)
and k′ 6 k for some computable function f . Such a function is called the size of the kernel. We
focus on graph (or constraint) modification problems, where one is given a graph G := (V,E)
(resp. a set of constraints R defined over some universe V ) and an integer k and seeks a set
F ⊆ (V × V ) (resp. a subset F ⊆ R) of size at most k whose modification in the input struc-
ture satisfies some given property Π. Regarding graph modification problems, we introduce the
notion of branches, that allows us to reduce the size of a given instance to obtain a so-called
kernel. A similar idea has been used by Bodlaender et al. [15], under the name of protrusions,
but require additional properties for the problem at hand. In particular, we obtain the first
polynomial kernels for Closest 3-Leaf Power [9] and Proper Interval Completion [10],
two problems finding applications in computational biology. In the second part of this paper,
we introduce the notion of safe partition for constraint modification problems. Combined with
a constant-factor approximation algorithm, this notion allows us to obtain a linear vertex-kernel
for Feedback Arc Set in Tournaments [6], improving the previous bound of O(k2) vertices
for the problem [5]. Next, we develop and push further a technique used in a few parameterized
problems [21, 32, 67] that we call Conflict Packing. Combined with the notion of safe parti-
tion or sunflower, this method provides linear vertex-kernels for the Dense Rooted Triplet
Inconsistency and Dense Betweenness problems. We would like to notice that a similar
technique has been introduced by van Bevern et al. [65], namely kernelization through tidying, in
order to deal with vertex deletion problems. To conclude, we mention some work that has been
done beyond kernelization. In particular, in a joint work with Jean Daligault, Christophe
Paul and Stéphan Thomassé, we proved that the Multicut problem can be reduced in FPT
time to instances of treewidth bounded by a function of k. Part of this result, based on graph
minor theory [60, 61] and the notion of irrelevancy [54], has been used by Bousquet et al. to
obtain a parameterized algorithm for Multicut [18].

∗The results presented in this extented abstract are based on joint works with Stéphane Bessy, Jean Daligault,
Fedor V. Fomin, Serge Gaspers, Sylvain Guillemot, Frédéric Havet, Christophe Paul, Saket Saurabh and
Stéphan Thomassé.
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1 Introduction

Modification problems In this thesis, we consider graph (and constraint) modification problems
where only the edge set (resp. collection of constraints) can be modified. Such problems constitute
a broad range of NP -complete problems [36]. Formally, these problems can be defined as follows:

G-Graph Modification:
Input: A graph G := (V,E), and an integer k.
Parameter: k.
Question: Does there exist a subset F ⊆ (V × V ) of size at most k such that the graph
H := (V,E M F ) belongs to G?

Π-Constraint Modification:
Input: A set of p-sized constraints R, p > 2, defined over some universe V , and an integer k.
Parameter: k.
Question: Does there exist a subset F ⊆ R of size at most k whose modification in R satisfies
the property Π?

Well-known examples of graph modification problems include Vertex Cover [2] , Feedback
Vertex Set [64] and Cluster Editing [25], while Dense Rooted Triplet Inconsistency [37]
and Dense Betweenness [48, 49] are examples of constraint modification problems. These prob-
lems find numerous applications in several domains, such as image processing [62], relational
databases [63] and computational biology [39, 46, 52]. There exist several approaches to deal
with such NP-hard problems: using heuristics, approximation algorithms, probabilistic algorithms
and so on. However, these techniques measure the complexity of the given problem with respect
to its size n only. In particular, they do not use the information given by a parameter k associated
to the problem, such as the size of the modification sought for modification problems. A question
that arises is thus: can we solve exactly a parameterized problem by confining the combinatorial
explosion (which should not be avoided if P 6= NP ) to the parameter k only? Formalized by
Downey and Fellows in the late 1990s, the notion of parameterized complexity gives a theoretical
framework to obtain such results [31, 33, 55].

Parameterized complexity A problem parameterized by some integer k is said to be fixed-
parameter tractable (FPT for short) if it can be solved in time f(k) · nO(1), where n stands for
the size of the instance at hand. While considering modification problems, a natural parameter is
thus the number of allowed modifications. There are a lot of modification problems that admit
parameterized algorithms when parameterized by the size of the solution [18, 22, 66]. For instance,
the problems mentioned as examples in the beginning of this extended abstract are all known
to admit parameterized algorithms [5, 28, 45, 46, 55]. Regarding graph modification problems, a
famous result of Cai [22] states that whenever the property Π is hereditary (i.e. closed under taking
induced subgraphs) and characterized by a finite family of forbidden induced subgraphs, then the
Π-Graph Modification problem is FPT.

Kernelization We follow this line of research and consider more precisely kernelization algo-
rithms, one of the most powerful techniques to design parameterized algorithms [12]. A kerneliza-
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tion algorithm for a parameterized problem is a polynomial-time algorithm (in |I|+ k) that, given
an instance (I, k) of a parameterized problem, outputs an equivalent instance of the same problem
(I ′, k′) (the kernel) such that |I ′| 6 f(k) and k′ 6 k for some computable function f . Such a
function is called the size of the kernel. A classical result states that a problem is fixed-parameter
tractable if and only if it admits a kernel [55]. However, the kernel obtained through this theoretical
result is of super-polynomial size, and the aim is to improve this given size. Indeed, finding a kernel
of small size (for instance polynomial -or even linear- in k) is highly desirable in practice [56]. Nev-
ertheless, recent results of Bodlaender et al. [14] and Fortnow and Santhanam [34] give evidence
that not all parameterized problems admit polynomial kernels, unless the polynomial hierarchy
collapses to its third level (which in turn would imply NP ⊆ coNP/poly [34]). This result relies
on the notion of or-composition for parameterized problems, and has been recently generalized by
the introduction of cross-composition [16].

Known results As mentioned earlier, a large number of parameterized algorithms are known for
modification problems. This observation is also verified when considering polynomial kernels for
such problems. For instance, the Vertex Cover and Cluster Editing problems admit a linear
vertex-kernel (with at most 2k vertices) [2, 25], while the Feedback Vertex Set [64] and Dense
Rooted Triplet Inconsistency [37] both admit a kernel with O(k2) vertices. Recently, Krastch
and Walshtröm [51] provided evidence that there exist some Π-Graph Modification problems
that do not admit polynomial kernels, even if Π is a very restricted class of graphs. Actually, their
result disproved a conjecture of Cai [13], stating that the Π-Graph Modification problem admits
a polynomial kernel as long as Π is hereditary and characterized by a finite family of forbidden
induced subgraphs.

Our results We provide results in both directions, obtaining polynomial kernels for several prob-
lems, sometimes establishing the first known polynomial kernels for the considered problems. In par-
ticular, using the notion of branches, we obtain polynomial kernels for Closest 3-Leaf Power [9]
and Proper Interval Completion [10], two well-studied parameterized problems [29, 46]. More-
over, by adapting the results of Kratsch and Walshtröm we obtain lower bounds for two graph mod-
ification problems [40], namely Cl-free edge deletion and Pl-free edge deletion for l > 7.
Regarding constraint modification problems, introducing the notion of safe partition, we obtain
a linear vertex-kernel for Feedback Arc Set in Tournaments [6], improving the best known
bound of O(k2) vertices [5]. Finally, by developing and pushing further a technique used in a few
parameterized problems [21, 32, 67], that we call Conflict Packing, we obtain linear vertex-kernels
for the Dense Rooted Triplet Inconsistency and Dense Betweenness problems [57].

2 Preliminaries

Graphs We consider simple, loopless, undirected, graphs G := (V,E), where V (G) stands for
its vertex set and E(G) for its edge set. Given a vertex u ∈ V (G), we denote by NG(u)1 its open
neighborhood and by NG[u] := NG(u)∪ {u} its closed neighborhood. Two vertices u, v ∈ V are true
twins iff N [u] = N [v]. The operation of adding a true twin to G (called true twin addition) consists
of adding a new vertex v to G as a true twin of some vertex u ∈ V (G). Given a subset S ⊆ V , G[S]

1We forget to mention the graph G whenever the context is clear.
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denotes the subgraph induced by S, i.e. the graph (S,E(S)) where E(S) := {uv ∈ E : u, v ∈ S}.
In a slight abuse of notation, we use G\S to denote the graph G[V \S]. Moreover, δ(S) := {s ∈ S :
NG\S(s) 6= ∅} denotes the border of S. We say that a subset M ⊆ V is a module of G if for every
vertex v ∈ V \M we have M ⊆ N(v) or M ∩N(v) = ∅. A critical clique of G is a maximal clique
module [52]. Given an instance G := (V,E) of the G-Graph Modication problem, a set F is an
edition of G if the graph H := (V,E M F ) belongs to G. We say that F is a k-edition when |F | 6 k,
and that it is optimal if |F | is of minimum size. We say that G is hereditary whenever any induced
subgraph of a graph of G belongs to G. Finally, we will also mention tournaments T := (V,A),
which are obtained by taking an arbitrary orientation of the complete unoriented graph (called
clique).

Constraints We also consider dense collections R of p-sized constraints, p > 2, defined over some
universe V . Here, the term dense means that there is exactly one constraint for every subset of size
p of V . Given an instance R := (V,R) of the Π-Constraint Modification problem, an edition
F ⊆ R is a set of constraints whose modification in R allows to obtain a collection of constraints
that satisfy Π. As before, we say that F is a k-edition when |F| 6 k, and that it is optimal when
|F| is of minimum size.

3 Part I. Graph modification problems

In the first part of this thesis, we look at graph modification problems. We first consider two prob-
lems with direct applications in the domain of computational biology, namely Closest 3-Leaf
Power [29] and Proper Interval Completion [46, 47]. A p-leaf power is a graph G := (V,E)
that can be obtained from a tree T whose leaves are in one-to-one correspondence with V and such
that uv ∈ E(G) if and only if the leaves corresponding to u and v are at distance at most p in T .
A graph G := (V,E) is a proper interval graph if it is the intersection graph of a finite family of
intervals of the real line such that no interval strictly contains another interval.

Closest 3-Leaf Power :
Input : A graph G := (V,E), an integer k.
Parameter : k.
Question : Does there exist a subset F ⊆ (V × V ) of size at most k such that the graph
H := (V,E M F ) is a 3-leaf power ?

Proper Interval Completion :
Input : A graph G := (V,E), an integer k.
Parameter : k.
Question : Does there exist F ⊆ (V ×V )\E of size at most k such that the graph H := (V,E∪F )
is a proper interval graph ?

Known results While the recognition of p-leaf powers is polynomial-time solvable for p 6 5 [19,
20, 23] and open for larger values of p, the Closest p-Leaf Power problem is already NP -Hard
for p = 2 [62] (since it is equivalent to the Cluster Editing problem). However, this problem
is known to be fixed-parameter tractable for p = 3, 4 [29, 30], its parameterized complexity being
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opened for larger values of p. Regarding the Proper Interval Completion problem, it is
also known to be NP -Complete [38] and fixed-parameter tractable [22, 46, 47]. We would like to
mention that the first result proving the parameterized complexity of this problem appeared in
FOCS’94 [46], and thus that the existence of a polynomial kernel was opened until then.

Our contribution In both cases, we establish polynomial kernels when parameterized by the
size of the solution sought. These results constitute the first known polynomial kernels for both
problems. The former, answering a question first asked by Dom et al. [28], is a joint work with
Stéphane Bessy and Christophe Paul [8, 9], while the latter, which settles a problem opened
for more than a decade, is a joint work with Stéphane Bessy [10]. To obtain polynomial kernels
for these two problems, we introduce a technique based on branches of graphs, which are roughly
speaking parts of the graph that already fulfill the desired property and are connected properly to
the rest of the graph.

3.1 Reduction rules using branches

3.1.1 Definition and main idea

Intuition The general idea behind the use of branches in kernelization algorithms is to reduce a
set of vertices that induce a graph that already belongs to the target class G. We would like to
observe that this idea is somehow natural when considering kernelization algorithms. Indeed, it
has already been used in several kernelization algorithms [9, 40], for instance with reductions rules
of the form:

Let G := (V,E) be an instance of G-Graph Modification problem. Remove from
G any connected component C such that G[C] belongs to G.

As we shall see, such a reduction rule is a particular case of branches. Another application of
this idea lead to a linear vertex kernel for the Cluster Editing [41] problem: given a critical
clique of G of arbitrary size, it is possible to preserve only k + 1 vertices. This observation comes
from the fact that all the relevant information contained in such a clique lies in its border, not
within the clique itself. Hence, it is safe to preserve only a few number of vertices. Based on this
idea, we introduce and develop the concept of branches for the G-Graph Modification problem,
which is a non-trivial generalization of the above-mentionned rules. This method is particularly
well-suited for the G-Graph Modification problem where the members of G admit a so-called
adjacency decomposition.

Adjacency Decomposition Let G be a class of graphs. We say that G admits an adjacency de-
composition if for any graph G := (V,E) that belongs to G, there exists a collection V := {V1, . . . , Vl}
covering V such that Vi ⊆ V , i ∈ [l] and such that two sets Vi, Vj, i 6= j are connected according to
some adjacency relation PG.

As an example, we can observe that chordal graphs admit an adjacency decomposition, known
as clique graph [35]. Given a chordal graph G := (V,E) (i.e. a graph without induced cycles of
length greater than 3), we define the collection V as the collection of maximal cliques of G. Now,
the clique graph C(G) := (V, Ec) is defined as the graph whose vertices are the maximal cliques
of G and the adjacency relation Pchordal is: there is an edge between two vertices of C(G) if their
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intersection is a minimal separator of G [35]. As we shall see later, the class of 3-leaf powers and of
proper interval graphs admit such an adjacency decomposition. We now give a general definition
of the notion of branch, which shall be adjusted to every considered problem.

Branches Let G be a class of graphs admitting an adjacency decomposition (V, PG), and G :=
(V,E) be a graph of G. We say that a subset B ⊆ V is a branch of G if:

- the graph G[B] belongs to the class G,

- the edges E(δ(B), NG\B(δ(B))) respects the adjacency property PG.

Detecting the branches To obtain a kernelization algorithm, a necessary condition is that the
branches can be detected in polynomial time. Once again, this really depends on the problem at
hand. For Closest 3-Leaf Power and Proper Interval Completion, this can be done in
polynomial time. We do not describe the algorithms here and refer to [9] and [10] for a complete
description.

Reducing the branches Let G := (V,E) be an instance of the G-Graph Modification prob-
lem where G admits an adjacency decomposition. Assume we are given a branch B ⊆ V of G.
Then, the only relevant information contained in B is located in its border. In other words, the
set BR := B \ δ(B) contains too many information, and one can prove that it is safe to replace it
by an equivalent graph of bounded size, containing the same amout of information. However, this
particular part is problem-specific, since the proofs heavily use the adjacency decomposition of the
target class G. Roughly speaking, a branch-reduction rule must follow these lines:

Let G := (V,E) be an instance of the G-Graph Modification problem where G
admits an adjacency decomposition. Let B ⊆ V be a branch of G. Replace BR by an
equivalent graph of size bounded in k.

Bounding the size of the kernel We now present why such a reduction of the branches of a
graph leads to polynomial kernels. Let G := (V,E) be an instance of the G-Graph Modification
problem where G admits an adjacency decomposition (V, PG). For the sake of simplicity, we assume
that V is a partition of V . Let F be a k-edition of G and H := G M F . We define a vertex of G as
affected if it is contained in some pair of F , and a set Vi of V as affected if it contains an affected
vertex. Now, we consider connected components of the graph H \ A(V), where A(V) denotes the
affected sets of V. By definition, these components define branches of G, whose border must be
attached to the rest of the graph according to PG (since they are non-affected vertices). Since
|F | 6 k by definition, there are at most 2k affected vertices in H, and hence at most 2k affected
sets in V, which implies that there are at most O(k) branches. Hence, finding a way to reduce
efficiently such branches would yield polynomial kernels. This particular part is problem-specific,
and we will consider the Closest 3-Leaf Power problem as an example.

3.1.2 Branches for Closest 3-Leaf Power

To begin with, we give a characterization of 3-leaf powers in terms of critical cliques. Observe that
the set of critical cliques of G := (V,E) partition its vertex set V . We define the critical clique
graph CG of G as the graph obtained by contracting every critical clique of G (without keeping
multi-edges).
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G = (V,E) CG

Figure 1: A graph G := (V,E) and its critical clique graph CG.

Theorem 3.1 ([29]) The following properties are equivalent:

(i) a graph G := (V,E) is a 3-leaf power;

(ii) it does not contain any {dart,bull,gem,hole} as an induced subgraph (see Figure 2);

(iii) its critical clique graph CG is a forest.

dart holegem bull

Figure 2: The forbidden induced subgraphs for the 3-leaf powers.

A first reduction rule that can be defined for the problem reduces the size of the critical cliques.
Its soundness follows from the following result.

Lemma 3.2 ([9]) Let G := (V,E) be an instance of G-Graph Modification for a class G
hereditary and closed under true twin addition. There always exists an optimal edition F of G that
preserves the critical cliques of G.

In other words, any critical clique of G is a clique module (not necessarily critical) of the graph
H := (V,E M F ).

Rule 1 (True Twins) Let G := (V,E) be an instance of Closest 3-Leaf Power and T be a
critical clique of G such that |T | > k + 1. Remove |T | − (k + 1) arbitrary vertices from T .

Lemma 3.3 ([9]) Rule 1 is sound and can be applied in polynomial time.

We now give a formal definition of a branch for the problem Closest 3-Leaf Power. By
Theorem 3.1, the adjacency decomposition of a 3-leaf power corresponds to its critical clique graph.
Hence, a branch is a set of vertices B ⊆ V whose induced critical clique graph is a forest and that
is connected to the rest of the graph according to this notion of critical clique. Formally, we obtain
the following definitions.
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Definition 3.4 (Branches) Let G = (V,E) be an instance of Closest 3-Leaf Power and
B ⊆ V a subset of vertices of V . The set B is a branch of G if it is the union of critical cliques
{C1, . . . , Cr} such that the subgraph of CG induced by {C1, . . . , Cr} is a tree.

Definition 3.5 (l-Branches) Let B := {C1, . . . , Cr} be a branch of an instance G := (V,E) of
Closest 3-Leaf Power. We say that a critical clique is an attachment point of B if NG\B(Ci) 6=
∅. A branch containing l attachment points is called a l-branch.

Reducing the branches Observe in a first place that, by definition, a critical clique is a partic-
ular 1-branch, containing exactly one attachment point. Hence Rule 1 allows us to reduce special
cases of 1-branches. For the sake of our other reduction rules, we only need to consider 1 and 2-
branches. The intuition for the 1-branches is as follows: suppose we are given a branch containing
one attachment point. Due to Lemma 3.2, we know that we can assume without loss of generality
that any optimal solution preserves the critical cliques. In other words, we can assume that any
critical clique of G is a clique module of the graph H := (V,E M F ) for any optimal edition F .

G \B

BB

G \B

(i) (ii)

Figure 3: Illustration of the notion of 1- and 2-branches for the Closest 3-Leaf Power problem.

Hence, since the attachment point is a critical clique by definition, and since the pendant graph
attached to this critical clique is a branch, we only need to preserve the attachment point and to
add a special critical clique encoding its neighbourhood. We hence have the following reduction
rule, where A1 stands for the attachment point of any 1-branch B ⊆ V and BR := B \A1.

Rule 2 (1-branche) Let G := (V,E) be an instance of Closest 3-Leaf Power and B ⊆ V a
1-branch of G. Remove from G the vertices of BR and add a new critical clique neighbouring A1,
of size min {|NB(A1)|, k + 1}.

Lemma 3.6 ([9]) Rule 2 is sound and can be applied in polynomial time.

Let G′ := (V ′, E′) be the graph obtained after an application of Rule 2. Due to the particular
adjacency decomposition of 3-leaf powers and since the attachment point is a clique module of the
graph H ′ := (V ′, E′ M F ′) for any k-edition F ′ of G′, the remaining vertices of the branch can be
plugged back into H ′ while preserving a 3-leaf power, and thus F ′ is a k-edition for G.

A similar reduction rule can be designed for 2-branches, that is branches containing exactly two
attachment points. In that case, we can reduce the length of the path composed of critical cliques
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joining the two attachment points [9]. We do not define formally this particular reduction rule, but
a picture of its application is given in Figure 4.

C1

BR

A1 A1

BR

A2A2A1 A1

Figure 4: The branches reduction rules for Closest 3-Leaf Power.

Bounding the size of the kernel To conclude, we give a sketch of the proof used to bound the
size of the kernel. Assume we are given a positive reduced instance G := (V,E) of the Closest 3-
Leaf Power problem. Let F be an edition of G of size at most k. We denote by H := (V,E M F )
the 3-leaf power resulting from the edition of F in G. By Theorem 3.1, we know that the critical
clique graph of CH is a forest. For the sake of simplicity, we will assume that it is a tree. Now, we
define a critical clique of H as affected if it contains an affected vertex. Observe that there are at
most 2k affected critical cliques. We consider the minimal tree TH spanning these vertices in CH .
Now, if we remove the affected critical cliques and the vertices of degree at least 3 in TH (there are
at most 2k such vertices), the 2-branch reduction rule allows us to bound the size of the remaining
connected components. Indeed, if the size of such a component is greater than some given constant
(independent of k), then the graph G could be reduced since such a set of vertices would correspond
to a 2-branch of G. Next, by definition, we know that every set of vertices of H \ V (TH) pendant
to a non-affected critical clique of TH defines a 1-branch. Since the graph is reduced, we can bound
the size of such a set. Finally, using a slightly modified 1-branch reduction rule, we can also bound
the size of any set of vertices of H \V (TH) attached to an affected critical clique of H. Altogether,
we can bound the number of critical cliques of H, which in turn allows us to bound the number of
critical cliques of G using some technical lemma [59]. Rule 1 finally implies the bound on the total
number of vertices of G.

Theorem 3.7 ([9]) The Closest 3-Leaf Power, 3-Leaf Power Completion and 3-Leaf
Power Deletion problems admit kernels with O(k3) vertices.

3.1.3 Branches for Proper Interval Completion

In this section, we present a polynomial kernel for the Proper Interval Completion problem.
As we shall see, the notion of branches can be used on this problem as well, but requires a more
technical analysis. Recall that a graph G := (V,E) is a proper interval graph if it is the intersection
graph of a finite family of intervals of the real line such that no interval strictly contains another
interval. We now give several characterisations of proper interval graphs that will be useful to
define the notion of branches for the Proper Interval Completion problem. We say that an
ordering of the vertices V := {v1, . . . , vn} respects the umbrella property if vivj ∈ E, i < j implies
vivl, vlvj ∈ E for every i < l < j.
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Theorem 3.8 ([53, 68]) The following properties are equivalent:

(i) a graph G := (V,E) is a proper interval graph;

(ii) it does not contain any {net,3-sun,claw,hole} as an induced subgraph (see Figure 5);

(iii) its vertex set admits an ordering respecting the umbrella property.

claw hole3−sun net

Figure 5: The forbidden induced subgraphs for the proper interval graphs.

Adjacency Decomposition This characterization allows us to obtain the adjacency decom-
position for proper interval graphs. Indeed, let G := (V,E) be a proper interval graph and as-
sume σ := v1 . . . vn is an ordering of V respecting the umbrella property. By definition, the set
V1 := {v1, . . . , vl} where vl is the neighbour of v1 with maximal index in σ is a clique of G. Simi-
larly, the set V2 := {vl+1, . . . , vl′}, where vl′ is the neighbour of vl+1 with maximal index in σ, is a
clique of G, and so on. Now, by definition of the umbrella property, the set of vertices V1 and V2
are connected by a join in G. In other words, the graph G[V1 ∪ V2] is a threshold graph: for every
vi, vj ∈ V1, i < j, NV2(vi) ⊆ NV2(vj) holds. Hence, a proper interval graph can be decomposed in
a path of cliques, where every consecutive cliques are connected by a join (see Figure 6).
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Figure 6:

The notion of branches can thus be adapted to this particular decomposition. Now, using more
technical arguments, we can develop reduction rules for the so-called 1- and 2-branches, yielding
to the following result.
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Theorem 3.9 ([10]) The Proper Interval Completion problem admits a kernel with O(k5)
vertices.

3.1.4 Link with protrusions

We now briefly describe the protrusion technique [15], which works on a treewidth decomposition
of a given graph. Using protrusions, Bodlaender et al. [15] are able to derive several polynomial
kernels for edition problems, establishing a unifying framework for problems defined on graphs
of bounded genus. While the concept of protrusions is similar to the notion of branches, some
additional properties on the problem at hand are required in order to make use of such protrusions.
As mentioned, the input graph must be embeddable in a surface of bounded genus. Moreover, the
problems considered by this method have to be expressible in Counting Monadic Second Order
logic (CMSO) and compact [15].

Protrusions Roughly speaking, a protrusion is a subgraph of constant treewidth separated from
the rest of the graph by a constant number of vertices. The idea to reduce such parts of the
graph is as follows [15]: If there is a constant size separator such that after its removal we obtain a
connected component of large size and of constant treewidth, then we replace this component with
a graph of small size. If the idea of this reduction rule is similar to the reduction rule dealing with
branches, observe however that the notion of branches exploit the particular decomposition of the
target class G, which is not the case here. The results presented in [15] apply to p-min-CMSO
(resp. p-eq-CMSO, p-max-CMSO), where one is given a graph G := (V,E) and an integer k and
seeks a set of vertices/edges S of size at most (resp. exactly, at least) k whose modification satisfies
a given CMSO-property Π. For the sake of simplicity, we only mention the results concerning p-
min-CMSO problems. The annotated version of such a problem is additionnally given a subset of
vertices Y ⊆ V and the solution set S must be a subset of Y . In what follows we consider annotated
versions of the problem p-min-CMSO, since the results obtained for annotated problems can be
carried out to classical problems (Corollary 1 in [15]).

Definition 3.10 (r-protrusion) Given a graph G := (V,E), a set X ⊆ V is an r-protrusion of
G if treewidth(G[X]) 6 r and |δ(X)| 6 r.

Reducing the protrusions Let X ⊆ V be an r-protrusion. The aim of a reduction rule dealing
with protrusions is to replace the set of vertices lying in X \ δ(X) by an equivalent graph of
bounded-size. Considering the annotated version is helpful to do so, since one can then assume
that the set of vertices X ∩ Y is a subset of δ(X), and hence S ∩ X ⊆ δ(X) for any solution set
S. Since the border of an r-protrusion is preserved by the reduction rule, this allows to prove
the soundness of such a rule. Roughly speaking, the reduction goes as follows: for every instance
G := (V,E) of an annotated p-min-CMSO problem that can be embedded in a surface of bounded
genus, there exists an algorithm that given an r-protrusion X such that Y ∩ X ⊆ δ(X) outputs
in time O(|X|) an equivalent instance G′ := (V ′, E′) such that |V ′| < |V |. The remaining part of
the kernelization algorithm is thus to prove how to compute a protrusion satisfying the previous
conditions. This can be done as long as the given protrusion contains O(kc) vertices for some
constant c > 0. Finally, they prove how a protrusion of sufficiently large size can be computed in
polynomial time (Subsection 5.1 in [15]), and using some technical and combinatorial results they
obtain the following.
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Theorem 3.11 ([15]) Let Π be a p-min-CMSO problem defined on graphs of bounded genus such
that Π or Π is compact. Then the annotated version ΠA admits a quadratic kernel2.

Corollary 3.12 ([15]) 3 For g > 0, the Independent Dominating Set, Minimum Leaf Out-
Branching, Edge- S-covering and Odd Set problems admit polynomial kernels on graphs of
genus at most g.

3.2 Modular decomposition-based reduction rules

The last graph modification problem we consider is Cograph Edition [40], the cographs being the
graphs that do not admit any path on four vertices as induced subgraph. To obtain a polynomial
kernel for this problem, we use modular decomposition [42]. Since cographs are totally decomposable
for the modular decomposition, the use of this tool to design reduction rules seems to be particularly
well-suited. However, the reduction rules used can also be related to the notion of branches. In
particular, if there exists a module M such that G[M ] is a cograph, then we can safely replace
M by an independent set of size min{|M |, k + 1}. When G[M ] is not a cograph, then we do the
same replacement and preserve a copy of M to keep track of the editions needed inside the module.
Altogether, we obtain the following results.

Theorem 3.13 ([40]) The Cograph Edition, Cograph Edge-Deletion and Cograph Com-
pletion problems admit kernels with O(k3) vertices.

3.3 Kernelization lower bounds

To conclude with graph modification problems, we mention some lower bounds on kernelization
obtained with Sylvain Guillemot, Frédéric Havet and Christophe Paul. These resuls improve
upon reductions first published in [40]. Given a graph Γ := (V,E) and an integer k, the Γ-Edge
Deletion problem asks whether there exists a set F ⊆ E of size at most k such that the graph
H := (V,E \ F ) does not contain Γ as an induced subgraph. The graphs Cl (resp. Pl) are cycles
(resp. paths) containing l vertices.

Theorem 3.14 The Pl-free edge deletion and Cl-free edge deletion problems do not
admit a polynomial kernel for any l > 7, unless NP ⊆ coNP/poly.

To obtain these results, we make use of several recently-introduced tools, named or-composition [11]
and polynomial time and parameter transformation [17]. These particular tools, introduced by Bod-
laender et al. [11, 17] and Fortnow and Saurahm [34], give a theoretical framework to prove that
some parameterized problems do not admit polynomial kernels unless NP ⊆ coNP/poly. The
first technique, namely or-composition in [11], works as follows : assume we are given t instances
(I1, k), . . . , (It, k) of a parameterized problem L. An or-composition for L is a polynomial-time
algorithm (in

∑t
i=1 |Ii| + k) that outputs an instance (Ic, kc) of L such that (i) (Ic, kc) is positive

iff there exists 1 6 i 6 t such that (Ii, k) is positive and (ii) kc ∈ O(kc) for some constant c > 0.
Such a parameterized problem is said to be or-composable.

2The obtained kernels are quadratic for the p-max-CMSO and cubic for p-eq-CMSO.
3Using the notion of finite integer index, Bodlaender et al.[15] improve this result to linear vertex-kernels for

problems on graphs of genus at most g
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Theorem 3.15 ([11]) Let L be an or-composable parameterized problem. Then L does not admit
a polynomial kernel unless NP ⊆ coNP/poly.

Using this result, it is possible to show that several standard problems, such as k-Path, do not
admit polynomial kernels. Based on the notion of NP -complete reductions, Bodlaender et al. [17]
developped the concept of polynomial time and parameter transformation, allowing to carry out
lower bounds results from one problem to another. Formally, a polynomial time and parameter
reduction from a parameterized problem L to a parameterized problem L′ takes as input an instance
(I, k) of L and outputs an instance (I ′, k′) of L′ which is positive iff (I, k) is positive and such that
k′ ∈ O(kc) for some constant c > 0.

Theorem 3.16 ([17]) Let L and L′ be two parameterized problems such that there exists a polynomial-
time and parameter transformation from L to L′. If L′ admits a polynomial kernel, then L admits
a polynomial kernel.

In particular, this result implies that if L is or-composable and polynomial-time and parameter
reducible to L′, then L′ does not admit a polynomial kernel. Thus, in order to design lower
bounds for parameterized problems, it is convenient to define some toy-problem, that can be shown
to be or-composable and which reduces to the main considered problem. To conclude on lower
bounds, we would like to mention that there exists a recently-introduced technique, namely cross-
composition [16], that unifies the previous methods. This technique is in particular well-suited for
proving lower bounds for problems parameterized in a non-standard way [16].

4 Part II. Constraint modification problems

In the second part of the thesis, we look at constraint modification problems, where the underlying
structure is no longer a graph but a set of p-sized constraints R, p > 2, defined over some universe
V . The aim of these problems is to find a set of at most k constraints whose modification imply
that R satisfies the property Π. We are in particular interested in the cases where the consistency
(i.e. satisfiability) of R can be characterized by some conflicts, which are subsets of V of minimum
(finite) size that do not fulfill the property Π. To that aim, it is convenient to consider dense
instances, that is instances that contain exactly one constraint for every p-sized subset of V . As
a first example, we consider the Feedback Arc Set in Tournaments [5] problem, which is
defined on oriented graphs (actually tournaments). Formally, the problem is as follows:

Feedback Arc Set in Tournaments:
Input: A tournament T := (V,A), an integer k.
Parameter: k.
Question: Does there exist a subset F ⊆ A of size at most k such that the tournament obtained
by reversing the arcs of F in T is acyclic?

A constraint for this particular problem is thus a dominant vertex for every pair of vertices.

Known results The Feedback Arc Set in Tournaments problem is NP -complete [4, 24],

but fixed-parameter tractable [5, 49], the best algorithm running in time O∗(2O(
√
k)) [49]. In order
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to design a parameterized algorithm for the problem, Alon et al. [5] obtained a kernel with at most
O(k2) vertices. However, no linear vertex-kernel was known so far.

Our contribution Together with Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe
Paul, Saket Saurabh and Stéphan Thomassé, we prove that such a kernel can be obtained
for Feedback Arc Set in Tournaments [6]. To do so, we heavily use a well-known result,
stating that a tournament is acyclic if and only if it does not contain a directed circuit on three
vertices. Hence, the notion of conflict for this particular problem referes to directed circuit on three
vertices. Moreover, we introduce the notion of safe partition, which constitutes the core tool of our
kernelization algorithm. We will see in Section 4.2 that this method can be used for other problems.

4.1 Safe partition

Intuition Let R := (V,R) be an instance of the Π-Constraint Modification problem where
the consistency of R can be characterized by some conflicts. The idea of a safe partition is as
follows: assume that we can partition the collection of constraints R into two collections RI et RO
such that the conflicts contained in RO can be solved in such a way that the remaining conflicts
are contained in RI . Using this fact, it is then possible to show that the editions of RI and RO
can be done independently. Such a partition is defined as a safe partition if we can certify that the
edition of a set of constraints F ⊆ RO that solves all the conflicts contained in RO can be done in
a sound manner. Thus, finding a so-called safe partition in polynomial time will allow us to reduce
the given instance.

Safe partition for tournaments We now formally define a safe partition for the problem
Feedback Arc Set in Tournaments. In the following, we consider ordered tournaments Tσ :=
(V,A, σ) whose vertices are fixed under some ordering σ. Given a partition P := {V1, . . . , Vl} of σ
into sets of consecutive vertices, with σ(Vi) < σ(Vj for i < j, we denote by AB the set of arcs whose
extremities belong to different parts of P, and AI := A \ AB. Moreover, we let B(AB) denote the
set of backward arcs of AB, i.e. the set of arcs uv ∈ A with σ(v) < σ(u). Observe that given such
a partition, the reversal of all backward arcs of AB solves the conflicts contained in AB, and the
remaining conflicts are contained in AI . Roughly speaking, this means that the reversals inside the
parts and between the parts can be done independently. Hence, since the reversal of the arcs of
B(AB) would solve all the conflicts lying between the parts, the aim is to give necessary conditions
on P that certify the existence of a solution containing B(AB). This can be done with the notion
of safe partition.

Definition 4.1 (Safe partition [6]) Let Tσ := (V,A, σ) be an ordered tournament and P be a
partition of Tσ. We say that P is safe if B(AB) 6= ∅ and there exist |B(AB)| arc-disjoint directed
triangles using arcs of AB only.

Rule 3 ([6]) Let Tσ := (V,A, σ) be an ordered tournament and P be a safe partition of Tσ. Reverse
all the arcs of B(AB) and decrease k by |B(AB)|.

Lemma 4.2 ([6]) Rule 3 is sound.

Lemma 4.3 ([6]) Let Tσ := (V,A, σ) be an ordered tournament having at most p backward arcs,
with |V | > 2p. There exists a safe partition of Tσ that can be computed in polynomial time.
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In order to apply Rule 3 we need to find an ordering that satisfies the conditions of Lemma 4.3.
This can be done using any constant-factor approximation algorithm for Feedback Arc Set in
Tournaments (which admits even a PTAS [50]). Indeed, the ordering given by the approximation
algorithm (which contains a number of backward arcs bounded by a constant times k by construc-
tion) can be used to construct a safe partition provided that the number of vertices is large enough.
We hence have the following result.

Theorem 4.4 ([9]) For every ε > 0, the Feedback Arc Set in Tournaments problem admits
a kernel with at most (2 + ε)k vertices.

4.2 Conflict Packing: a unifying technique

We now study two problems related to Feedback Arc Set in Tournaments, namely Dense
Betweenness and Dense Rooted Triplet Inconsistency. These problems are defined on a
dense collection of constraints R, respectively betweenness constraints and rooted binary trees on
three leaves. We first consider the Dense Betweenness problem. A betweenness constraint t is a
pair ({a, b, c},m) where {a, b, c} ⊆ V , and m ∈ {a, b, c} defines the choosen vertex of the constraint
t. For the sake of simplicity, we say that t chooses the vertex m. Assuming w.l.o.g. that m = b,
we say that t consistent with an ordering σ over V if σ(a) < b < σ(c) or σ(c) < b < σ(a). A set of
betweenness constraints R is consistent if there exists an ordering σ on V such that every t ∈ R is
consistent with σ.

Dense Betweenness:
Input: A set V , a dense collection of betweenness constraints R defined over V , an integer k.
Parameter: k.
Question: Does there exist an ordering of V consistent with all but at most k betweenness
triplets of R?

Next, we consider the Dense Rooted Triplet Inconsistency problem. A rooted triplet t
is a rooted binary tree on a set of three leaves V (t) = {a, b, c}. We write t = ab|c if a and b are
siblings of a child of the root of t, the other child of the root being c. We also say that t chooses
c. Let t ∈ R be a rooted triplet and T be a tree over V . Then t is consistent with T if the tree
spanning the leaves of T corresponding to V (t) is homeomorphic to t, and inconsistent otherwise.
A set of rooted triplets R is consistent if there exists a rooted binary tree T over V such that every
t ∈ R is consistent with respect to T .

Dense Rooted Triplet Inconsistency :
Input : A set V , a dense collection of rooted binary trees on three leaves R defined over V , an
integer k.
Parameter : k.
Question : Does there exists a rooted binary tree T defined over V that contains all but at
most k rooted binary trees of R?

Known results There exist (subexponential) parameterized algorithms for both problems [5, 37],
and Dense Rooted Triplet Inconsistency is known to admit a quadratic vertex-kernel [37].
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As Feedback Arc Set in Tournaments, Dense Betweenness admits constant-factor ap-
proximation algorithms (there exists a PTAS for this problem as well [49]). The existence of such
an algorithm together with a particular sunflower-based reduction rule allows us to obtain a linear
vertex-kernel for this problem, that we will not detail here.

Theorem 4.5 For every ε > 0, the Dense Betweenness problem admits a kernel with at most
(4 + ε)k vertices.

Nevertheless, due to the very nature of the problem, the sunflower technique is not enough to
obtain a linear-vertex kernel for the Dense Rooted Triplet Inconsistency problem. However,
the notion of safe partition can be used, implying that any constant-factor approximation algorithm
would allow us to obtain a linear vertex-kernel for this problem as well. Unfortunately, no such
algorithm is known for the Dense Rooted Triplet Inconsistency problem yet [37].

Our contribution In a joint work with Christophe Paul and Stéphan Thomassé [57], we use
this observation to develop a technique used in a few parameterized problems [21, 32, 67] that
we call Conflict Packing. This method allows us in particular to find the first linear kernel for
Dense Rooted Triplet Inconsistency, improving the best known bound of O(k2) vertices [37].
Regarding the Dense Betweenness problem, we obtain a linear vertex-kernel, which constitutes
the first polynomial kernel for this problem [49].

4.2.1 Definition and main idea

The aim of the use of a constant-factor approximation algorithm for Feedback Arc Set in
Tournaments [6] is to compute a particular ordering from which a safe partition will then be
computed. The aim of a Conflict Packing is to provide such a tool for problems that are not known
to admit constant-factor approximation algorithms. In particular, Conflict Packing provides a lower
bound on the number of editions required to obtain a consistent instance, which in turn will imply
the existence of a particular structure (depending on the considered problem) that will be used to
obtain a kernelization algorithm. Roughly speaking, the Conflict Packing technique thus replaces
the constant-factor approximation algorithms and consists in the following steps:

- Conflict Packing : first, we greedily (i.e. in polynomial time) compute a conflict packing for
the problem at hand. Roughly speaking, a conflict packing is a maximal family of edges (or
constraints) disjoint conflicts. As we shall see, this definition needs to be refined for several
problems, in particular when two conflicts can share a constraint but still require two distinct
editions. In all cases, the aim of a conflict packing is to provide a lower bound on the number
of editions required to obtain an instance satisfying the property Π.

- Size : given a positive instance of the considered problem, the next step consists in showing
that a conflict packing C contains O(kc) vertices, for some constant c > 0. When the conflict
packing is defined as a maximal family of edges (or constraints) disjoint conflicts, this result is
trivial. However, when the notion of conflict packing needs to be refined, we will see that some
technical arguments are required to bound the size of C. Moreover, when this technique is
applied on the G-Vertex Deletion problem, one needs to use a sunflower -based reduction
rule to obtain such a result.
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- Reduction : the remaining step is now to bound the size of the set V \V (C), where V (C) ⊆ V
denotes the set of vertices contained in C. By maximality of the conflict packing C, we know
that the instance induced by GC := G\V (C) (orRC := R\V (C) obtained by the deletion of all
constraints contained in V (C)) fulfills the property Π. Moreover, for every vertex u ∈ V (C),
the instance GC ∪ {u} (or RC ∪ {u}) also fulfills the property Π. Hence, bounding the size
V \ V (C) can be done using these two facts. This particular step is problem-specific, and
cannot be described in a general manner.

This technique has already been used by Brügmann et al. [21] (resp. Fernau and Raible [32])
to obtain a linear (resp. quadratic) vertex-kernel for the problem Triangle Edge Deletion
(resp. P3-Packing). Another exemple of graph modification problem where this technique can be
applied is Cluster Vertex Deletion [44]. The Conflict Packing technique provides a quadratic
vertex-kernel for this problem, but does not improve the previous kernel result for this problem [1].
In what follows, we present several constraint modification problems on which this technique can be
applied (Sections 4.2.2 and 4.2.4). We also mention a similar technique introduced by van Bevern
et al. [65], namely kernelization through tidying (Section 4.2.3).

4.2.2 Linear vertex-kernel for Feedback Arc Set in Tournaments

We first illustrate this notion on the Feedback Arc Set in Tournaments problem. We will
show that the Conflict Packing technique allows to obtain a linear vertex-kernel for this problem.
Even if such a result was known to exist [6], the kernelization algorithm presented here uses simpler
arguments, and does not require a constant-factor approximation algorithm anymore. We will see
that this fact can be very useful when dealing with problems that do not admit constant-factor
approximation algorithm yet (Section 4.2.4). We use the following rule from [5].

Rule 4 ([5]) Let T := (V,A) be an instance of Feedback Arc Set in Tournaments. Remove
from T any vertex that does not belong to any directed triangle.

We now state the main definitions and results of this Section.

Definition 4.6 ([57]) Let T := (V,A) be an instance of Feedback Arc Set in Tournaments.
A conflict packing of T is a maximal collection C of arc-disjoint directed triangles.

Lemma 4.7 ([57]) Let T := (V,A) be a positive instance of Feedback Arc Set in Tourna-
ments and C be a conflict packing of T . Then |C| 6 k and |V (C)| 6 3k.

Lemma 4.8 (Conflict Packing [57]) Let T := (V,A) be an instance of Feedback Arc Set
in Tournaments and C be a conflict packing of T . There exists an ordering σ of V that can be
computed in polynomial time and whose backward arcs uv verify u, v ∈ V (C).

We now prove that the Feedback Arc Set in Tournaments problem admits a kernelization
algorithm returning an instance containing at most 4k vertices. As we already mentioned, such a
result can be obtained by combining the notion of safe partition and a PTAS for Feedback Arc
Set in Tournaments [50]. We give a sketch of the proof of Theorem 4.9, which avoides the use of
the constant-factor approximation algorithm and makes use of the ordering provided by Lemma 4.8
instead.
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Theorem 4.9 ([57]) The Feedback Arc Set in Tournaments problem admits a kernel with
at most 4k vertices.

Sketch of the proof. Let T := (V,A) be a positive instance of Feedback Arc Set in Tour-
naments reduced under Rule 4, and σ be an ordering obtained through Lemma 4.8. We construct
a bipartite graphe B := (I ∪ V ′, E), where:

(i) V ′ := V \ V (C),
(ii) there is a vertex ivu in I for every backward arc vu of Tσ and,

(iii) ivuw ∈ E if w ∈ V ′ and {u, v, w} is a directed triangle.

Now, any matching of size (at least) k + 1 in B corresponds to a collection of (at least) k + 1
arc-disjoint directed triangles, implying that T := (V,A) is a negative instance, which is not by
hypothesis. Thus, the size of a maximum matching in B is bounded from above by k, and hence
B admits a vertex cover D of size at most k. Let D1 and D2 denote the sets D ∩ I and D ∩ V ′,
respectively. Observe in particular that |D2| 6 k. Now, assuming that |V | > 4k, since |V (C)| 6 3k
(Lemma 4.7), we have |V ′| > k and hence (V ′ \ D2) 6= ∅. We use this fact to design the ordered
partition P := {V1, . . . , Vl} of Tσ where every part Vi consists of either a vertex of V ′ \ D2 or a
maximal subset of consecutive vertices (in σ) of V \ (V ′ \ D2). Using again matching arguments
and Hall’s Theorem [43], we finally prove the following.

Lemma 4.10 The partition P is a safe partition of Tσ.

Hence, as long as the number of vertices is greather than 4k, there exists a safe partition that
can be computed in polynomial time, and hence the input tournament can be reduced. �

We would like to observe that this particular counting argument is not restricted to the Feed-
back Arc Set in Tournaments problem: indeed, such a bipartite graph can be designed for any
constraint modification problem characterized by finite conflicts, as long as a well-suited structure
can be computed in polynomial time (Lemma 4.8). This can be done using the Conflict Packing
technique. Next, with this bipartite graph in hand, it is possible to conclude using again simple
matching arguments. As we shall see, the Dense Rooted Triplet Inconsistency problem
fits in this framework. Before presenting this result, we connect Conflict Packing with a recently-
introduced method called kernelization through tidying [65] , which deals with vertex-deletion prob-
lems.

4.2.3 Link with kernelization through tidying

In [65], van Bevern et al. consider the G-Vertex Deletion problem for graph classes G that can
be characterized by a finite family of forbidden induced subgraphs F . Their method works in three
steps:

- Approximation: first, greedily (i.e. in polynomial time) compute an approximation set S
for the problem. By definition of G, S contains at most hk vertices, where h denotes the
maximum number of vertices contained in a forbidden induced subgraph of G. It remains to
bound the number of vertices of the graph G \S, which can be done using the fact that G \S
is F-free and the tidying step.
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- Tidying: In a second step, compute a tidying set T ⊆ V \ S using the sunflower reduction
rule. Roughly speaking, we will then have |S ∪ T | ∈ O(k2) and the graph (G \ (S ∪ T ))∪ {u}
will be F-free for any u ∈ S (called local tidiness property).

- Shrinking: the last step is problem-specific, and consists in shrinking the graph G \ (S ∪ T )
by using data reduction rules specific to the problem at hand and the local tidiness property.
If the number of vertices of this particular graph can be reduced to p(k) for some polynomial
p, then we obtain a kernel containing O(h2k2 + p(k)) vertices.

Observe that our definition of conflict packing can be adapted in a similar way for this particu-
lar problem. Here, a conflict packing C would be a maximal family of forbidden induced subgraphs
pairwise intersecting in at most one vertex. By definition, this constitutes an approximation set
since the graph G \ V (C) is F-free. Using the sunflower reduction rule, it is not hard to show that
|V (C)| 6 h2k2. Now, the graph (G \ V (C) ∪ {u} is F-free for any u ∈ V (C)), which corresponds
to the local tidiness property previously mentioned. Finally, the shrinking step can be applied in a
similar way that in the kernelization through tidying technique.

In what follows, we explain how the Conflict Packing technique can be refined to obtain linear-
vertex kernels for several constraint modification problems. As we will see, considering a maximal
collection of constraint disjoint conflict is no longer enough for such problems.

4.2.4 Linear vertex-kernel Dense Rooted Triplet Inconsistency

We describe how this technique can be used to obtain a linear vertex-kernel for the Dense Rooted
Triplet Inconsistency problem, improving the best known bound of O(k2) vertices [37]. As
mentioned before, the aim of a conflict packing is to provide a lower bound on the size of the solution
by considering a maximal family of particular conflicts. Recall that a conflict is a minimum subset
of V of (finite) size that does not fulfill the property Π. In the following, we use the term conflict
to denote both the subset of vertices of V and the set of constraints contained in this particular
subset. In the case of Dense Rooted Triplet Inconsistency, it is not sufficient to consider
constraint-disjoint conflicts. Indeed, in this problem, two conflicts may share a rooted triplet but
still require two distinct editions. To see this, let {a, b, c, d, e} be a set of leaves and consider the
following conflicts: C = {ab|c, ac|d, ad|b, cd|b} and C′ = {ed|c, ed|b, bc|e, bd|c}. Observe first that C
remains a conflict for any choice of {b, c, d}. Since C and C′ only have this rooted triplet in common,
no edition on C′ can solve C. Hence (at least) two distinct editions are required to solve both C and
C′. Hence, we need to refine the definition of conflict packing, which can be done using the notion
of seed.

Definition 4.11 (Seed [57]) Let R := (V,R) be an instance of Dense Rooted Triplet In-
consistency and C := {a, b, c, d} be a conflict of R. We say that a is a seed of C is C is a conflict
for any choice of {b, c, d}.

In other words, the set {{a, b, c}, {a, c, d}, {a, b, d}} is a conflict of R independently from the
choice of {b, c, d}.

Definition 4.12 ([57]) Let R := (V,R) be an instance of Dense Rooted Triplet Inconsis-
tency. A conflict packing of R is a maximal sequence of conflicts C = {C1, C2, . . . , Cl} such that
for every 2 ≤ i ≤ l:
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bc|d, cd|b, bd|c

a

ab|c

cd|a

bd|a

a b dc

Figure 7: The notion of seed for Dense Rooted Triplet Inconsistency. The set
{ab|c, cd|a, bd|a} is a conflict for any choice of {b, c, d}.

- Either Ci intersects ∪16j<iCj on at most two leaves or,

- Ci has a unique leaf not belonging to ∪16j<iCj, which is a seed of Ci.

The kernelization algorithm follows the same lines than the one for Feedback Arc Set in
Tournaments: a conflict packing C contains O(k) vertices (otherwise the instance is negative and
we simply return a trivial No-instance of constant size) and the instance induced by V \ V (C) is
consistent. We can use this fact to obtain an embedded tree for R.

Lemma 4.13 ([57]) Let R := (V,R) be an instance of Dense Rooted Triplet Inconsistency
and C be a conflict packing of R. There exists a rooted binary tree T over V that can be computed
in polynomial time and whose inconsistent triplets t verify V (t) ∈ V (C).

Using Lemma 4.13, it is then possible to compute a safe partition in polynomial time, providing
that V contains more than 5k vertices. To adapt the notion of safe partition for this particular
problem, we define a tree partition of an embedded instance RT := (V,R, T ). We say that P =
{T1, . . . , Tl} is a tree partition of V if there exist l nodes and leaves x1, . . . , xl of T such that: (i)
for every i ∈ [l] Ti = Txi and (ii) the set of leaves in ∪li=1Txi partition V . A tree partition of
RT naturally distinguishes two sets of rooted triplets: RI = {t ∈ R | ∃i ∈ [l] V (t) ⊆ V (Ti)} and
RO = R \ RI . Now, the definition of a safe partition is similar to Definition 4.1. Altogether, this
yields to the following result.

Theorem 4.14 ([9]) The Dense Rooted Triplet Inconsistency problem admits a kernel
with at most 5k vertices.

Dense Betweenness To conclude, we would like to mention that the Conflict Packing tech-
nique can also be applied to the Dense Betweenness problem. Unlike Feedback Arc Set in
Tournaments and Dense Rooted Triplet Inconsistency, this kernelization algorithm do
not require the notion of safe partition. Instead, using the order providing by the Conflict Packing
Lemma, it is possible to use a sunflower-based reduction rule in order to conclude.

Theorem 4.15 ([9]) The Dense Betweenness problem admits a kernel with at most 5k vertices.
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5 Part III. Beyond kernelization

In the last part of this thesis, we mention some techniques that can be used when no polynomial-
time reduction rules can be found for the problem at hand. In particular, in a joint work with Jean
Daligault, Christophe Paul and Stéphan Thomassé [26], we used the notion of irrelevancy [54]
and graph minor theory [60, 61] to prove that the Multicut problem can be reduced in FPT time
to instances of treewidth bounded by a function of k. Determining the parameterized complexity of
this problem was a long-standing open question [27], and our result has been used by Bousquet et al.
to obtain a parameterized algorithm for the problem [18]. Formally, Multicut is defined as follows:

Multicut:
Input: A graph G := (V,E), a set of requests (i.e. pairs of vertices of V ) R, an integer k.
Parameter: k.
Question: Does there exist a set F ⊆ E of size at most k whose removal disconnects every
request of R?

Theorem 5.1 ([26]) The Multicut problem can be reduced to instances of treewidth bounded by
a function of k.

Reducing the graph Let (G,R, k) be an instance of the Multicut problem such that G has
large treewidth (with respect to parameter k). Due to a famous theorem of Robertson and Sey-
mour [60], it is known that when a graph has large treewidth then it contains a large clique or
grid minor (with respect to the parameter k). We make use of this structural theorem to obtain
structural information on the possible solutions for the problem. The core tools of our approach
lie in the study of some connectivity problems of independent interest. In particular, we prove
that the Triple Separation problem is FPT. Given three vertices x, y, z of a graph G := (V,E),
we define a (zy|x)-cut of size k as a set of k edges whose deletion in G disconnects z from x but
does not disconnect z from y. Formally, the Triple Separation problem can be defined as follows.

Triple Separation:
Input: A graph G := (V,E), three vertices x, y, z, an integer k.
Parameter: k.
Question: Does there exist a (zy|x)-cut of size at most k?

The second connectivy problem that we consider is based on the notion of strong connectivity.
Given a graph G := (V,E), a set T ⊆ V , two integers k and k′ and a vertex z of G, we say that a
vertex x /∈ T is k′-strongly (z|T )-k-connected if for every subset S ⊆ T such that |S| > |T |−k′, there
is no (zx|S)-cut. In other words, for every such subset S, every cut of size at most k between z and
S disconnects x from S. We prove that whenever the set T has sufficiently large size (with respect
to parameter k), then there exists a vertex x ∈ T which is k′-strongly (z|T \ {x})-k-connected and
that can be found in FPT time. In particular, such a result allows us to obtain a parameterized
reduction rule as follows. We say that a request r ∈ R is irrelevant if the instances (G,R, k) and
(G,R \ {r}, k) are equivalent. Assume there exists a vertex u ∈ V that is incident to more than
kO(k) requests. Hence, using the previous connectivity properties, we can find in FPT time an
irrelevant request incident to that vertex, and hence reduce the graph.
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These two results allow us to obtain the following reduction rules for the Multicut problem.
A set T ⊆ V is gathered if for every set F ⊆ E of size at most k, there exists at most one connected
component of G \ F containing at least two vertices of T .

Rule 5 ([26]) Let G := (V,E) be an instance of Multicut.

- If a vertex is incident to more than kO(k) requests, then it is incident to an irrelevant request.

- If G is reduced by the previous reduction rule, and if there exists a gathered set of sufficiently
large size, then there exists an irrelevant request that can be identified in FPT time.

Bounding the treewidth In order to bound the treewidth of the graph, we use the graph minor
theory [60, 61]. We first consider the case when the graph contains a large clique minor, using the
previous reduction rules to reduce the graph. Next, if the graph contains a large grid minor but no
clique minor, we are able to prove that the graph contains either a large gathered set of terminals
(and hence an irrelevant request), or that there exists an edge that can safely be contracted. In
all cases, as long as the treewidth of the graph G is large enough, then we can reduce the graph in
FPT time.

Consequences To conclude on the Multicut problem, we mention one of the main consequence
of our treewidth-reduction, which has been used by Bousquet et al. [18] to design a parameterized
algorithm for Multicut. The request graph RG of an instance (G,R, k) of Multicut contains the
vertices V of G as vertices, and there is an edge between two vertices u, v ∈ V (RG) iff (u, v) ∈ R.

Theorem 5.2 ([26]) Let (G,R, k) be an instance of Multicut. There exists a function f such
that the degree of the request graph RG is bounded by f(k).

6 Conclusion

6.1 Our results

In this thesis we have proved several polynomial kernels for graph (and constraint) modification
problems. To that aim, we developed mainly two techniques, namely branches for graph modifi-
cation problems and Conflict Packing for constraint modification problems. We believe that these
techniques will be useful to design kernelization algorithms for several other modification problems.
In particular, we obtained polynomial kernels for Closest 3-Leaf Power, Proper Interval
Completion, answering two questions left open by Dom et al. [29] and Kaplan et al. [46]. More-
over, our polynomial kernels are the first known for the problems. Therefore, since it is known that
not all parameterized problems admit polynomial kernels unless NP ⊆ coNP/poly, our results are
relevant from a theoretical viewpoint.

6.2 Open problems

We now mention several open problems related with the work presented in this extended abstract.
First of all, the bounds obtained on the size of some kernels seem to let room for improvement.
Hence, this raises the following question.
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Problem 1 Can we improve the polynomial kernels obtained for Closest 3-Leaf Power, Proper
Interval Completion and Cograph Edition?

We now mention several known open problems in kernelization, that fit to the context of
branches. Notice that the two problems we mention are known to be fixed-parameter tractable [54,
66].

Problem 2 Do the Chordal Deletion and the Interval Completion problems admit poly-
nomial kernels?

Regarding constraint modification problems, it would be nice to determine on which problems
the Conflict Packing technique can be used. In particular, there exists several NP -hard problems
defined on hard instances [3] that seem to be candidates to fit in this framework.

Problem 3 Can the Conflict Packing be applied (or generalized) to other problems defined on
dense instances?

Moreover, in order to have a better understanding on the relations between problems defined
on dense instances, it would be nice to answer the following question.

Problem 4 Does the Dense Rooted Triplet Inconsistency problem admit a constant-factor
approximation algorithm?

Finally, we address one of the main open problem related with the work done on Multicut.

Problem 5 Does the Multicut problem admit a polynomial kernel?
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[44] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter algorithms for
cluster vertex deletion. Theory of Computing Systems, 47(1):196–217, 2010.

[45] I. A. Kanj, M. J. Pelsmajer, and M. Schaefer. Parameterized algorithms for feedback vertex
set. In International Workshop on Parameterized and Exact Computation (IWPEC), volume
3162 of Lecture Notes in Computer Science, pages 235–247, 2004.

[46] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems
on chordal and interval graphs: Minimum fill-in and physical mapping. In Symposium on
Foundations of Computer Science (FOCS), pages 780–791, 1994.

[47] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion prob-
lems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing,
28(5):1906–1922, 1999.

[48] M. Karpinski and W. Schudy. Approximation schemes for the betweenness problem in tour-
naments and related ranking problems. CoRR, abs/0911.2214, 2009.

[49] M. Karpinski and W. Schudy. Faster algorithms for feedback arc set tournament, kemeny
rank aggregation and betweenness tournament. In International Symposium on Algorithms
and Computation (ISAAC), pages 3–14, 2010.

[50] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In ACM Symposium on
Theory of Computing (STOC), pages 95–103, 2007.

[51] S. Kratsch and M. Wahlström. Two edge modification problems without polynomial kernels.
In International Workshop on Parameterized and Exact Computation (IWPEC), volume 5917
of LNCS, pages 264–275, 2009.

25



[52] G.H. Lin, P.E. Kearney, and T. Jiang. Phylogenetic k-root and steiner k-root. In Interna-
tional Symposium on Algorithms and Computation (ISAAC), number 1969 in Lecture Notes
in Computer Science, pages 539–551, 2000.

[53] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers &
Mathematics with Applications, 25(7):15 – 25, 1993.

[54] D. Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.

[55] R. Niedermeier. Invitation to fixed parameter algorithms, volume 31 of Oxford Lectures Series
in Mathematics and its Applications. Oxford University Press, 2006.

[56] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-tractable
algorithms. Information Processing Letters, 73(3-4):125–129, 2000.
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a b s t r a c t

A graph G = (V , E) is a 3-leaf power iff there exists a tree T the leaf set of which is V and
such that uv ∈ E iff u and v are at distance at most 3 in T . The 3-leaf power graph edge
modification problems, i.e. edition (also known as the closest 3-leaf power), completion
and edge-deletion are FPT when parameterized by the size of the edge set modification.
However, polynomial kernels were known for none of these three problems. For each of
them, we provide kernels with O(k3) vertices that can be computed in linear time. We
thereby answer an open problem first mentioned by Dom et al. (2004) [8].

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

The combinatorial analysis of experimental data-sets naturally leads to graph modification problems. For example,
extracting a threshold graph from a dissimilarity on a set is a classical technique used in clustering and data analysis to
move from a numerical to a combinatorial data-set [1,16]. The edge set of the threshold graph aims at representing the
pairs of elements which are close to each another. As the dissimilarity reflects some experimental measures, the edge set
of the threshold graph may reflect some false positive or negative errors. So for the sake of cluster identification, the edge
set of the threshold graph has to be edited in order to obtain a disjoint union of cliques. This problem, known as cluster
editing, is fixed-parameter tractable (see e.g. [12,13,25]) and efficient parameterized algorithms have been proposed to
solve biological instances with about 1000 vertices and several thousand edge modifications [2,7]. So, motivated by the
identification of some hidden combinatorial structures on experimental data-sets, edge-modification problems cover a
broad range of classical graph optimization problems, among which are completion problems, edition problems and edge-
deletion problems (see [19] for a recent survey). Precisely, for a given graph G = (V , E), in a completion problem, the set
F of modified edges is constrained to be disjoint from E, whereas in an edge deletion problem F has to be a subset of E. If
no restriction applies to F , then we obtain an edition problem. Though most of the edge-modification problems turn out
to be NP-hard problems, efficient algorithms can be obtained to solve the natural parameterized version of some of them.
Indeed, as long as the number k of errors generated by the experimental process is not too large, one can afford a time
complexity exponential in k. A problem is fixed parameterized tractable (FPT for short) with respect to parameter kwhenever
it can be solved in time f (k) ·nO(1), where f (k) is an arbitrary computable function. Here, the natural parameterization is the

I Work supported by the French research grant ANR-06-BLAN-0148-01 ‘‘Graph Decomposition and Algorithms – GRAAL’’.
∗ Corresponding author. Fax: +33 467 8500.
E-mail addresses: bessy@lirmm.fr (S. Bessy), paul@lirmm.fr (C. Paul), perez@lirmm.fr (A. Perez).

0166-218X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2010.07.002

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:bessy@lirmm.fr
mailto:paul@lirmm.fr
mailto:perez@lirmm.fr
http://dx.doi.org/10.1016/j.dam.2010.07.002


S. Bessy et al. / Discrete Applied Mathematics 158 (2010) 1732–1744 1733

number k = |F | of modified edges. The generic question is thereby whether for fixed k, a given edge modification problem
is tractable. More formally:
ParameterizedΠ-modification Problem
Input: An undirected graph G = (V , E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V × V with |F | 6 k such that the graph G+ F = (V , E M F) satisfiesΠ .
This paper studies the parameterized version of edge modification problems and more precisely the existence of a

polynomial kernel. A problem is kernelizable if every instance (G, k) can be reduced in polynomial time (using reduction
rules) into an instance (G′, k′) such that k′ 6 k and the size of G′ is bounded by a function of k. The membership to the
FPT complexity class is equivalent to the property of having a kernel (see [20] for example). Having a kernel of small size is
clearly highly desirable [15]. Indeed, preprocessing the input in order to reduce its size while preserving the existence of a
solution is an important issue in the context of various applications ([15]). However, the equivalence mentioned above only
provides an exponential bound on the kernel size. For a parameterized problem, the challenge is then to know whether or
not it admits a polynomial – or even linear (in k) – kernel (see e.g. [20]). The k-vertex cover problem is the classical example
of a problem with a linear kernel. Recently, parameterized problems (among which the k-treewidth problem) have been
shown to not have polynomial kernels [3] (unless some collapse occurs in the computational complexity hierarchy).
This paper follows this line of research and studies the kernelization of edge-modification problems related to the family

of leaf powers, graphs arising from a phylogenetic reconstruction context [17,18,21]. The goal is to extract, from a threshold
graph G on a set S of species, a tree T , whose leaf set is S and such that the distance between two species is at most p in T iff
they are adjacent in G (p being the value used to extract G from dissimilarity information). If such a tree T exists, then G is
a p-leaf power and T is its p-leaf root. For p 6 5, the p-leaf power recognition is polynomial time solvable [5,6], whereas the
question is still open for p strictly larger than 5. Parameterized p-leaf power edge modification problems have been studied
so far for p 6 4. The edition problem for p = 2 is known as the Cluster Editing problem for which the kernel size bound
has been successively improved in a series of recent papers [12,13,24], culminating in [14] with a kernel with 4k vertices.
For larger values of p, the edition problem is known as the closest p-leaf power problem. For p = 3 and 4, the closest
p-leaf power problem is known to be FPT [10,9], while its fixed parameterized tractability is still open for larger values of
p. However, the existence of a polynomial kernel for p 6= 2 remained an open question [8,11]. Though the completion and
edge-deletion problems are FPT for p 6 4 [9,11], no polynomial kernel is known for p 6= 2 [14].
Our results. We prove that the closest 3-leaf power, the 3-leaf power completion and the 3-leaf power edge-deletion
admit a kernel with O(k3) vertices. We thereby answer positively to the open question of Dom et al. [9,11].
Outlines. The first section is dedicated to some known and new structural results of 3-leaf powers and their related
critical clique graphs. Section 2 describes the data-reduction rules for the closest 3-leaf power problem. The kernels for
the other two variants, the 3-leaf power completion and the 3-leaf power edge-deletion problems, are presented in
Section 3.

1. Preliminaries

The graphs we consider in this paper are undirected and loopless. The vertex set of a graph G is denoted by V (G), with
|V (G)| = n, and its edge set by E(G), with |E(G)| = m (or V and E when the context is clear). The open neighborhood of a
vertex x is denoted by NG(x) (or N(x)), and its closed neighborhood (i.e. NG(x) ∪ {x}) by N[x]. Two vertices x and y of G are
true twins if they are adjacent and N(x) = N(y). A subset S of vertices is a module if for every distinct vertices x and y of S,
N(x) \ S = N(y) \ S. Given a subset S of vertices, G[S] denotes the subgraph of G induced by S. If H is a subgraph of G, G \ H
stands for G[V (G) \ V (H)]. We write dG(u, v) the distance between two vertices u and v in G. For a subset S ⊆ V , dS(u, v)
denotes the distance between u and v within G[S], and is set to∞ if u and v are not connected in G[S]. A graph family F is
hereditary if for every graph G ∈ F , every induced subgraph H of G also belongs to F . For a set S of graphs, we say that G is
S-free if none of the graphs of S is an induced subgraph of G.
As the paper deals with undirected graphs, we abusively denote by X × Y the set of unordered pairs containing one

element of X and one of Y . Let G = (V , E) be a graph and F be a subset of V × V , we denote by G + F the graph on vertex
set V , the edge set of which is E M F (the symmetric difference between E and F ). Such a set F is called an edition of G (we
may also abusively say that G + F is an edition). We improperly speak about edges of F , even if the elements of F are not
all edges of G. A vertex v ∈ V is affected by an edition F whenever F contains an edge incident to v. Given a graph family F
and given a graph G = (V , E), a subset F ⊆ V × V is an optimal F -edition of G if F is a set of minimum cardinality such that
G + F ∈ F . If we constrain F to be disjoint from E, we say that F is a completion, whereas if F is asked to be a subset of E,
then F is an edge deletion.

1.1. Critical cliques

The notions of critical clique and critical clique graph have been introduced in [18] in the context of phylogenetic. More
recently, they have been successfully used in various modification problems such as Cluster Editing [14] and Bicluster
Editing [24].
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Definition 1.1. A critical clique of a graph G is a clique K which is a module and is maximal under this property.

It follows from the definition that the setK(G) of critical cliques of a graph G defines a partition of its vertex set V .

Definition 1.2. Given a graph G = (V , E), its critical clique graph C(G) has a vertex setK(G) and edge set E(C(G))with

KK ′ ∈ E(C(G))⇔ ∀ v ∈ K , v′ ∈ K ′, vv′ ∈ E(G)

Let us note that given a graph G, its critical clique graph C(G) can be computed in linear time with the modular
decomposition algorithm (see [26] for example).
The following lemma was used in the construction of polynomial kernels for Cluster Editing and Bicluster Editing

problems in [24].

Lemma 1.3. Let G = (V , E) be a graph. If H is the graph G+ {(u, v)} with (u, v) ∈ V × V , then |K(H)| 6 |K(G)| + 4.

The next lemma shows that for a range of graph families, critical cliques are robust under optimal edition.

Lemma 1.4. Let F be an hereditary graph family closed under true twin addition. For every graph G = (V , E), there exists an
optimal F -edition (resp. F -deletion, F -completion) F such that every critical clique of G+ F is the disjoint union of a subset of
critical cliques of G.

Proof. We prove the statement for the edition problem. Same arguments apply for edge deletion and edge completion
problems.
Let F be an optimal F -edition of G such that the number i of critical cliques of Gwhich are clique modules in H = G+ F

is maximum. DenoteK(G) = {K1, . . . , Kc} and assume that i < c (i.e K1, . . . , Ki are clique modules in H and Ki+1, . . . , Kc
are no longer clique modules in H). Let x be a vertex of Ki+1 such that the number of edges of F incident to x is minimum
among the vertices of Ki+1. Roughly speaking, we will modify F by editing all vertices of Ki+1 like x. Let Hx be the subgraph
H \ (Ki+1 \ {x}). As F is hereditary, Hx belongs to F and, as F is closed under true twin addition, reinserting |Ki+1| − 1
true twins of x in Hx results in a graph H ′ belonging to F . It follows that F ′ = E(G) M E(H ′) is an F -edition of G. By the
choice of x, we have |F ′| 6 |F |. Finally let us remark that, now, K1, . . . , Ki and Ki+1 are clique modules of H ′, thus proving
the lemma. �

In other words, for an hereditary graph family F which is closed under true twin addition and for every graph G, there
always exists an optimal F -edition F (resp. F -deletion, F -completion) such that :

(1) every edge between two vertices of a critical clique of G is an edge of G+ F , and
(2) between two distinct critical cliques K , K ′ ∈ K(G), either V (K)× V (K ′) ⊆ E(G+ F) or (V (K)× V (K ′))∩ E(G+ F) = ∅.

From now on, every considered optimal edition (resp. deletion, completion) is supposed to verify these two properties.

1.2. Leaf powers

Definition 1.5. Let T be an unrooted tree whose leaves are one-to-one mapped to the elements of a set V . The k-leaf power
of T is the graph T k, with T k = (V , E)where E = {uv | u, v ∈ V and dT (u, v) 6 k}. We call T a k-leaf root of T k.

It is easy to see that for every k, the k-leaf power family of graphs satisfies the conditions of Lemma 1.4. In this paper we
focus on the class of 3-leaf powers for which several characterizations are known.

Theorem 1.6 ([4,10]). For a graph G, the following conditions are equivalent:
1. G is a 3-leaf power.
2. G is {bull, dart, gem, C>4 }-free, C>4 being the cycles of length at least 4. (see Fig. 1).
3. The critical clique graph C(G) is a forest.

The parameterized 3-leaf power edition problem, with respect to parameter k being the size of the edited set, is
tractable. An O((2k+8)k ·nm) algorithm is proposed in [10]. The proofs of our kernel for the 3-leaf power edition problem
rely on the critical clique graph characterization and on the following new one which is based on the join composition of
graphs.
Join composition. Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs and let S1 ⊆ V1 and S2 ⊆ V2 be two non
empty subsets of vertices. The join composition of G1 and G2 on S1 and S2, denoted (G1, S1) ⊗ (G2, S2), results in the graph
H = (V1 ∪ V2, E1 ∪ E2 ∪ (V (S1)× V (S2))) (see Fig. 2).

Theorem 1.7. Let G1 = (V1, E1) and G2 = (V2, E2) be two connected 3-leaf powers. The graph H = (G1, S1) ⊗ (G2, S2), with
S1 ⊆ V1 and S2 ⊆ V2, is a 3-leaf power if and only if one of the following conditions holds:
1. S1 and S2 are two cliques of G1 and G2 respectively, and if S1 (resp. S2) is not critical, then G1 (resp. G2) is a clique or,
2. there exists a vertex v ∈ V1 such that S1 = N[v] and S2 = V2 is a clique.
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Fig. 1. Forbidden induced subgraphs of a 3-leaf power.

Fig. 2. The join composition H = (G1, S1)⊗ (G2, S2) creates the doted edges. As G1 and G2 are two 3-leaf powers and as the subsets S1 and S2 of vertices
are critical cliques of respectively G1 and G2 , by Theorem 1.7, H is also a 3-leaf power.

Proof. ⇐ If condition (2) holds, then H is obtained from G1 by adding true twins to v, hence H is a 3-leaf power. Assume S1
and S2 are two cliques. If S1 and S2 are both critical cliques of respectively G1 and G2, then the critical clique graph C(H)
is clearly the tree obtained from C(G1) and C(G2) by adding the edges between S1 and S2. By Theorem 1.6, H is a 3-leaf
power. For i = 1 or 2, if Gi is a clique and Si ⊂ V (Gi), then Si and V (Gi) \ Si are critical cliques in H . Again, it is easy to see
that C(H) is a tree.

⇒ First, let us notice that if S1 and S2 are not cliques, then H contains a C4, which is forbidden. So let us assume that S1 is
not a clique but S2 is. Then S1 contains two non-adjacent vertices x and y. First of all, if dS1(x, y) = ∞ (i.e. if x and y are
not connected in G1[S1]), we consider πG1 a shortest path in G1 between the connected component of G1[S1] containing
x and the one containing y (such a path exists because G1 is connected). It is easy to see that v together with πG1 forms
an induced (chordless) cycle in H , which is forbidden. Now, if dS1(x, y) > 2, then H contains a gem. To see this, let πS1
be a shortest x, y-path in S1. Together with any vertex v ∈ S2, the vertices of πS1 induce a cycle at length at least 5 in H .
By construction the only possible chords are incident to v. So any 4 consecutive vertices on πS1 plus the vertex v induce
a gem. It follows that there exists in S1 a vertex uwhich dominates x and y. Now if there exists a vertex in V (G2) \ S2, as
G2 is connected, there exists two adjacent vertices, v ∈ S2 and w ∈ V (G2) \ S2. But, {w, u, x, y, v}, induce a dart in H ,
which is also forbidden. So, S2 = V (G2) and G2 is a clique. Finally, assume by contradiction again that u has a neighbor
w ∈ V (G1) \ S1. Considering a vertex v of S2, the set of vertices {w, x, y, u, v} induces an obstruction in H , whatever the
adjacency betweenw and {x, y} is. So, N[u] ⊂ S1. Conversely, if S1 contains a vertexw 6∈ N(u), {w, x, y, u, v} induces an
obstruction in H . So, S1 = N[u], as expected in condition (2).
Assume now that both S1 and S2 are cliques. If S1 and S2 are notmodules in respectively G1 and G2, thenwe can find a bull
in H . Assume that only S1 is not a module, i.e. there exist x, y ∈ S1 and u ∈ V (G1) \ S1 such that w.l.o.g. ux ∈ E(G1) and
uy 6∈ E(G1). If S2 6= V (G2), then again H has a bull induced by {u, x, y, v, w}with v ∈ S2 andw ∈ V (G2) \ S2,w neighbor
of v. Otherwise, either condition (2) holds or y has a neighbor w in V (G1) \ S1. The latter case is impossible since we
find in H an obstruction induced by {u, x, y, v, w}whatever the adjacency between w and {u, x} is. Finally assume that
S1 and S2 are modules, but consider the case where S1 is not critical (the case S2 is not critical is symmetric). Then there
exists a critical clique C1 ∈ K(G1) containing S1. Denote by x a vertex of S1 and by y a vertex of C1 \ S1. If V (G1) 6= C1,
then G1 contains two non-adjacent vertices, say u and u′. If u = x and u′ 6∈ C1, then as G1 is connected, we can choose
u′ and w 6∈ C1 such that {u′, w, x, y, v} with v ∈ S2 is a bull in H . Otherwise we can choose u and u′ both adjacent to
the vertices of C1, and then {u, u′, x, y, v}would induce a dart in H . It follows that if S1 is not critical, then condition (1)
holds. �

The following observation will be helpful to apply Theorem 1.7 in the safeness’ proofs of the reduction rules.

Observation 1.8. Let C be a critical clique of a 3-leaf power G = (V , E). For every S ⊆ V , if the clique C \ S is not critical in
G[V \ S], then the connected component of G[V \ S] containing C \ S is a clique.
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Proof. Assume that C \ S is not a critical clique of G[V \ S], i.e. though C \ S is a clique module in G[V \ S], it is not maximal.
Let x 6∈ S be a vertex such that C ∪ {x} is a clique module of G[V \ S]. Then x belongs to a critical clique C ′ of G adjacent to
C in C(G). It follows that S has to contain the union of all the critical cliques of G adjacent to C in C(G) but C ′ (otherwise
C ∪ {x} could not be a module of G[V \ S]), and all the critical cliques of G adjacent to C ′ in C(G) but C (for the same reason).
This means that the connected component containing C \ S in G[V \ S] is a subset of C ∪ C ′ which is a clique. �

Finally, let us conclude this preliminary study of 3-leaf powers by a technical lemma required in the proof of the last
reduction rule.

Lemma 1.9. Let G = (V , E) be a 3-leaf power. Every cycle C of length at least 5 in G contains four distinct vertices a, b, c, d
(appearing in this order along C) with ab and cd edges of C such that ad ∈ E, ac ∈ E and bd ∈ E.

Proof. As the 3-leaf power graphs form a hereditary family, the subgraph H of G induced by the vertices of the cycle C is
a 3-leaf power with at least 5 vertices. As H is not a tree, it contains a critical clique K of size at least 2. Let a and d be two
distinct vertices of K . As |C | ≥ 5, observe that there exist two distinct vertices b and c , distinct from a and d, such that a, b,
c and d appear in this order along C and such that ab and cd are edges of C . As K is a clique module, any vertex adjacent to
some vertex in K neighbors all the vertices of K . It follows that ad ∈ E, ac ∈ E and bd ∈ E. �

2. A kernel for closest 3-leaf power

In this section,we present five preprocessing reduction rules the application ofwhich leads to a kernelwithO(k3) vertices
for the closest 3-leaf power problem. The first rule gets rid of connected components of the input graph that are already
3-leaf powers. Rule 2.1 is trivially safe.

Rule 2.1. If G has a connected component C such that G[C] is 3-leaf power, then remove C from G.

The next rulewas already used to obtain a kernelwithO(k2) vertices for the parameterized cluster editing problem [24].
It bounds the size of every critical clique in a reduced instance by k+ 1.

Rule 2.2. If G has a critical clique K such that |K | > k+ 1, then remove |K | − k− 1 vertices of K from V (G).

Proof. By Lemma 1.4, we know that there always exists an optimal 3-leaf power edition that contains none or every edge
incident to a critical clique K . Thus, if |K | > k+ 1, this means that there is no optimal 3-leaf power edition that contains an
edge incident to K . As this is still true if |K | = k+ 1, it is safe to remove |K | − (k+ 1) vertices of K from V (G) (meaning that
every optimal 3-leaf power edition in the reduced graphwill also be an optimal 3-leaf power edition in the input graph). �

2.1. Branch reduction rules

Wenowassume that the input graphG is reducedunder Rule 2.1 (i.e.noneof the connected components is a 3-leaf power)
and Rule 2.2 (i.e. critical cliques of G have size at most k + 1). The next three reduction rules use the fact that the critical
clique graph of a 3-leaf power is a forest. The idea is to identify induced subgraphs of G, called branches, which correspond
to subtrees of C(G). That is, a branch of G is an induced subgraph which is already a 3-leaf power. More precisely:

Definition 2.1. Let G = (V , E) be a graph. An induced subgraph G[S], with S ⊆ V , is a branch if S is the disjoint union of
critical cliques K1, . . . , Kr ∈ K(G) such that the subgraph of C(G) induced by {K1, . . . , Kr} is a tree.

Let B = G[S] be a branch of a graphG and letK1, . . . , Kr be the critical cliques ofG contained in S.We say thatKi (1 6 i 6 r)
is an attachment point of the branch B if it contains a vertex x such that NG(x) intersects V (G) \ S. A branch B is a l-branch if
it has exactly l attachment points. Our next three rules deal with 1-branches and 2-branches.
In the following, we denote by BR the subgraph of B in which the vertices of the attachment points have been removed.

If P is an attachment point of B, then the set of neighbors of vertices of P in B is denoted NB(P).

Lemma 2.2. Let G = (V , E) be a graph and B be a 1-branch of G with attachment point P. There exists an optimal 3-leaf power
edition F of G such that :

1. the set of affected vertices of B is a subset of P ∪ NB(P) and
2. in G+ F , the vertices of NB(P) are all adjacent to the same vertices of V (G) \ V (BR).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We construct from F another optimal 3-leaf power edition
which satisfies the two conditions above.
Let C be the critical clique of H = G + F that contains P and set C ′ = C \ BR. By Lemma 1.4, the set of critical cliques

of G whose vertices belong to NB(P) contains two kinds of cliques: K1, . . . , Kc , whose vertices are in C or adjacent to the
vertices of C in H , and Kc+1, . . . , Kh whose vertices are not adjacent to the vertices of C is H . For i ∈ {1, . . . , h}, let Ci be the
connected component of BR containing Ki.
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Fig. 3. A 1-branch of G where all editions adjacent to vertices in V (BR) \ NB(P) have been removed. This shows in particular the appearance of the three
subgraphs we consider.

Fig. 4. On the left, a 1-branch Bwith attachment point P . On the right, the effect of Rule 2.3 which replace BR by a clique K of size min{|NB(P)|, k+ 1}.

Let us consider the three following induced subgraphs: G1 the subgraph of G induced by the disjoint union of C1, . . . , Cc ;
G2 the subgraph of G induced by the disjoint union of Cc+1, . . . , Ch; and finally G′, the subgraph ofH induced by V (G)\V (BR).
Let us notice that these three graphs are 3-leaf powers.
ByObservation 1.8, if C ′ is not a critical clique ofG′, then the connected component ofG′ containing C ′ is a clique. Similarly,

if Ki, for every 1 6 i 6 c , is not a critical clique of G1, then the connected component of G1 containing Ki is a clique. Thus, by
Theorem 1.7, the disjoint union H ′ of G2 and (G′, C ′)⊗ (G1, {K1, . . . , Kc}) is a 3-leaf power (Fig. 3). By construction, the edge
edition set F ′ such that H ′ = G + F ′ is a subset of F and thus |F ′| 6 |F |. Moreover the vertices of B affected by F ′ all belong
to P ∪ NB(P), which proves the first point.
To state the second point, we focus on the relationship between the critical cliques Ki and C ′ in H ′ = G + F ′. If some

Ki is linked to C ′ in H ′ (i.e. c > 1), it means that the cost of adding the missing edges between Ki and C ′ (which, by
Theorem 1.7, would also result in a 3-leaf power) is lower than the cost of removing the existing edges between Ki and
C ′: |Ki| · |C ′ \ P| 6 |Ki| · |P|. On the other hand, if some Kj is not linked to C ′ in H ′ (i.e. c < h), we conclude that |P| 6 |C ′ \ P|.
Finally, if both cases occur, we have |P| = |C ′ \ P|, and we can choose to add all or none of the edges between Ki and C ′. In
all cases, we provide an optimal edition of G into a 3-leaf power in which the vertices of NB(P) are all adjacent to the same
vertices of V (G) \ V (BR). �

We can now state the first 1-branch reduction rule whose safeness follows from Lemma 2.2 (Fig. 4).

Rule 2.3. If G contains a 1-branch B with attachment point P, then remove from G the vertices of BR and add a new critical clique
of sizemin{|NB(P)|, k+ 1} adjacent to P.

Our second 1-branch reduction rule considers the case where several 1-branches are attached to the rest of the graph by
a join. The following lemma shows that under certain cardinality conditions, the vertices of such 1-branches are not affected
by an optimal 3-leaf power edition.
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Lemma 2.3. Let G = (V , E) be a graph for which a 3-leaf power edition of size at most k exists. Let B1, . . . , Bl be 1-branches,
the attachment points P1, . . . , Pl of which all have the same neighborhood N in V \ ∪li=1 V (Bi). If

∑l
i=1 |Pi| > 2k + 1, then, in

every 3-leaf power optimal edition F of G, N has to be a critical clique of H = G + F and none of the vertices of ∪li=1 V (Bi) is
affected.

Proof. We just show that every optimal 3-leaf power edition F of G has to transform N into a critical clique, which directly
implies the second part of the result. Notice that since G is reduced under Rule 2.2, every attachment point Pi satisfies
|Pi| 6 k+ 1, thus implying that l > 2.
First, assume that F does not edit N into a clique: i.e. there are two vertices a and b of N such that ab 6∈ E(H). For every

pair of vertices ui ∈ Pi and uj ∈ Pj with i 6= j, the set {a, b, ui, uj} cannot induce a chordless cycle in H , which implies that
the vertices of Pi or those of Pj must be affected. It follows that among the attachment points, the vertices of at most one Pi
are not affected by F . As |Pi| 6 k+ 1 for every i, the size of F has to be at least k+ 1: contradicting the assumptions. So N is
a clique in H .
Now, assume that N is not a module of H: i.e. there existsw 6∈ N such that for some x, y ∈ N we have w.l.o.g. xw ∈ E(H)

and yw 6∈ E(H). As |F | 6 k, there exist two vertices ui ∈ Pi and uj ∈ Pj, non affected by F and such that uiuj 6∈ E(H). Together
with x, y and w, ui and uj induce a dart in H , contradicting Theorem 1.6. So, in H , the set of vertices N has to be a clique
module.
Finally, let us notice that N has to be critical in H , otherwise it would imply that there exists a vertex v 6∈ N that has been

made adjacent to at least k+ 1 vertices of ∪li=1 Bi, implying that |F | > k: a contradiction. �

By Lemma 2.3, if there exists a 3-leaf power edition F of G such that |F | 6 k, then the 1-branches B1, . . . , Bl can be safely
replaced by two critical cliques of size k+ 1. This gives us the second 1-branch reduction rule.

Rule 2.4. If G has several 1-branches B1, . . . , Bl, the attachment points P1, . . . , Pl of which all have the same neighborhood N in
V \ ∪li=1 V (Bi) and if

∑l
i=1 |Pi| > 2k+ 1, then remove from G the vertices of ∪

l
i=1 V (Bi) and add two new critical cliques of size

k+ 1 neighboring exactly N.

2.2. The 2-branch reduction rule

Let us consider a 2-branch B of a graph G = (V , E) with attachment points P1 and P2. The subgraph of G induced by the
critical cliques of the unique path from P1 to P2 inC(B) is called themain path of B and denoted path(B). A min-cut of path(B)
is a set F of edges of B such that B \ F does not contain any path from P1 to P2 and such that F has minimal cardinality for
this property. We say that B is clean if P1 and P2 are leaves of C(B), in which case we denote by Q1 and Q2 the critical cliques
which respectively neighbor P1 and P2 in B.

Lemma 2.4. Let B be a clean 2-branch of a graph G = (V , E) with attachment points P1 and P2 such that path(B) contains at
least 5 critical cliques. There exists an optimal 3-leaf power edition F of G such that :

1. if path(B) is a disconnected subgraph of G + F , then F may contain a min-cut of path(B);
2. and in each case, the other affected vertices of B belong to V (P1 ∪ Q1 ∪ P2 ∪ Q2).

Proof. Let F be an arbitrary optimal 3-leaf power edition of G. We call C1 and C2 the critical cliques of G+F that respectively
contain P1 and P2 (possibly, C1 and C2 could be the same), and denote C1 \ BR and C2 \ BR respectively by C ′1 and C

′

2 see Fig. 6.
We will construct from F another optimal 3-leaf power edition F ′ of G satisfying the statement.

• Assume that F disconnects path(B). First of all, it is clear that for every subset F1 of F , if F2 is an optimal edition ofH1 = G+F1,
then F ′ = F1 ∪ F2 is an optimal edition of G. We use this fact in the following different cases. Assume that F contains the
edges F1 := V (P1)× V (Q1) and consider the graph H1 := G+ F1. We call B1 the 1-branch B \ P1 of H1 whose attachment
point is P2. Then, Lemma 2.2 applies to B1 and provides from F an optimal 3-leaf power edition of H1, say F2, where the
edited vertices of B1 are contained in V (P2 ∪Q2). By the previous observation, it follows that F1 ∪ F2 is an optimal edition
for G that respects conditions (1) and (2). We proceed similarly if F contains the edges V (P2)× V (Q2).
Now, assume that F does not contain V (P1) × V (Q1) nor V (P2) × V (Q2). In that case, there exists F1 ⊂ F which is a
minimal cut of path(B) disjoint from V (P1) × V (Q1) and V (P2) × V (Q2). Then, there are two connected components in
B + F1, the one containing P1, say B1, and the one containing P2, say B2. The subgraphs B1 and B2 of H1 := G + F1 are
1-branches with respectively P1 and P2 as attachment points. So, Lemma 2.2 applies to B1 and B2, and provides from F an
optimal 3-leaf power edition of H1, say F2, where the edited vertices of B1 and B2 are contained in V (P1 ∪ P2 ∪ Q1 ∪ Q2).
To conclude, remark that if F1 is not a minimum (for cardinality) cut of path(B), we could replace F1 by such a minimum
cut, and perform a similar 3-leaf power edition for Gwith size strictly lower than |F |, thus contradicting the choice of F .
It follows that F1 ∪ F2 is an optimal edition for G that respects conditions (1) and (2).
• Assume that F does not disconnect path(B). Let X1 (resp. X2) be the connected component of (G + F) \ BR containing P1
(resp. P2).
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Fig. 5. A clean 2-branch of G. The bold edge represents the first join composition H ′ := (X1, C ′1)⊗ (B
R,Q1)while the dotted bold edge represents the join

composition which is done in a second place, namely (H ′,Q2)⊗ (X2, C ′2).

Fig. 6. An illustration of the first case, with Hi 6= P1 and Hj+1 6= P2 . The bold edges represent the edges we put in F ′ while the dotted bold edges denote
the edges we removed from F to obtain F ′ .

We first consider the case where X1 and X2 are two distinct connected components. By definition, BR is a 3-leaf power
and Q1 and Q2 are two of its critical cliques (since path(B) contains at least 5 critical cliques). Moreover, the subgraph X1
(resp. X2) is also a 3-leaf power which is a clique if C ′1 (resp. C

′

2) is not a critical clique (Observation 1.8). By Theorem 1.7,
it follows that the composition of these three subgraphs: H ′ = (X1, C ′1)⊗ (B

R,Q1) and (H ′,Q2)⊗ (X2, C ′2) yields a 3-leaf
power (Fig. 5). Thus, if F affects some vertices of V (BR) \ V (Q1 ∪ Q2), then a smaller edition could be found by removing
from F the edges in V (BR)× V (BR). This would contradict the optimality of F .
So, assume that P1 and P2 belong to the same connected component X of (G+F)\BR. Let y1 and y2 be respectively vertices
of P1 and P2 (in the case C1 = C2, choose y1 = y2). Let πB and πX be two distinct paths between y1 and y2 defined as
follows : πB is obtained by picking one vertex bi in each critical clique Hi of path(B) (H1 = P1 and Hq = P2, with q > 5)
and πX is a chordless path in X (thereby its vertices x1, . . . , xp, with x1 = y1 and xp = y2 belong to distinct critical cliques
of G+ F , say K1, . . . , Kp, with K1 = C ′1 and Kp = C

′

2). The union of these two paths results in a cycle C of length at least 5.
By Lemma 1.9, there are two disjoint edges e = ab and f = cd in C such that the edges (a, c) and (b, d) belong to E M F .
By construction of C , at most one of the edges e and f belongs to πX (otherwise πX would not be chordless). We now
study the different cases :
Edges e and f belong to πB. W.l.o.g assume that a = bi, b = bi+1 and c = bj, d = bj+1 (i+ 1 < j). By Lemma 1.4, F contains
the set of edges (V (Hi)×V (Hj))∪(V (Hi+1)×V (Hj+1)). Notice thatmin{|Hi|·|Hi+1|, |Hj|·|Hj+1|} < |Hi|·|Hj|+|Hi+1|·|Hj+1|.
W.l.o.g., assume that min{|Hi| · |Hi+1|, |Hj| · |Hj+1|} = |Hi| · |Hi+1|. We will ‘cut’ the edges between Hi and Hi+1. Consider
the set :

F ′ = (F \ (V × V (BR))) ∪ (V (Hi)× V (Hi+1)).

Moreover, if Hi 6= P1, add to F ′ the edges FC1 := V (C
′

1 \ P1)× V (Q1) (which belong to F ) and, if Hj+1 6= P2, add to F
′ the

edges FC2 := V (C
′

2 \ P2)×V (Q2) (which belong to F ). In all cases, we have |F
′
| < |F |. As in the case where X1 and X2 were

distinct connected components, by Theorem 1.7, the graph G+ F ′ is a 3-leaf power : contradicting the optimality of F .
Edge e belongs to πB and f to πX . W.l.o.g., assume that a = bi and b = bi+1, and c = xj+1, d = xj. As above, by Lemma 1.4,
F contains (V (Hi)× V (Kj+1))∪ (V (Hi+1)× V (Kj)). Notice that min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} < |Hi| · |Kj+1| + |Hi+1| · |Kj|.
If min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} = |Hi| · |Hi+1|, then we consider the set :

F ′ = (F \ (V × V (BR))) ∪ (V (Hi)× V (Hi+1)).

Here again, if Hi 6= P1, add to F ′ the edges FC1 (which belong to F ) and, if Hj+1 6= P2, add to F
′ the edges FC2 (which belong

to F ). As previously, |F ′| is smaller than |F | and by Theorem 1.7, we can prove that G + F ′ is a 3-leaf power. Finally, if
min{|Hi| · |Hi+1|, |Kj| · |Kj+1|} = |Kj| · |Kj+1|, then we consider the set

F ′ = (F \ (V × V (BR))) ∪ (V (Kj)× V (Kj+1)) ∪ FC1 ∪ FC2 .
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Fig. 7. A 2-branch B on the left (only pendant critical cliques are hanging on path(B) since we can assume that the graph is reduced by the previous rules).
On the right, the way Rule 2.5 reduces B.

Again |F ′| is smaller than |F | and by Theorem 1.7, we can prove that G + F ′ is a 3-leaf power. In each case, we found a
better 3-leaf power edition F ′, contradicting the optimality of F . �

Rule 2.5. Let G be a graph having a clean 2-branch B such that path(B) is composed by at least 5 critical cliques. Remove from G
all the vertices of V (B) except those of V (P1 ∪ Q1 ∪ P2 ∪ Q2) and add four new critical cliques :

• K1 (resp. K2) of size k+ 1 adjacent to Q1 (resp. Q2);
• K ′1 (resp K

′

2) adjacent to K1 (resp. K2) and such that K
′

1 and K
′

2 are adjacent and |K
′

1| · |K
′

2| equals the min-cut of path(B).

Proof. Let B′ be the 2-branch replacing B after the application of the rule. It is easy to see that by construction the min-cut
of B′ equals the min-cut of path(B). Moreover the attachment points P1 and P2 and their respective neighbors Q1 and Q2 are
unchanged. It follows by Lemma 2.4 that every optimal edition F of G corresponds to an optimal edition F ′ of G′, the graph
reduced by Rule 2.5, such that |F | = |F ′| (Fig. 7). �

2.3. Kernel size and time complexity

Let us discuss the time complexity of the reduction rules. The 3-leaf power recognition problem can be solved in
O(n+m) [4]. It follows that Rule 2.1 requires linear time. To implement the other reduction rules, we first need to compute
the critical clique graph C(G). As noticed in [24], C(G) can be built in O(n + m). For instance, to do so, we can compute in
linear time the modular decomposition tree of G, which is a classical and well-studied problem in algorithmic graph theory
(see [26] for a recent paper). Then, a critical clique is a serie-node of the decomposition tree with only leaves below it. Given
K(G), which is linear in the size of G, it is easy to detect the critical cliques of size at least k+ 1. So, Rule 2.2 requires linear
time. A search on C(G) can identify the 1-branches. It follows that the two 1-branch reduction rules (Rule 2.3 and Rule 2.4)
can also be applied in O(n+m) time. Let us now notice that in a graph reduced by the first four reduction rules, a 2-branch
is a path to which pendant vertices are possibly attached. It follows that to detect a 2-branch B, such that path(B) contains
at least 5 critical cliques, we first prune the pendant vertices, and then identify in C(G) the paths containing only vertices
of degree 2, and at least 5 of them. To do this, we compute the connected components of the graph induced on vertices of
degree 2 in C(G). This shows that Rule 2.5 can be carried in linear time.

Theorem 2.5. The parameterized closest 3-leaf power problem admits a kernel with O(k3) vertices. Given a graph G, a reduced
instance can be computed in linear time.

Proof. The discussion above established the time complexity to compute a kernel. Let us determine the kernel size. Let
G = (V , E) be a reduced graph (i.e. none of the reduction rules applies to G) which can be edited into a 3-leaf power with
a set F ⊆ V × V such that |F | 6 k. Let us denote H = G + F the edited graph. We first show that C(H) has O(k2) vertices
(i.e. |K(H)| ∈ O(k2)), and then Lemma 1.3 enables us to conclude.
We say that a critical clique is affected if it contains an affected vertex and denote by A the set of the affected critical

cliques. As each edge of F affects two vertices, we have that |A| 6 2k. Since H is a 3-leaf power, its critical clique graph C(H)
is a tree. Let T be the minimal subtree of C(H) that spans the affected critical cliques. Let us observe that if B is a maximal
subtree of C(H) \ T , then none of the critical cliques in B contains an affected vertex and thus Bwas the critical clique graph
of a 1-branch of G, which has been reduced by Rule 2.3 or Rule 2.4. Let A′ ⊂ K(H) be the critical cliques of degree at least
3 in T . As |A| 6 2k, we also have |A′| 6 2k. The connected components resulting from the removal of A and A′ in T are paths.
There are atmost 4k such paths. Each of these paths is composed by non-affected critical cliques. It follows that each of them
corresponds to path(B) for some 2-branch B of G, which has been reduced by Rule 2.5.
From these observations, we can now estimate the size of the reduced graph. Attached to each of the critical cliques of

T \ A, we can have 1 pendant critical clique resulting from the application of Rule 2.3. Remark that any 2-branch reduced
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Fig. 8. The black circles are the critical cliques of A, the grey ones belong to A′ , and the squares are the critical cliques not in T . On the figure, we can
observe a 2-branch of size 8 reduced by Rule 2.5. There cannot be pendant critical cliques attached to its nodes. Application of Rule 2.3, may let a path of
two critical cliques pendant to the elements of A∪A′ and a single critical clique pendant to the elements of the small 2-branches. Finally, Rule 2.4 can only
affect critical cliques of A.

by Rule 2.5 has no such pendant clique and that path(B) contains 5 critical cliques. So, a considered 2-branch inC(H) is made
of at most 8 critical cliques. Finally, attached to each critical clique of A, we can have at most (4k+ 2) extra critical cliques
resulting from the application of Rule 2.4. See Fig. 8 for an illustration of the shape of C(H). Summing up everything, we
obtain that C(H) contains at most 4k · 8+ 2k · 2+ 2k · (4k+ 3) = 8k2 + 42k vertices.
By Lemma 1.3, we know that for each edited edge in a graph, the number of critical cliques increase by at most 4. It

follows thatK(G) contains at most 8k2 + 46k critical cliques. By Rule 2.2, each critical clique of the reduced graph has size
at most k + 1. This implies that the reduced graph contains at most 8k3 + 54k2 + 46k vertices, proving the O(k3) kernel
size. �

We should notice that some smallmodifications of the branch reduction rules and amore precise analysiswould improve
the constants involved in the kernel size. However, the cubic bound would not change.

3. Kernels for edge completion and edge deletion

We now prove and adapt the previous rules to the cases where only insertions or only deletions of edges are allowed.
First, observe that Rules 2.1 and 2.2 are also safe in 3-leaf power completion and 3-leaf power edge-deletion (Rule 2.2
directly follows from Lemma 1.4). We have a similar result for the 1-branches reduction rules.

Lemma 3.1. Rule 2.3 is safe for both 3-leaf power completion and 3-leaf power deletion.

Proof. In the following, we consider an optimal solution F such that H := G + F is a 3-leaf power, denote by C the critical
clique containing P in H and set C ′ = C \ BR.
• 3-leaf power completion. To show the safeness of Rule 2.3 in this case, we will build from F an optimal 3-leaf power
completion that respects conditions of Lemma 2.2. By Lemma 1.4, we know that the set of critical cliques {K1, . . . , Kh} of
Gwhose vertices belong to NB(P) are in C or adjacent to the vertices of C in H . For i ∈ {1, . . . , h}, let Ci be the connected
component of BR containingKi. As previously,we considerG1 the subgraph ofG induced by the disjoint union of C1, . . . , Ch
and G′ the subgraph of H induced by V (H)\V (BR). By Observation 1.8, if C ′ is not a critical clique of G′, then G′ is a clique.
Similarly, if Ki, for every 1 6 i 6 h, is not a critical clique of G1, then Ci is a clique. By Theorem 1.7, it follows that the graph
H ′ := (G′, C ′)⊗ (G1, {K1, . . . , Kh}) is a 3-leaf power. By construction, the edge completion set F ′, such that H ′ = G+ F ′,
is a subset of F and the vertices of B affected by F all belong to P ∪ NB(P). Finally, as every Ki is connected to C ′ in H ′, the
vertices of NB(P) are all adjacent to the same vertices of V (G) \ V (BR).
• 3-leaf power edge-deletion. In the case where only edges deletion are allowed, we will build from F an optimal 3-leaf
power deletion respecting the conditions of Lemma 2.2 by studying the behavior of P in H . First of all, notice that if P
forms a larger critical clique in H with some vertex x ∈ V (G) \ V (BR), this means that F contains P × NB(P). Thus, there
is no need to do extra deletions in BR and then we are done.
Now, consider the caseswhere P is critical inH or forms a larger critical cliquewith someKi. In both cases,we have C ′ = P .
By Theorem 1.7, the graph H ′ := (G′, C ′)⊗ (G1, {K1, . . . , Kc}) is a 3-leaf power, and the edge set F ′ used to transform G
into H ′ is a subset of F (all the edges between C ′ and {K1, . . . , Kc} are present in G), and then we are done. �

Lemma 3.2. Rule 2.4 is safe for both 3-leaf power completion and 3-leaf power deletion.

Proof. As in Lemma 2.3, we consider B1, . . . , Bl 1-branches of G, the attachment points P1, . . . , Pl of which all have the same
neighborhood N and satisfy

∑l
i=1 |Pi| > 2k+ 1. Again, as every critical clique of G has at most k+ 1 vertices, we have l > 2.

• 3-leaf power completion. In this case, the same arguments as the ones used in the proof of Lemma 2.3 hold. We briefly
detail them. First, assume that N is not transformed into a clique by an optimal 3-leaf power completion F . To get rid
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of all the C4’s involving two non-adjacent vertices of N and Pi, Pj, i 6= j, the only possibility is to transform ∪li=1 Pi into
a clique, which requires more than k + 1 edge insertions. Thus N has to be a clique. Moreover, N must also become a
module, otherwise we would find darts that would imply to transform ∪li=1 Pi into a clique, which is impossible. Finally,
N must be critical (otherwise, at least one insertion for each vertex of∪li=1 Pimust be done), thus implying that no vertex
in ∪li=1 Pi is affected by an optimal edition.
• 3-leaf power edge-deletion. Firstly, observe that if N is not a clique, then every optimal 3-leaf power deletion in that
case would have to destroy at least k+ 1 edge disjoint C4’s with edge deletion only, which is impossible. The arguments
used previously hold again in this case to conclude that N must become a critical clique in the modified graph. �

Now, observe that the 2-branch reduction rule can be applied directly to 3-leaf power edge-deletion, but will not be
safe for 3-leaf power completion. Indeed, in the proof of Lemma 2.4, if we look at the cycle C of G containing vertices of B,
we may have to delete edges between two consecutive critical cliques along C to transform C(C) into a tree. Nevertheless,
it is possible to bound the number of vertices of path(B) in the case of 3-leaf power completion by looking at the edge
completions required to make a cycle chordal (see Lemma 3.4).

Lemma 3.3. Rule 2.5 is safe for 3-leaf power edge-deletion.

Proof. Let F be an arbitrary optimal 3-leaf power deletion of G. We call C1 and C2 the critical cliques of H := G + F that
respectively contain P1 and P2, and set C ′1 := C1 \ B

R and C ′2 := C2 \ B
R. We will construct from F another optimal 3-leaf

power deletion F ′ of G satisfying the conditions of Lemma 2.4.
We have two cases to consider : (1) either path(B) is disconnected in H or (2) path(B) is still connected in H . Case (1)

works exactly as the first case studied in the proof of Lemma 2.4, and thus there exists an optimal 3-leaf power deletion on
which conditions of Lemma 2.4 holds.
If case (2) holds, i.e. if path(B) is still connected in H , then P1 and P2 must belong to distinct connected components of

H \ BR, say X1 and X2 (otherwise H would admit a chordless cycle as induced subgraph). Furthermore, notice that we must
have C1 = P1 and C2 = P2 in H . Indeed, if P1 forms a critical clique with some vertex x ∈ V (G) \ V (BR), this means F
must contain V (P1) × V (Q1), which contradicts the hypothesis. Similarly, if P1 forms a critical clique with Q1, then F must
contain edges between Q1 and NBR(Q1)which cannot be (the cases for P2 are symmetric). By definition, BR is a 3-leaf power,
and so are X1 and X2. By Theorem 1.7, it follows that the composition of these three subgraphs : H ′ = (X1, P1) ⊗ (BR,Q1)
and H ′′ := (H ′,Q2) ⊗ (X2, P2) yields a 3-leaf power. The edge set F ′ used to obtain H ′ from G is a subset of F that respects
conditions of Lemma 2.4, thus implying the lemma. �

The next lemma is useful to conclude on the size of the kernel in the 3-leaf power completion problem.

Lemma 3.4. Let G be a graph admitting a clean 2-branch B such that path(B) is composed by at least k+ 4 critical cliques. If P1
and P2 belong to the same connected component in G \ BR, then there is no 3-leaf power completion of size at most k.

Proof. Let G be a graph with a clean 2-branch B on which conditions of the Lemma 3.4 apply, and let F be an optimal 3-leaf
power completion of G. As P1 and P2 belong to the same connected component in G \ BR, we have a cycle C of size at least
k+ 4 in C(G). Consider the subgraph of C(G) induced by the critical cliques of C . By Lemma 1.4 we know that there exists
F ′ ⊆ F such that C(C+ F ′) is a tree. It is known that F ′ is a triangulation of C [10]. Moreover, every triangulation of a n-cycle
needs at least n− 3 chords, thus implying that |F ′| > k, which is impossible. �

This result allows us to obtain a 2-branch reduction rule for the 3-leaf power completion problem as well.

Rule 3.1. Let G be a graph having a clean 2-branch B with attachment points P1 and P2 such that path(B) is composed by at least
k+ 4 critical cliques.

• if P1 and P2 belong to the same connected component in G \ BR, then there is no completion of size at most k.
• otherwise, remove from G all the vertices of V (BR) except those of V (Q1 ∪ Q2) and add all possible edges between Q1 and Q2.

Proof. The first point follows directly from Lemma 3.4. To see the second point, we need to show that if P1 and P2 belong
to different connected components in G \ BR, then there exists an optimal 3-leaf power completion that affects no vertex
in V (BR) \ V (Q1 ∪ Q2). To show this, assume that F is an optimal 3-leaf power completion of G and let C1, C2 be the critical
cliques containing P1, P2 in H := G+ F . Notice that P1 and P2 belong to different connected components in H \ BR, otherwise
we show that, as in the proof of Lemma 3.4, F has to triangulate a cycle of length at least k + 4, thus contradicting the
assumption |F | 6 k. Now, consider the subgraphs H1 being the connected component of H \ BR containing P1, and H2 being
the one containing P2. By Theorem 1.7 and Observation 1.8, H ′ := (H1, C ′1)⊗ (B

R,Q1)where C ′1 := C1 \ B
R is a 3-leaf power.

With a similar argument, we can show thatH ′′ := (H2, C ′2)⊗ (H
′,Q2), where C ′2 := C2 \B

R, is a 3-leaf power. The completion
used to obtain H ′′ from G is a subset of F respecting conditions of Rule 3.1, thus implying the result.

Theorem 3.5. The parameterized 3-leaf power completion and 3-leaf power edge-deletion problems admit kernels with
O(k3) vertices. Given a graph G a reduced instance can be computed in linear time.
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Proof. We detail separately completion and deletion.

• 3-leaf power completion. As in the proof of Theorem 2.5, we consider H := G+ F with G being reduced and F being an
optimal completion and we denote by T the minimal subtree of C(H) spanning the set of affected critical cliques A. As
noticed before, we have |A| 6 2k.
First, remark that the only difference between this case and 3-leaf power edition concerns the 2-branch reduction
rule. This means that the only difference will occur in the number of vertices of the paths resulting from the removal
of A and A′ in T (A′ being critical cliques of degree at least 3 in T ). Due to Lemma 3.4 and Rule 3.1 we know that a
2-branch in C(H) is made of at most 2k + 6 critical cliques, corresponding to a path of at most k + 4 critical cliques,
each one (except the terminal ones) having a pendant critical clique (Rule 2.3). This means that C(H) contains at most
4k · (2k+ 6)+ 2k · 2+ 2k · (4k+ 3) = 16k2+ 34k critical cliques. By Lemma 1.3, we know that each edited edge creates
at most 4 new critical cliques. If follows that C(G) contains at most 16k2 + 38k vertices. By Rule 2.2, each critical clique
of the reduced graph has size at most k + 1, thus implying that the reduced graph contains at most 16k3 + 54k2 + 38k
vertices, proving the O(k3) kernel size.
• 3-leaf power edge-deletion. The rules used for the 3-leaf power edge-deletion problem are exactly the same than
the one used to obtain a cubic kernel for 3-leaf power edition. Thus, the size of a reduced instance of 3-leaf power
edge-deletionwill be exactly the same as one of a reduced instance of 3-leaf power edition. �

4. Conclusion

By proving the existence of a kernel with O(k3) vertices for the 3-leaf power edition problem, we positively answered
an open problem [11,9]. The natural question is nowwhether the cubic bound could be improved. A strategy could be, as for
the quadratic kernel of 3-hitting set [22] which is based on the linear kernel of vertex cover [20], to consider the following
subproblem:
parameterized fat star edition problem
Input: An undirected graph G = (V , E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V × V with |F | 6 k such that the graph G+ F = (V , E M F) is a 3-leaf power and its critical
clique graph C(G+ F) is a star (we say that G+ F is a fat star).
It can be shown that small modifications of the Rules 2.1, 2.2 and 2.4 yield a kernel with O(k2) vertices for the fat star

edition problem [23]. A linear bound may be helpful to improve the kernel of the 3-leaf power edition since it can be
shown that the neighborhood of each big enough critical clique of the input graph as to be edited into a fat star.
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A tournament T = (V , A) is a directed graph in which there is exactly one arc between
every pair of distinct vertices. Given a digraph on n vertices and an integer parameter k,
the Feedback Arc Set problem asks whether the given digraph has a set of k arcs
whose removal results in an acyclic digraph. The Feedback Arc Set problem restricted to
tournaments is known as the k-Feedback Arc Set in Tournaments (k-FAST) problem. In
this paper we obtain a linear vertex kernel for k-FAST. That is, we give a polynomial time
algorithm which given an input instance T to k-FAST obtains an equivalent instance T ′ on
O (k) vertices. In fact, given any fixed ε > 0, the kernelized instance has at most (2 + ε)k
vertices. Our result improves the previous known bound of O (k2) on the kernel size for
k-FAST. Our kernelization algorithm solves the problem on a subclass of tournaments in
polynomial time and uses a known polynomial time approximation scheme for k-FAST.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given a directed graph G = (V , A) on n vertices and an integer parameter k, the Feedback Arc Set problem asks whether
the given digraph has a set of k arcs whose removal results in an acyclic directed graph. In this paper, we consider this
problem in a special class of directed graphs, tournaments. A tournament T = (V , A) is a directed graph in which there is
exactly one directed arc between every pair of vertices. More formally the problem we consider is defined as follows.

k-Feedback Arc Set in Tournaments (k-FAST): Given a tournament T = (V , A) and a positive integer k, does there exist
a subset F ⊆ A of at most k arcs whose removal makes T acyclic.

In the weighted version of k-FAST, we are also given integer weights (each weight is at least one) on the arcs and
the objective is to find a feedback arc set of weight at most k. This problem is called k-Weighted Feedback Arc Set in

Tournaments (k-WFAST).
Feedback arc sets in tournaments are well studied from the combinatorial [20,22,29,30,33,37], statistical [31] and algo-

rithmic [2,3,14,26,35,36] points of view. The problems k-FAST and k-WFAST have several applications. In rank aggregation we
are given several rankings of a set of objects, and we wish to produce a single ranking that on average is as consistent as
possible with the given ones, according to some chosen measure of consistency. This problem has been studied in the con-
text of voting [8,11,13], machine learning [12], and search engine ranking [18,19]. A natural consistency measure for rank
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aggregation is the number of pairs that occur in a different order in the two rankings. This leads to Kemeny rank aggregation
[24,25], a special case of k-WFAST.

The k-FAST problem is known to be NP-complete by recent results of Alon [3] and Charbit et al. [10] while k-WFAST
is known to be NP-complete by Bartholdi III et al. [5]. From an approximation perspective, k-WFAST is APX-hard [32] but
admits a polynomial time approximation scheme when the edge weights are bounded by a constant [26]. The problem is
also well studied in parameterized complexity. In this area, a problem with input size n and a parameter k is said to be
fixed parameter tractable (FPT) if there exists an algorithm to solve this problem in time f (k) ·nO (1) , where f is an arbitrary
function of k. Raman and Saurabh [28] showed that k-FAST and k-WFAST are FPT by obtaining an algorithm running in
time O (2.415k · k4.752 + nO (1)). Recently, Alon et al. [4] have improved this result by giving an algorithm for k-WFAST
running in time O (2O (

√
k log2 k) + nO (1)). This algorithm runs in sub-exponential time, a trait uncommon to parameterized

algorithms. Moreover, a new algorithm due to Karpinsky and Schudy [23] with running time O (2O (
√

k) + nO (1)) improves
again the complexity of k-WFAST. Finally, Fomin et al. [21] provided a sub-exponential local search algorithm for k-WFAST.
In this paper we investigate k-FAST from the view point of kernelization, currently one of the most active subfields of
parameterized algorithms.

A parameterized problem is said to admit a polynomial kernel if there is a polynomial (in n) time algorithm, called a
kernelization algorithm, that reduces the input instance to an instance whose size is bounded by a polynomial p(k) in k,
while preserving the answer. This reduced instance is called a p(k) kernel for the problem. When p(k) is a linear function
of k then the corresponding kernel is a linear kernel. Kernelization has been at the forefront of research in parameterized
complexity in the last couple of years, leading to various new polynomial kernels as well as tools to show that several
problems do not have a polynomial kernel under some complexity-theoretic assumptions [6,7,9,15,17,34]. In this paper we
continue the current theme of research on kernelization and obtain a linear vertex kernel for k-FAST. That is, we give a
polynomial time algorithm which given an input instance T to k-FAST obtains an equivalent instance T ′ on O (k) vertices.
More precisely, given any fixed ε > 0, we find a kernel with a most (2 + ε)k vertices in polynomial time. The reason we call
it a linear vertex kernel is that, even though the number of vertices in the reduced instance is at most O (k), the number
of arcs is still O (k2). Our result improves the previous known bound of O (k2) on the vertex kernel size for k-FAST [4,16].
For our kernelization algorithm we find a subclass of tournaments where one can find a minimum sized feedback arc set in
polynomial time (see Lemma 3.8) and use the known polynomial time approximation scheme for k-FAST by Kenyon-Mathieu
and Schudy [26]. The polynomial time algorithm for a subclass of tournaments could be of independent interest.

The paper is organized as follows. In Section 2, we give some definition and preliminary results regarding feedback arc
sets. In Section 3 we give a linear vertex kernel for k-FAST. Finally we conclude with some remarks in Section 4.

2. Preliminaries

Let T = (V , A) be a tournament on n vertices. We use Tσ = (Vσ , A) to denote a tournament whose vertices are ordered
under a fixed ordering σ = v1, . . . , vn (we also use Dσ for an ordered directed graph). We say that an arc vi v j of Tσ is
a backward arc if i > j, otherwise we call it a forward arc. Moreover, given any partition P := {V 1, . . . , Vl} of Vσ , where
every V i is an interval according to the ordering of Tσ , we use AB to denote all arcs between the intervals (having their
endpoints in different intervals), and AI for all arcs within the intervals. If Tσ contains no backward arc, then we say that
it is transitive.

For a vertex v ∈ V we denote its in-neighborhood by N−(v) := {u ∈ V | uv ∈ A} and its out-neighborhood by N+(v) :=
{u ∈ V | vu ∈ A}. A set of vertices M ⊆ V is a module if and only if N+(u) \ M = N+(v) \ M for every u, v ∈ M . For a subset
of arcs A′ ⊆ A, we define T [A′] to be the digraph (V ′, A′) where V ′ is the union of endpoints of the arcs in A′ . Given an
ordered digraph Dσ and an arc e = vi v j , S(e) = {vi, . . . , v j} denotes the span of e. The number of vertices in S(e) is called
the length of e and is denoted by l(e). Thus, for every arc e = vi v j , l(e) = |i − j| + 1. Finally, for every vertex v in the span
of e, we say that e is above v .

In this paper, we will use the well-known fact that every acyclic tournament admits a transitive ordering. In particular,
we will consider maximal transitive modules. We also need the following result for our kernelization algorithm.

Lemma 2.1. (See [28].) Let D = (V , A) be a directed graph and F be a minimal feedback arc set of D. Let D ′ be the graph obtained
from D by reversing the arcs of F in D, then D ′ is acyclic.

We now introduce a definition which is useful for a lemma we prove later.

Definition 2.2. Let Dσ = (Vσ , A) be an ordered directed graph and let f = vu be a backward arc of Dσ . We call certificate
of f , and denote it by c( f ), any directed path from u to v using only forward arcs in the span of f in Dσ .

Observe that such a directed path together with the backward arc f forms a directed cycle in Dσ whose only backward
arc is f .

Definition 2.3. Let Dσ = (Vσ , A) be an ordered directed graph, and let F ⊆ A be a set of backward arcs of Dσ . We say that
we can certify F whenever it is possible to find a set F = {c( f ): f ∈ F } of arc-disjoint certificates for the arcs in F .
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Let Dσ = (Vσ , A) be an ordered directed graph, and let F ⊆ A be a subset of backward arcs of Dσ . We say that we can
certify the set F using only arcs from A′ ⊆ A if F can be certified by a collection F such that the union of the arcs of the
certificates in F is contained in A′ . In the following, fas(D) denotes the size of a minimum feedback arc set, that is, the
cardinality of a minimum sized set F of arcs whose removal makes D acyclic.

Lemma 2.4. Let Dσ be an ordered directed graph, and let P = {V 1, . . . , Vl} be a partition of Dσ into intervals. Assume that the set F
of all backward arcs of Dσ [AB ] can be certified using only arcs from AB . Then fas(Dσ ) = fas(Dσ [AI ])+ fas(Dσ [AB ]). Moreover, there
exists a minimum sized feedback arc set of Dσ containing F .

Proof. For any bipartition of the arc set A into A1 and A2, fas(Dσ ) � fas(Dσ [A1]) + fas(Dσ [A2]). Hence, in particular for a
partition of the arc set A into AI and AB we have that fas(Dσ ) � fas(Dσ [AI ]) + fas(Dσ [AB ]). Next, we show that fas(Dσ ) �
fas(Dσ [AI ]) + fas(Dσ [AB ]). This follows from the fact that once we reverse all the arcs in F , each remaining directed cycle
lies in Dσ [V i] for some i ∈ {1, . . . , l}. In other words once we reverse all the arcs in F , every cycle is completely contained
in Dσ [AI ]. This concludes the proof of the first part of the lemma. In fact, what we have shown is that there exists a
minimum sized feedback arc set of Dσ containing F . This concludes the proof of the lemma. �
3. Kernels for k-FAST

In this section we first give a subquadratic vertex kernel of size O (k
√

k) for k-FAST and then improve on it to get our
final vertex kernel of size O (k). We start by giving a few reduction rules that will be needed to bound the size of the
kernels.

Rule 3.1. If a vertex v is not contained in any triangle, delete v from T .

Rule 3.2. If there exists an arc uv that belongs to more than k distinct triangles, then reverse uv and decrease k by 1.

We say that a reduction rule is sound, if whenever the rule is applied to an instance (T ,k) to obtain an instance (T ′,k′),
T has a feedback arc set of size at most k if and only if T ′ has a feedback arc set of size at most k′ . Moreover, applying a
reduction rule in polynomial time means that the structure sought by the reduction rule can be identified in polynomial
time and the instance can be updated in polynomial time. Finally, we say that an instance (T ,k) is reduced according to a
set of reduction rules whenever none of the reduction rules can be applied to (T ,k).

Lemma 3.1. (See [4,16].) Rules 3.1 and 3.2 are sound and can be applied in polynomial time.

Rules 3.1 and 3.2 together led to a quadratic kernel for k-WFAST [4]. Earlier, these rules were used by Dom et al. [16] to
obtain a quadratic kernel for k-FAST. We now add a new reduction rule that will allow us to obtain the claimed bound on
the kernel sizes for k-FAST. Given an ordered tournament Tσ = (Vσ , A), we say that P = {V 1, . . . , Vl} is a safe partition of
Vσ into intervals whenever it is possible to certify the backward arcs of Tσ [AB ] using only arcs from AB .

Rule 3.3. Let Tσ be an ordered tournament, and P = {V 1, . . . , Vl} be a safe partition of Vσ into intervals such that F �= ∅,
where F denotes the set of backward arcs of Tσ [AB ]. Then reverse all the arcs of F and decrease k by |F |.

Lemma 3.2. Rule 3.3 is sound.

Proof. Let P be a safe partition of Tσ . Observe that it is possible to certify all the backward arcs, that is F , using only arcs
in AB . Hence using Lemma 2.4 we have that fas(Tσ ) = fas(Tσ [AI ])+ fas(Tσ [AB ]). Furthermore, by Lemma 2.4 we also know
that there exists a minimum sized feedback arc set of Dσ containing F . Thus, Tσ has a feedback arc set of size at most k
if and only if the tournament T ′

σ obtained from Tσ by reversing all the arcs of F has a feedback arc set of size at most
k − |F |. �
3.1. A subquadratic kernel for k-FAST

In this section, we show how to obtain an O (k
√

k) sized vertex kernel for k-FAST. To do so, we introduce the following
reduction rule (see Fig. 1).

Rule 3.4. Let Tm be a maximal transitive module of size p, and I and O be the set of in-neighbors and out-neighbors of the
vertices of Tm in T , respectively. Let Z be the set of arcs uv such that u ∈ O and v ∈ I . If q = |Z | < p then reverse all the
arcs in Z and decrease k by q.
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Fig. 1. A transitive module on which Rule 3.4 applies.

Lemma 3.3. Rule 3.4 is sound and can be applied in O (n + m) time.

Proof. We first prove that the partition P = {I, Tm, O } forms a safe partition of the input tournament. Let T ′
m =

{w1, . . . , wq} ⊆ Tm be an arbitrary subset of size q of Tm and let Z = {ui vi | 1 � i � q}. Consider the collection F = {vi wiui |
ui vi ∈ Z , wi ∈ T ′

m} and notice that it certifies all the arcs in Z . In fact we have managed to certify all the backwards arcs
of the partition using only arcs from AB and hence P forms a safe partition. Thus, by Rule 3.3, it is safe to reverse all the
arcs from O to I .

The time complexity follows from the fact that computing the modular decomposition tree can be done in O (n+m) time
on directed graphs [27]. It is well known that the modular decomposition tree of a tournament has nodes labelled either
prime or transitive and that each maximal transitive module corresponds to the set of leaves attached to some transitive
node of the modular decomposition tree. �

We show that any Yes-instance to which none of Rules 3.1, 3.2 and 3.4 could be applied has at most O (k
√

k) vertices.

Theorem 3.4. Let (T = (V , A),k) be a Yes-instance to k-FAST which has been reduced according to Rules 3.1, 3.2 and 3.4. Then T has
at most O (k

√
k) vertices.

Proof. Let S be a feedback arc set of size at most k of T and let T ′ be the tournament obtained from T by reversing all
the arcs in S . Let σ be the transitive ordering of T ′ and Tσ = (Vσ , A) be the ordered tournament corresponding to the
ordering σ . We say that a vertex is affected if it is incident to some arc in S . Thus, the number of affected vertices is
at most 2|S| � 2k. The reduction Rule 3.1 ensures that the first and last vertex of Tσ are affected. To see this note that
if the first vertex in Vσ is not affected then it is a source vertex (vertex with in-degree 0) and hence it is not part of
any triangle and thus Rule 3.1 would have applied. We can similarly argue for the last vertex. Next we argue that there
is no backward arc e of length greater than 2k + 2 in Tσ . Assume to the contrary that e = uv is a backward arc with
S(e) = {v, x1, x2, . . . , x2k+1, . . . , u} and hence l(e) > 2k + 2. Consider the collection T = {vxiu | 1 � i � 2k} and observe that
at most k of these triples can contain an arc from S \{e} and hence there exist at least k +1 triplets in T which corresponds
to distinct triangles all containing e. But then e would have been reversed by an application of Rule 3.2. Hence, we have
shown that there is no backward arc e of length greater than 2k + 2 in Tσ . Thus

∑
e∈S l(e) � 2k2 + 2k.

We also know that between two consecutive affected vertices there is exactly one maximal transitive module. Let us
denote by ti the number of vertices in these modules, where i ∈ {1, . . . ,2k − 1}. The objective here is to bound the number
of vertices in Vσ or V using

∑2k−1
i=1 ti . To do so, observe that since T is reduced under Rule 3.4, there are at least ti backward

arcs above every module with ti vertices, each of length at least ti . This implies that
∑2k−1

i=1 t2
i �

∑
e∈S l(e) � 2k2 + 2k. Now,

using the Cauchy–Schwarz inequality we can show the following:

2k−1∑
i=1

ti =
2k−1∑
i=1

ti · 1 �

√√√√2k−1∑
i=1

t2
i ·

2k−1∑
i=1

1 �
√(

2k2 + 2k
) · (2k − 1) =

√
4k3 + 2k2 − 2k.

Thus every reduced Yes-instance has at most
√

4k3 + 2k2 − 2k + 2k = O (k
√

k) vertices. �
3.2. A linear kernel for k-FAST

We begin this subsection by showing some general properties about tournaments which will be useful in obtaining a
linear kernel for k-FAST.

3.2.1. Backward weighted tournaments
Let Tσ be an ordered tournament with weights on its backward arcs. We call such a tournament a backward weighted

tournament and denote it by Tω , and use ω(e) to denote the weight of a backward arc e. For every interval I := [vi, . . . , v j]
we use ω(I) to denote the total weight of all backward arcs having both their endpoints in I , that is, ω(I) = ∑

e=uv w(e)
where u, v ∈ I and e is a backward arc.
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Fig. 2. Illustration of the contraction step for the interval I := [vi , . . . , v j ].

Definition 3.5 (Contraction). Let Tω = (Vσ , A) be an ordered tournament with weights on its backward arcs and I =
[vi, . . . , v j] be an interval. The contracted tournament is defined as Tω′ = (Vσ ′ = Vσ \ {I} ∪ {cI }, A′). The arc set A′ is
defined as follows.

• It contains all the arcs A1 = {uv | uv ∈ A, u /∈ I, v /∈ I}.
• Add A2 = {ucI | uv ∈ A, u /∈ I, v ∈ I} and A3 = {cI v | uv ∈ A, u ∈ I, v /∈ I}.
• Finally, we remove every forward arc involved in a 2-cycle after the addition of arcs in the previous step.

The order σ ′ for Tω′ is provided by σ ′ = v1, . . . , vi−1, cI , v j+1, . . . , vn . We define the weight of a backward arc e = xy of A′
as follows:

w ′(xy) =
⎧⎨
⎩

w(xy) if xy ∈ A1,∑
{xz∈A|z∈I} w(xz) if xy ∈ A2,∑
{zy∈A|z∈I} w(zy) if xy ∈ A3.

We refer to Fig. 2 for an illustration.

Next we generalize the notions of certificate and certification (Definitions 2.2 and 2.3) to backward weighted tourna-
ments.

Definition 3.6. Let Tω = (Vσ , A) be a backward weighted tournament, and let f = vu ∈ A be a backward arc of Tω . We call
ω-certificate of f , and denote it by C( f ), a collection of ω( f ) arc-disjoint directed paths going from u to v and using only
forward arcs in the span of f in Tω .

Definition 3.7. Let Tω = (Vσ , A) be a backward weighted tournament, and let F ⊆ A be a subset of backward arcs of Tω .
We say that we can ω-certify F whenever it is possible to find a set F = {C( f ): f ∈ F } of arc-disjoint ω-certificates for the
arcs in F .

Lemma 3.8. Let Tω = (Vσ , A) be a backward weighted tournament such that for every interval I := [vi, . . . , v j] the following holds:

2 · ω(I) � |I| − 1. (1)

Then it is possible to ω-certify the backward arcs of Tω .

Proof. Let Vσ = v1, . . . , vn . The proof is by induction on n, the number of vertices. Note that by applying (1) to the interval
I = [v1, . . . , vn], we have that there exists a vertex vi in Tω that is not incident to any backward arc. Let T ′

ω = (V ′
σ , A′)

denote the tournament Tω \{vi}. We say that an interval I is critical whenever |I| � 2 and 2 ·ω(I) = |I|−1. We now consider
several cases, based on different types of critical intervals.

(i) Suppose that there are no critical intervals. Thus, in T ′
ω , every interval satisfies (1), and hence by induction on n the

result holds.
(ii) Suppose now that the only critical interval is I = [v1, . . . , vn], and let e = vu be a backward arc above vi with the

maximum length. Note that since vi does not belong to any backward arc, we can use it to form a directed path
c(e) = uvi v , which is a certificate for e. We now consider T ′

ω where the weight of e has been decreased by 1. In this
process if ω(e) becomes 0 then we reverse the arc e. We now show that every interval of T ′

ω respects (1). If an interval
I ′ ∈ T ′

ω does not contain vi in the corresponding interval in Tω , then by our assumption we have that 2 ·ω(I ′) � |I ′|−1.
Now we assume that the interval corresponding to I ′ in Tω contains vi but either u /∈ I ′ ∪ {vi} or v /∈ I ′ ∪ {vi}. Then we
have 2 · ω(I ′) = 2 · ω(I) < |I| − 1 = |I ′| and hence we get that 2 · ω(I ′) � |I ′| − 1. Finally, we assume that the interval
corresponding to I ′ in Tω contains vi and u, v ∈ I ′ ∪ {vi}. In this case, 2 · ω(I ′) = 2 · (ω(I) − 1) � |I| − 1 − 2 < |I ′| − 1.
Thus, by the induction hypothesis, we obtain a family of arc-disjoint ω-certificates F ′ which ω-certify the backward
arcs of T ′

ω . Observe that the maximality of l(e) ensures that if e is reversed then it will not be used in any ω-certificate
of F ′ , thus implying that F ′ ∪ c(e) is a family ω-certifying the backward arcs of Tω .

(iii) Finally, suppose that there exists a critical interval I � Vσ . Roughly speaking, we will show that I and Vσ \ I can be
certified separately. To do so, we first show the following.
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Claim 1. Let I ⊂ Vσ be a critical interval. Then the tournament Tω′ = (Vσ ′ , A′) obtained from Tω by contracting I satisfies the
conditions of the lemma.

Proof. Let H ′ be any interval of Tω′ . As before if H ′ does not contain cI then the result holds by hypothesis. Otherwise,
let H be the interval corresponding to H ′ in Tω . We will show that 2ω(H ′) � |H ′| − 1. By hypothesis, we know that
2ω(H) � |H| − 1 and that 2ω(I) = |I| − 1. Thus we have the following.

2ω
(

H ′) = 2 · (ω(H) − ω(I)
)
� |H| − 1 − |I| + 1 = (|H| + 1 − |I|) − 1 = ∣∣H ′∣∣ − 1.

Thus, we have shown that the tournament Tω′ satisfies the conditions of the lemma. �
We now consider a minimal critical interval I . By induction, and using the claim, we know that we can obtain a family
of arc-disjoint ω-certificates F ′ which ω-certifies the backward arcs of Tω′ without using any arc within I . Now, by
minimality of I , we can use (ii) to obtain a family of arc-disjoint ω-certificates F ′′ which ω-certifies the backward arcs
of I using only arcs within I . Thus, F ′ ∪ F ′′ is a family ω-certifying all backward arcs of Tω .

This concludes the proof of the lemma. �
In the following, any interval that does not respect condition (1) is said to be a dense interval.

Lemma 3.9. Let Tω = (Vσ , A) be a backward weighted tournament reduced under Rule 3.1 with |Vσ | � 2p + 1 and ω(Vσ ) � p.
Then there exists a safe partition of Vσ with at least one backward arc between the intervals and it can be computed in polynomial
time.

Proof. The proof is by induction on n = |Vσ |. Observe that by hypothesis every vertex of Tω belongs to the span of some
backward arc (since otherwise it would not be contained in any triangle). It follows that the statement is true for n = 3: in
such a case, Tω is a triangle with exactly one backward arc, and hence the partition into singletons is a safe partition. This
constitutes our base case.

For the inductive step, we assume first that there is no dense interval in Tω . In this case Lemma 3.8 ensures that the
partition of Vσ into singletons of vertices is a safe partition. So from now on we assume that there exists at least one dense
interval.

Let I be a dense interval. By definition of I , we have that ω(I) � 1
2 · |I|. We now contract I and obtain the backward

weighted tournament Tω′ = (Vσ ′ , A′). In the contracted tournament Tω′ , we have:
⎧⎨
⎩

|Vσ ′ | � 2p + 1 − (|I| − 1
) = 2p − |I| + 2;

ω′(Vσ ′) � p − 1

2
· |I|.

Thus, if we set r := p − 1
2 · |I|, we get that |Vσ ′ | � 2r + 1 and ω′(Vσ ′ ) � r. Since |Vσ ′ | < |Vσ |, by the induction hypothesis

we can find a safe partition P of Tω′ , and thus obtain a family Fω′ that ω-certifies the backward arcs of Tω′ [AB ] using only
arcs in AB . Observe that every vertex of Tω′ still belongs to the span of some backward arc, and hence it is safe to apply
our induction hypothesis.

We claim that P ′ obtained from P by substituting cI by its corresponding interval I is a safe partition in Tω . To see this,
first observe that if cI has not been used to ω-certify the backward arcs in Tω′ [AB ], that is, if cI is not an end point of any
arc in the ω-certificates, then we are done. So from now on we assume that cI has been part of an ω-certificate for some
backward arc. Let e = vu be such a backward arc in Tω′ [AB ], and let cω′ (e) ∈ Fω′ be a ω-certificate of e. First we assume
that cI is neither the first nor the last vertex of the certificate cω′(e) (with respect to ordering σ ′), and let c1 and c2 be the
left (in-) and right (out-) neighbors of cI in cω′(e). By definition of the contraction step together with the fact that there is
a forward arc between c1 and cI and between cI and c2 in Tω′ , we have that there were no backward arcs between any
vertex in the interval corresponding to cI and c1 and c2 in the original tournament Tω . So we can always find a vertex in I
to replace cI in cω′ (e), thus obtaining a certificate c(e) for e in Tω[AB ] (observe that e remains a backward arc even in Tω).
Now we assume that cI is either the first or last vertex in the certificate cω′ (e). Let e′ be an arc in Tω corresponding to e
in Tω′ with one of its endpoints being eI ∈ I . To certify e′ in Tω[AB ], we need to show that we can construct a certificate
c(e′) using only arcs of Tω[AB ]. We have two cases to deal with.

(i) If cI is the first vertex of cω′ (e), then let c1 be the right neighbor of cI for any directed path P between u = cI
and v in cω′ (e). Using the same argument as before, there are only forward arcs between any vertex in I and c1. In
particular, there is a forward arc eI c1 in Tω , meaning that we can construct a ω-certificate for e′ in Tω by setting
c(e′) := (cω′ (e) \ {cI }) ∪ {eI }. (See Fig. 3.)

(ii) If cI is the last vertex of cω′ (e), then let cq be the left neighbor of cI for any directed path P between u and v = cI in
cω′ (e). Once again, we have that there are only forward arcs between cq and vertices in I , and thus between cq and eI .
So using this we can construct a ω-certificate for e′ in Tω .
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Fig. 3. On the left, the ω-certificate cω′ (e) ∈ Fω′ . On the right, the corresponding ω-certificate obtained in Tω by replacing cI by the interval I .

Algorithm 1: Kernelization algorithm for the (2 + ε)k-vertex kernel of k-FAST.

Input: An instance T = ((V , A),k) of k-FAST, where k ∈ N, and a fixed ε > 0.
Output: An equivalent instance T ′ = ((V ′, A′),k′) with |V ′| � (2 + ε)k.

Reduce (T ,k) according to Rule 3.1;1
Compute a feedback arc set S using the (1 + ε

2 )-PTAS for k-FAST [26];2
if (|S| > (1 + ε

2 )k) then3
Return a small trivial No-instance;4

else5
Tσ ← the transitive ordering obtained by reversing every arc of S in T (observe that ω(Tσ ) � p := (1 + ε

2 )k);6
repeat7

if |Vσ | � 2p + 1 > (2 + ε)k then8
P ← the safe partition (with at least one backward arc between its intervals) obtained by Lemma 3.9;9
Tσ ← reverse all backward arcs between intervals of P in Tσ (Rule 3.3);10
k ← decrease the value of k accordingly;11
if (k � 0) then12

Reduce (Tσ ,k) according to Rule 3.1;13
if (Vσ = ∅) then14

Return a small trivial Yes-instance;15

until (k � 0) or (|Vσ | � (2 + ε)k);16
if (k � 0) then17

Return a small trivial No-instance;18

else19
Return Tσ ;20

Notice that the fact that all ω-certificates are pairwise arc-disjoint in Tω′ [AB ] implies that the corresponding ω-certificates
are arc-disjoint in Tω[AB ], and so P ′ is indeed a safe partition of Vσ . �

We are now ready to give the linear size kernel for k-FAST. To do so, we make use of the fact that there exists a
polynomial time approximation scheme for this problem [26]. The kernelization algorithm is depicted in Algorithm 1.

Theorem 3.10. For every fixed ε > 0, there exists a vertex kernel for k-FAST with at most (2 + ε)k vertices that can be computed in
polynomial time.

Proof. Let (T = (V , A),k) be an instance of k-FAST. First, we reduce (T ,k) according to Rule 3.1. Then, for a fixed ε > 0,
we compute a feedback arc set S using the known (1 + ε

2 )-polynomial time approximation scheme for k-FAST [26]. If
|S| > (1 + ε

2 )k, then there is no feedback arc set of size at most k for T . Hence we return a trivial small No-instance.
Otherwise, S has size at most (1 + ε

2 )k. We then order T with the transitive ordering of the tournament obtained by
reversing every arc of S in T . Let Tσ denote the resulting ordered tournament. By the upper bound on the size of S , we
know that Tσ has at most (1 + ε

2 )k backward arcs. Thus, if Tσ has more than (2 + ε)k vertices then Lemma 3.9 ensures that
we can find a safe partition with at least one backward arc between the intervals in polynomial time. Hence we can reduce
the tournament by applying Rule 3.3, decreasing the value of k accordingly. Finally, if k � 0, we reduce the tournament
according to Rule 3.1; notice that if we get V = ∅ doing so, then we return a small trivial Yes-instance. We repeat the
previous steps until we do not find a safe partition or k � 0. In the former case, we know by Lemma 3.9 that T can have at
most (2 + ε)k vertices, thus implying the result. In the latter case we return a trivial small No-instance. �
4. Conclusion

In this paper we obtained linear vertex kernel for k-FAST, in fact, a vertex kernel of size (2 + ε)k for any fixed ε > 0.
The new bound on the kernel size improves the previous known bound of O (k2) on the vertex kernel size for k-FAST given
in [4,16]. Moreover, it would be interesting to see if one can obtain kernels for other problems using either polynomial
time approximation schemes or a constant factor approximation algorithm for the corresponding problem. An interesting
problem which remains unanswered is, whether there exists a linear or even an o(k2) vertex kernel for the k-Feedback

Vertex Set in Tournaments (k-FVST) problem. In the k-FVST problem we are given a tournament T and a positive integer k
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and the aim is to find a set of at most k vertices whose deletion makes the input tournament acyclic. The smallest known
kernel for k-FVST has size O (k2) [1].

References

[1] F.N. Abu-Khzam, A kernelization algorithm for d-hitting set, J. Comput. System Sci. 76 (7) (2010) 524–531.
[2] N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: ranking and clustering, in: ACM Symposium on Theory of Computing (STOC),

2005, pp. 684–693.
[3] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (1) (2006) 137–142.
[4] N. Alon, D. Lokshtanov, S. Saurabh, Fast FAST, in: ICALP, in: Lecture Notes in Comput. Sci., vol. 5555, Springer, 2009, pp. 49–58.
[5] J. Bartholdi III, C.A. Tovey, M.A. Trick, Voting schemes for which it can be difficult to tell who won the election, Soc. Choice Welf. 6 (2) (1989) 157–165.
[6] H.L. Bodlaender, R.G. Downey, M.R. Fellows, D. Hermelin, On problems without polynomial kernels, J. Comput. System Sci. 75 (8) (2009) 423–434.
[7] H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.M. Thilikos, (Meta) Kernelization, in: FOCS, 2009, pp. 629–638.
[8] J. Borda, Mémoire sur les élections au scrutin, Histoire de l’Académie Royale des Sciences, 1781.
[9] N. Bousquet, J. Daligault, S. Thomassé, A. Yeo, A polynomial kernel for multicut in trees, in: Symposium on Theoretical Aspects of Computer Science

(STACS), 2009, pp. 183–194.
[10] P. Charbit, S. Thomassé, A. Yeo, The minimum feedback arc set problem is NP-hard for tournaments, Combin. Probab. Comput. 16 (1) (2007) 1–4.
[11] I. Charon, O. Hudry, A survey on the linear ordering problem for weighted or unweighted tournaments, 4OR 5 (1) (2007) 5–60.
[12] W.W. Cohen, R.E. Schapire, Y. Singer, Learning to order things, in: Advances in Neural Information Processing Systems (NIPS), 1997, pp. 451–457.
[13] M. Condorcet, Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785.
[14] D. Coppersmith, L. Fleischer, A. Rudra, Ordering by weighted number of wins gives a good ranking for weighted tournaments, in: ACM–SIAM Sympo-

sium on Discrete Algorithms (SODA), 2006, pp. 776–782.
[15] H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses, in: STOC, ACM, 2010,

pp. 251–260.
[16] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, A. Truß, Fixed-parameter tractability results for feedback set problems in tournaments, in: Conference on

Algorithms and Complexity (CIAC), in: Lecture Notes in Comput. Sci., vol. 3998, 2006, pp. 320–331.
[17] M. Dom, D. Lokshtanov, S. Saurabh, Incompressibility through colors and IDs, in: ICALP, in: Lecture Notes in Comput. Sci., vol. 5555, Springer, 2009,

pp. 378–389.
[18] C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation revisited, Technical report.
[19] C. Dwork, R. Kumar, M. Naor, D. Sivakumar, Rank aggregation methods for the web, in: World Wide Web Conference (WWW), 2001.
[20] P. Erdös, J.W. Moon, On sets on consistent arcs in tournaments, Canad. Math. Bull. 8 (1965) 269–271.
[21] F.V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, Fast local search algorithm for weighted feedback arc set in tournaments, in: AAAI, 2010, pp. 65–70.
[22] H.A. Jung, On subgraphs without cycles in tournaments, Combinatorial Theory and Its Applications II, 1970, pp. 675–677.
[23] M. Karpinski, W. Schudy, Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament, CoRR,

arXiv:1006.4396, 2010.
[24] J. Kemeny, Mathematics without numbers, Daedalus 88 (1959) 571–591.
[25] J. Kemeny, J. Snell, Mathematical Models in the Social Sciences, Blaisdell, 1962.
[26] C. Kenyon-Mathieu, W. Schudy, How to rank with few errors, in: ACM Symposium on Theory of Computing (STOC), 2007, pp. 95–103.
[27] R.M. McConnell, F. de Montgolfier, Linear-time modular decomposition of directed graphs, Discrete Appl. Math. 145 (2) (2005) 198–209.
[28] V. Raman, S. Saurabh, Parameterized algorithms for feedback set problems and their duals in tournaments, Theoret. Comput. Sci. 351 (3) (2006)

446–458.
[29] K.D. Reid, E.T. Parker, Disproof of a conjecture of Erdös and Moser on tournaments, J. Combin. Theory 9 (1970) 225–238.
[30] S. Seshu, M.B. Reed, Linear Graphs and Electrical Networks, Addison–Wesley, 1961.
[31] P. Slater, Inconsistencies in a schedule of paired comparisons, Biometrika 48 (1961) 303–312.
[32] E. Speckenmeyer, On feedback problems in digraphs, in: Workshop on Graph-Theoretic Concepts in Computer Science (WG), in: Lecture Notes in

Comput. Sci., vol. 411, Springer, 1989, pp. 218–231.
[33] J. Spencer, Optimal ranking of tournaments, Networks 1 (1971) 135–138.
[34] S. Thomassé, A 4k2 kernel for feedback vertex set, ACM Trans. Algorithms 6 (2) (2010).
[35] A. van Zuylen, Deterministic approximation algorithms for ranking and clusterings, Technical Report 1431, Cornell ORIE, 2005.
[36] A. van Zuylen, R. Hegde, K. Jain, D.P. Williamson, Deterministic pivoting algorithms for constrained ranking and clustering problems, in: ACM–SIAM

Symposium on Discrete Algorithms (SODA), 2007, pp. 405–414.
[37] D.H. Younger, Minimum feedback arc sets for a directed graph, IEEE Trans. Circuit Theory 10 (1963) 238–245.



On the (non-)existence of polynomial kernels for

Pl-free edge modification problems ∗

Sylvain Guillemot1 Christophe Paul2

Anthony Perez2

1 Lehrstuhl für Bioinformatik, Friedrich-Schiller Universität Jena
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Abstract

Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property Π consists in deciding whether there exists a set of edges F of size
at most k such that the graph H = (V,E M F ) satisfies the property Π. In the Π
edge-completion problem, the set F of edges is constrained to be disjoint from E; in
the Π edge-deletion problem, F is a subset of E; no constraint is imposed on F in
the Π edge-edition problem. A number of optimization problems can be expressed
in terms of graph modification problems which have been extensively studied in
the context of parameterized complexity. When parameterized by the size k of the
edge set F , it has been proved that if Π is an hereditary property characterized
by a finite set of forbidden induced subgraphs, then the three Π edge-modification
problems are FPT [4]. It was then natural to ask [4] whether these problems also
admit a polynomial size kernel. Using recent lower bound techniques, Kratsch and
Wahlström answered this question negatively [15]. However, the problem remains
open on many natural graph classes characterized by forbidden induced subgraphs.
Kratsch and Wahlström asked whether the result holds when the forbidden sub-
graphs are paths or cycles and pointed out that the problem is already open in the
case of P4-free graphs (i.e. cographs). This paper provides positive and negative
results in that line of research. We prove that parameterized cograph edge modifi-
cation problems have cubic vertex kernels whereas polynomial kernels are unlikely
to exist for the Pl-free and Cl-free edge-deletion problems for large enough l.

1 Introduction

An edge modification problem aims at changing the edge set of an input graph G =
(V,E) in order to get a certain property Π satisfied (see [16] for a recent study).
Edge modification problems cover a broad range of graph optimization problems among
which completion problems (e.g. minimum fill-in, a.k.a chordal graph comple-
tion [19, 21]), edition problems (e.g. cluster editing [20]) and edge deletion problems
(e.g. maximum planar subgraph [10]). In a completion problem, the set F of mod-
ified edges is constrained to be disjoint from E; in an edge deletion problem, F has
to be a subset of E; and in an edition problem, no restriction applies to F . These
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problems are fundamental in graph theory and play an important role in computational
complexity theory (indeed they represent a large number of the earliest NP-Complete
problems [10]). Edge modification problems are also relevant in the context of appli-
cations as graphs are often used to model data sets which may contain errors. Adding
or deleting an edge thereby corresponds to fixing some false negatives or false positives
(see e.g. [20] in the context of cluster editing). Different variants of edge modifica-
tion problems have been studied in the literature such as graph sandwich problems [11].
Most of the edge modification problems turns out to be NP-Complete [16] and approx-
imation algorithms exist for some known graph properties (see e.g. [14, 22]). But for
those who want to compute an exact solution, fixed parameter algorithms [5, 8, 17] are
a good alternative to cope with such hard problems. In the last decades, edge modi-
fication problems have been extensively studied in the context of fixed parameterized
complexity (see [4, 7, 13]).

A parameterized problem Q is fixed parameter tractable (FPT for short) with respect
to parameter k whenever it can be solved in time f(k).nO(1), where f(k) is an arbitrary
computable function [5, 17]. In the context of edge modification problems, the size k
of the set F of modified edges is a natural parameterization. The generic question is
thereby whether a given edge modification problem is FPT for this parameterization.
More formally:

Parameterized Π edge–modification Problem
Input: An undirected graph G = (V,E).
Parameter: An integer k > 0.
Question: Is there a subset F ⊆ V ×V with |F | 6 k such that the graph H = (V,E M
F ) satisfies Π.

A classical result of parameterized complexity states that a parameterized problem
Q is FPT if and only if it admits a kernelization. A kernelization of a parameterized
problem Q is a polynomial time algorithm K that given an instance (x, k) computes
an equivalent instance K(x, k) = (x′, k′) such that the size of x′ and k′ are bounded by
a computable function h() depending only on the parameter k. The reduced instance
(x′, k′) is called a kernel and we say that Q admits a polynomial kernel if the function
h() is a polynomial. The equivalence between the existence of an FPT algorithm and
the existence of a kernelization only yields kernels of (at least) exponential size. Deter-
mining whether an FPT problem has a polynomial (or even linear) size kernel is thus
an important challenge. Indeed, the existence of such polynomial time reduction algo-
rithm (or pre-processing algorithm or reduction rules) really speed-up the resolution of
the problem, especially if it is interleaved with other techniques [18]. However, recent
results proved that not every fixed parameter tractable problem admits a polynomial
kernel [1].

Cai [4] proved that if Π is an hereditary graph property characterized by a finite set
of forbidden subgraphs, then the parameterized Π modification problems (edge-
completion, edge-deletion and edge-edition) are FPT. It was then natural to ask [4]
whether these Π edge-modification problems also admit a polynomial size kernel. Us-
ing recent lower bound techniques, Kratsch and Wahlström answered negatively this
question [15]. However, the problem remains open on many natural graph classes char-
acterized by forbidden induced subgraphs. Kratsch and Wahlström asked whether the
result holds when the forbidden subgraphs are paths or cycles and pointed out that the
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problem is already open in the case of P4-free graphs (i.e. cographs). In this paper, we
prove that parameterized cograph edge modification problems have cubic ver-
tex kernels whereas polynomial kernels are unlikely to exist for Pl-free and Cl-free
edge deletion problems for large enough l. The NP-Completeness of the cograph
edge-deletion and edge-completion problems have been proved in [6].

Outline of the paper. We first establish structural properties of optimal edge-
modification sets with respect to modules of the input graph (Section 2). These prop-
erties allow us to design general reduction rules (Section 3.1). We then establish cubic
kernels using an extra sunflower rule (Section 3.2 and 3.3). Finally, we show it is un-
likely that the Cl-free and the Pl-free edge-deletion problems have polynomial
kernels (Section 4).

2 Preliminaries

2.1 Notations

We only consider finite undirected graphs without loops nor multiple edges. Given a
graph G = (V,E), we denote by xy the edge of E between the vertices x and y of V .
We set n = |V | and m = |E| (subscripts will be used to avoid possible confusion). The
neighbourhood of a vertex x is denoted by N(x). If S is a subset of vertices, then G[S]
is the subgraph induced by S (i.e. any edge xy ∈ E between vertices x, y ∈ S belongs
to EG[S]). Given a set of pairs of vertices F and a subset S ⊆ V , F [S] denotes the
pairs of F with both vertices in S. Given two sets S and S′, we denote by S M S′ their
symmetric difference.

2.2 Fixed parameter complexity and kernelization

We let Σ denote a finite alphabet and N the set of natural numbers. A (classical)
problem Q is a subset of Σ∗, and a string x ∈ Σ∗ is an input of Q. A parameterized
problem Q over Σ is a subset of Σ∗ × N. The second component of an input (x, k) of a
parameterized problem is called the parameter. Given a parameterized problem Q, one
can derive its unparameterized (or classical) version Q̃ by Q̃ = {x#1k : (x, k) ∈ Q},
where # is a symbol that does not belong to Σ.

A parameterized problem Q is fixed parameter tractable (FPT for short) if there
is an algorithm which given an instance (x, k) ∈ Σ∗ × N decides whether (x, k) ∈ Q
in time f(k).nO(1) where f(k) is an arbitrary computable function (see [5, 8, 17]). A
kernelization of a parameterized problem Q is a polynomial time algorithm K : Σ∗×N→
Σ∗ × N which given an instance (x, k) ∈ Σ∗ × N outputs an instance (x′, k′) ∈ Σ∗ × N
such that

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q and

2. |x′|, k′ 6 h(k) for some computable function h : N→ N.

The reduced instance (x′, k′) is called a kernel and we say that Q admits a polynomial
kernel if the function h() is a polynomial. It is well known that a parameterized problem
Q is FPT if and only if it has a kernelization [17]. But this equivalence only yields (at

3



least) exponential size kernels. Recent results proved that it is unlikely that every fixed
parameter tractable problem admits a polynomial kernel [1]. These results rely on the
notion of (or-)composition algorithms for parameterized problems, which together with
a polynomial kernel would imply a collapse on the polynomial hierarchy [1]. An or-
composition algorithm for a parameterized problem Q is an algorithm that receives as
input a sequence of instances (x1, k) . . . (xt, k) with (xi, k) ∈ Σ∗ × N for 1 6 i 6 t, runs
in time polynomial in

∑t
i=1 |xi|+ k and outputs an instance (y, k′) of Q such that:

1. (y, k′) ∈ Q⇔ (xi, k) ∈ Q for some 1 6 i 6 t and

2. k′ is polynomial in k.

A parameterized problem admitting an or-composition algorithm is said to be or-
compositional.

Theorem 2.1 [1, 9] Let Q be an or-compositional parameterized problem whose un-
parameterized version Q̃ is NP-complete. The problem Q does not admit a polynomial
kernel unless NP ⊆ coNP/Poly.

Let P and Q be parameterized problems. A polynomial time and parameter trans-
formation from P to Q is a polynomial time computable function T : Σ∗×N→ Σ∗×N
which given an instance (x, k) ∈ Σ∗×N outputs an instance (x′, k′) ∈ Σ∗×N such that

1. (x, k) ∈ P ⇔ (x′, k′) ∈ Q and

2. k′ 6 p(k) for some polynomial p.

Theorem 2.2 [2] Let P and Q be parameterized problems and let P̃ and Q̃ be their
unparameterized versions. Suppose that P̃ is NP-complete and Q̃ belongs to NP. If
there is a polynomial time and parameter transformation from P to Q and if Q admits
a polynomial kernel, then P also admits a polynomial kernel.

2.3 Modular decomposition and cographs

A module in a graph G = (V,E) is a set of vertices M ⊆ V such that for any x /∈ M
either M ⊆ N(x) or M ∩N(x) = ∅. Clearly if M = V or |M | = 1, then M is a trivial
module. A graph without any non-trivial module is called prime. For two disjoint
modules M and M ′, either all the vertices of M are adjacent to all the vertices of M ′ or
none of the vertices of M is adjacent to any vertex of M ′. A partition P = {M1, . . .Mk}
of the vertex set V (G) whose parts are modules is a modular partition. A quotient graph
G/P is associated with any modular partition P: its vertices are the parts of P and there
is an edge between Mi and Mj iff Mi and Mj are adjacent in G.

A module M is strong if for any module M ′ distinct from M , either M ∩M ′ = ∅ or
M ⊂ M ′ or M ′ ⊂ M . It is clear from definition that the family of strong modules ar-
ranges in an inclusion tree, called the modular decomposition tree and denoted MD(G).
Each node N of MD(G) is associated with a quotient graph GN whose vertices corre-
spond to the children N1, . . . Nk of N . (see Figure 1 for an example). We say that a
node N of MD(G) is parallel if GN has no edge, series if GN is complete, and prime
otherwise. For a survey on modular decomposition theory, refer to [12].
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Figure 1: A graph G and its modular decomposition tree MD(G). The root of MD(G)
is prime and its quotient graph is the 5 vertex graph depicted eside. Every other node
is either parallel or series.

Definition 2.3 Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex disjoint graphs. The
series composition of G1 and G2 is the graph G1 ⊗ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2).
The parallel composition of G1 and G2 is the graph G1 ⊕G2 = (V1 ∪ V2, E1 ∪ E2)

Parallel and series nodes in the modular decomposition tree respectively correspond
to a parallel and series composition of their children.

Cographs are commonly known as P4-free graphs (a P4 is an induced path on four
vertices). However, they were originally defined as follows:

Definition 2.4 ([3]) A graph is a cograph if it can be constructed from single vertex
graphs by a sequence of parallel and series composition.

In particular, this means that the modular decomposition tree of a cograph does
not contain any prime node. It follows that cographs are also known as the totally
decomposable graphs for the modular decomposition.

3 Polynomial kernels for cograph modification problems

3.1 Modular decomposition based reduction rules

Since cographs correspond to P4-free graphs, cograph edge-modification problems con-
sist in adding or deleting at most k edges to the input graph in order to make it P4-free.
The use of the modular decomposition tree in our algorithms follows from the following
observation:

Observation 3.1 [Folklore] Let M be a module of a graph G = (V,E) and {a, b, c, d}
be four vertices inducing a P4 of G, then |M ∩ {a, b, c, d}| 6 1 or {a, b, c, d} ⊆M .

This means that given a modular partition P of a graph G, any induced P4 of G is
either contained in a part of P or intersects the parts of P in at most one vertex. This
observation allows us to show that a cograph edge-modification problem can be solved
independently on modules of the partition P and on the quotient graph G/P , as stated
by the following results:
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Observation 3.2 Let M be a non-trivial module of a graph G = (V,E). Let FM be an
optimal edge-deletion (resp. edge-completion, edge-edition) set of G[M ] and let Fopt be
an optimal edge-deletion (resp. edge-completion, edge-edition) set of G. Then

F = (Fopt \ Fopt[M ]) ∪ FM

is an optimal edge-deletion (resp. edge-completion, edge-edition) set of G.

Proof: By Observation 3.1, it follows that H = (V,E M F ) is P4-free, thereby F is
an edge-deletion set. As being a cograph is an hereditary property, Fopt[M ] is an edge-
deletion set of G[M ]. Now observe that |F | = |Fopt| since otherwise |FM | > |Fopt[M ]|,
which would contradict the optimality of FM . The same argument holds for edge-
completion and edge-edition sets. �

Lemma 3.3 Let M be a module of a graph G = (V,E). There exists an optimal edge-
deletion (resp. edge-completion, edge-edition) set F such that M is a module of the
cograph H = (V,E M F ).

Proof: Let Fopt be an optimal edge-deletion set and denote Hopt = (V,E M Fopt). Let
x be a vertex of M such that |{xy ∈ F : y /∈ M}| is minimum. We argue that the
following set of edges is an optimal edge-deletion set:

F = Fopt[M ] ∪ Fopt[V \M ] ∪ {zy : z ∈M,y /∈M,xy ∈ Fopt}

First observe that by construction M is a module in the graph H = (V,E M F ) and
that by the choice of x, |F | 6 |Fopt|. Let us prove that H is P4-free. As H[M ] and
H[V \M ] are respectively isomorphic to Hopt[M ] and Hopt[V \M ], they are P4-free.
So if H contains an induced P4, its vertices {a, b, c, d} intersect M and V \ M . As
M is a module of H it follows by Observation 3.1 that |M ∩ {a, b, c, d}| = 1 (say
a ∈ M ∩ {a, b, c, d}). It follows by construction of F , that {x, b, c, d} also induces a P4

in Hopt, contradicting the assumption that Fopt is an edge-deletion set. So we proved
that F is an edge-deletion set of G which preserves the module M and is not larger
than Fopt. The same proof holds for edge-completion and edge-edition sets. �

Lemma 3.4 Let G = (V,E) be an arbitrary graph. There exists an optimal edge-
deletion (resp. edge-completion, edge-edition) set F such that every module M of G is
module of the cograph H = (V,E M F ).

Proof: We prove the statement for edge-deletion sets by induction on the number of
modules of a graph. The same proof applies for edge-completion and edge-edition sets.
Observe that the result trivially holds if G is a prime graph and follows from Lemma 3.3
if G contains a unique non-trivial module.

Let us now assume that the property holds for every graph with at most t non-trivial
modules. Let G be a graph with t + 1 non-trivial modules and let M be a non-trivial
module of G which is minimal for inclusion. By induction hypothesis, the statement
holds on G[M ] (since it is prime) and on the graph GM→x where M has been contracted
to a single vertex x (since it contains at most t non-trivial modules). The conclusion
follows from Observation 3.2. �
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We now present three reduction rules which apply to the three cograph edge-
modification problems we consider. The second reduction rule is not required to obtain
a polynomial kernel for each of these problems. However, it will ease the analysis of the
structure of a reduced graph.

Rule 1 Remove the connected components of G which are cographs.

Rule 2 If C = G1 ⊗G2 is a connected component of G, then replace C by G1 ⊕G2.

Rule 3 If M is a non-trivial module of G which is strictly contained in a connected
component and is not an independent set of size at most k + 1, then return the graph
G′ ⊕G[M ] where G′ is obtained from G by replacing M by an independent set module
of size min{|M |, k + 1}.

Observe that if G[M ] is a cograph, adding a disjoint copy to the graph is useless
since it will then be removed by Rule 1.

Lemma 3.5 The reduction rules 1, 2 and 3 are safe and can be carried out in linear
time.

Proof: The three rules can be computed in linear time using any linear time modular
decomposition algorithm [12]. The first rule is trivially safe. The second rule is safe by
Lemma 3.4. The safeness of Rule 3 also follows from Lemma 3.4: there always exists
an optimal solution that updates all or none of the edges between any two disjoint
modules. Thereby if a module M has size larger than k + 1, none of the edges (or
non-edges) xy with x ∈ M , y /∈ M can be changed in such a solution. Shrinking M
into an independent set of size k + 1 and adding a disjoint copy of G[M ] (to keep track
of the edge modification inside the module) is thereby safe. �

The analysis of the size of the kernel relies on the following structural property of
the modular decomposition tree of an instance reduced under Rule 1, Rule 2 and Rule 3.

Observation 3.6 Let G be a graph reduced under Rule 1, Rule 2 and Rule 3. If C is
a non prime connected component of G, then the modules of C are independent sets of
size at most k + 1.

Proof: By Rule 2, none of the connected components of G results from a series com-
position. By Rule 3, a module which is not the union of some connected components of
G has size at most k + 1 and is an independent set. �

Observe that these three reduction rules preserve the parameter. However, Rule 3
increases the number of vertices of the instance. Nevertheless, we will be able to bound
the number of vertices of a reduced instance.

It remains to show that computing a reduced graph requires polynomial time. Let
us mention that it is safe to apply Rule 2 and Rule 3 only on strong modules (in Rule 2,
G1 can be chosen as a strong module).
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Lemma 3.7 Given a graph G = (V,E), computing a graph reduced under Rule 1,
Rule 2 and Rule 3 requires polynomial time.

Proof: Let us say that a module M of G is reduced if it is an independent set of
size at most k + 1 or the disjoint union of some connected components of G (observe
that connected components of G are also modules of G). By Observation 3.6, if G is
reduced under Rule 1, Rule 2 and Rule 3, then every module of G is reduced. Notice
that if every strong module of G is reduced, then every module of G is reduced. So to
prove the statement, we count the number of strong modules (i.e. nodes of the modular
decomposition tree MD(G)) which are not reduced.

Let us also remark that if a connected component C is a cograph with at least
two vertices, then a series of applications of Rule 2 eventually transforms C in a set
of isolated vertices. This means that we can assume that the applications of Rule 1 is
postponed to the end of the reduction process. This will ease the argument below.

When Rule 3 is applied, then by definition the number of non-reduced strong mod-
ules decreases by one. When Rule 2 is applied, unless G1 is an independent set of size
at most k + 1, then the number of non-reduced strong modules also decreases by one.
But observe that if G1 is an independent set of size at most k + 1, then its vertices will
be removed by Rule 1 as they will become isolated vertices. As the number of strong
modules of a graph is bounded by the number of vertices, this proves that a series of at
most n applications of Rule 2 and Rule 3 is enough to compute a reduced graph. �

3.2 Cograph edge-deletion (and edge-completion)

In addition to the previous reduction rules, we need the classical sunflower rule to
obtain a polynomial kernel for the parameterized cograph edge-deletion problem.

Rule 4 If e is an edge of G that belongs to a set P of at least k + 1 P4’s such that e is
the only common edge of any two distinct P4’s of P, then remove e and decrease k by
one.

Observation 3.8 The reduction rule 4 is safe and can be carried out in polynomial
time.

Proof: It is clear that the edge e has to be deleted as otherwise at least k + 1 edge
deletions would be required to break all the P4’s of the set P. Such an edge, if it exists,
can be found in polynomial time if one computes the set of all P4’s of the input graph
(which can be done in O(n4) time). �

To analyse the size of a reduced graph G = (V,E), we study the structure of the
cograph H = (V,E M F ) resulting from the removal of an optimal (of size at most k)
edge-deletion set F . The modular decomposition tree (or cotree) is the appropriate tool
for this analysis.
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Theorem 3.9 The parameterized cograph edge-deletion problem admits a cubic vertex
kernel.

Proof: Let G = (V,E) be a graph reduced under Rule 1, Rule 2, Rule 3 and Rule 4
that can be turned into a cograph by deleting at most k edges. Let F be an optimal
edge-deletion set and denote by H = (V,E M F ) the cograph resulting from the deletion
of F and by T its cotree. We will count the number of leaves of T (or equivalently of
vertices of G and H).

Observe that since a set of k edges covers at most 2k vertices, T contains at most 2k
affected leaves (i.e. leaves corresponding to a vertex incident to a removed edge). We
say that an internal node of the cotree T is affected if it is the least common ancestor
of two affected leaves. Notice that there are at most 2k affected nodes.

We first argue that the root of T is a parallel node and is affected. Assume that the
root of T is a series node: since no edges are added to G, this would imply that G is not
reduced under Rule 2, a contradiction. Moreover, since G is reduced under Rule 1, none
of its connected components is a cograph. It follows that every connected component of
G contains a vertex incident to a removed edge, and thus that every subtree attached
to the root contains an affected leaf as a descendant. Hence the root of T is an affected
node.

Claim 3.10 Let p be an affected leaf or an affected node different from the root, and q
be the least affected ancestor of p. The path between p and q has length at most 2k + 3.

Proof. Observe first that the result trivially holds if q is the root of T and p one of
its children. In all other cases, let M be the set of leaves descendant of p in T . We claim
that M contains a leaf x which is incident to a removed edge xy, with y /∈M . If p is an
affected leaf then this is true by definition. Otherwise, if p is an affected node different
from the root, assume by contradiction that all the removed edges in M are of the form
uv with u, v ∈M . In particular, this implies that M is a module of G strictly contained
in a connected component. By Observation 3.6, it follows that M is an independent
set and hence contains no edges, a contradiction. Let t be the least common ancestor
of x and y. The node t is a parallel node which is an ancestor of p and q (observe
that we may have t = q). Assume by contradiction that the path between x and t
in T contains a sequence of 2k + 3 consecutive non-affected nodes. The type of these
nodes is alternatively series and parallel. So we can find a sequence s1, p1 . . . sk+1, pk+1

of consecutive non-affected nodes with si (resp. pi) being the father of pi (resp. si+1)
and with si’s being series nodes and the pi’s being parallel node. Now each of the si’s
(resp. pi) has a non-affected leaf ai (resp. bi) which is not a descendant of pi (resp.
si+1). Observe that for every i ∈ [1, k + 1] the vertex set {bi, ai, x, y} induces a P4 in
G. Thereby we found a set of k + 1 P4’s in G pairwise intersecting on the edge xy. It
follows that G is not reduced by the Rule 4: contradiction. This implies that the path
between p and q contains at most 2k + 3 non-affected nodes. �

Since there are at most 2k affected nodes and 2k affected leaves, T contains at most
(4k−1)(2k+3)+2k internal nodes. As G is reduced, Observation 3.6 implies that each
of these O(k2) nodes is attached to a set of at most k + 1 leaves or a parallel node with
k + 1 children. It follows that T contains at most 2k + (k + 1)[(4k− 1)(2k + 3) + 2k] 6
8k3 + 20k2 + 11k leaves, which correspond to the number of vertices of G.
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We now conclude with the time complexity needed to compute the kernel. Since the
application of Rule 4 decreases the value of the parameter (which is not changed by the
other rules), Rule 4 is applied at most k 6 n2 times. It then follows from Lemma 3.7
that a reduced instance can be computed in polynomial time. �

The following corollary simply follows from the observation that the family of
cographs is closed under complementation (since the complement of a P4 is a P4).

Corollary 3.11 The parameterized cograph edge-completion problem admits a cubic
vertex kernel.

3.3 Cograph edge-edition

The lines of the proof for the cubic kernel of the edge-edition problem are essentially the
same as for the edge-deletion problem. But since edges can be added and deleted, the
reduction Rule 4 has to be refined in order to avoid that a single edge addition breaks
an arbitrary large set of P4’s.

Rule 5 If {x, y} is a pair of vertices of G that belongs to a set S of t > k+1 quadruples
Pi = {x, y, ai, bi} such that for 1 6 i 6 t, every Pi induces a P4 and for any 1 6 i <
j 6 t, Pi ∩ Pj = {x, y}, then change E into E M {xy} and decrease k by one.

As for reduction Rule 4, it is clear that reduction Rule 5 is safe and can be applied
in polynomial time. The kernelization algorithm of cograph edge-edition consists of an
exhaustive application of Rules 1, 2, 3 and 5.

Theorem 3.12 The parameterized cograph edge-edition problem has a cubic vertex ker-
nel.

Proof: Let G = (V,E) be a graph reduced under Rule 1, Rule 2, Rule 3 and Rule 5
that can be turned into a cograph by editing at most k edges. Let H be the cograph
obtained by an optimal edge-edition. The cotree of H is denoted by T . Unlike in the
edge-deletion problem, the root of T is not necessary a parallel node. However it is still
true that the root of T is affected. Indeed, assume first that the root of T is a series
node. Then it is affected since otherwise G would not be reduced under Rule 2. Now,
assume that the root is a non affected parallel node. This means that at most one of its
children contains an affected leaf as descendant, and hence that G is not reduced under
Rule 1: contradiction.

In the following we assume w.l.o.g. that the root of T is a parallel node. We prove
that Claim 3.10 still holds in this case. Let p be an affected leaf or an affected node
different from the root, and q be the least affected ancestor of p. Observe that the result
is trivially true if q is the root of T and p one of its children. In all other cases, let M be
the set of leaves descendant of p in T . As in the proof of Theorem 3.9, there must exist
an edited edge xy with x ∈ M,y /∈ M (otherwise M would be a module of G, i.e. an
independent set by Observation 3.6 and would thus not be edited by Observation 3.2).

Now the proof follows the arguments of the proof of Theorem 3.9, if one can find
in T a path of 2k + 3 consecutive non-affected nodes between p and q, then G is not
reduced under Rule 5. Proving that T contains O(k2) nodes and thereby O(k3) leaves.
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The fact that a reduced instance can be computed in polynomial time follows from
Lemma 3.7 and the observation that Rule 5 decreases the value of the parameter and
requires polynomial time. �

For the deletion (resp. edition) problem there exists a graph reduced under Rule 1,
Rule 2, Rule 3 and Rule 4 (resp. Rule 5) that achieves the cubic bound (see Figure 2).
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Figure 2: A reduced graph G with k(k + 1)2 + k vertices for which k edge deletions,
namely the xiyi’s for i ∈ [1, k], are required to obtain a cograph H. The cotree T of H
is represented. Each parallel node of T which is not the root has k + 2 children, k + 1
of which are leaves. The root of T has 2k children.

4 Kernel lower bounds for Pl-free edge-deletion problems

In [15], Kratsch and Wahlström show that the Not-1-in-3-sat problem has no poly-
nomial kernelization under a complexity-theoretic assumption (NP * coNP/poly). We
observe that their argument still applies to a graph restriction of Not-1-in-3-sat where
the constraints arise from the triangles of an input graph.

4.1 A graphic version of the Not-1-in-3-sat problem

For a graph G = (V,E), an edge-bicoloring is a function B : E → {0, 1}. A partial
edge-bicoloring of G is an edge-bicoloring of a subset of edges of E. An edge colored 1
(resp. 0) is called a 1-edge (resp. 0-edge). We say that the edge-bicoloring B′ extends
a partial edge-bicoloring B if for every e ∈ E colored by B, then B(e) = B′(e). The
weight of an edge-bicoloring is the number ω(B) of 1-edges. An edge-bicoloring is valid if
every triangle of G contains either zero, two or three 1-edges. We consider the following
problem:
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Not-1-in-3-edge-triangle
Input: An undirected graph G = (V,E) and a partial edge-bicoloring B : E → {0, 1}.
Parameter: An integer k ∈ N.
Question: Can we extend B to a valid edge-bicoloring B′ of weight at most k?

Proposition 4.1 Not-1-in-3-edge-triangle is NP-complete and or-compositional.

Proof: The NP-hardness follows from a reduction from Vertex Cover. Let (G, k)
be an instance of Vertex Cover [10], where G = (V,E). We create an instance
(G′, B, k′) of Not-1-in-3-edge-triangle as follows. The graph G′ is obtained from
G by adding a dominating vertex q, the partial edge-bicoloring B is such that B(e) = 1
for every e ∈ E, and we let k′ = |E|+ k. As the triangles of G are monochromatic, the
constraints to obtain a valid extension of B are carried by the triangles of the form quv
with uv ∈ E. It is easy to observe that (G′, B, k′) has a valid edge-bicoloring extension
of weight k′ iff G has a vertex cover of size k. As Not-1-in-3-edge-triangle clearly
belongs to NP, the NP-completeness follows.

We now show that Not-1-in-3-edge-triangle is or-compositional. The proof
closely follows the proof of [15] for Not-1-in-3-sat. We first need the following result:

Claim 4.2 Given an instance (G,B, k) of Not-1-in-3-edge-triangle, and two pos-
itive integers r and k′ such that k′ ≥ k+r, we can compute in polynomial time an equiv-
alent instance (G′, B′, k′) of Not-1-in-3-edge-triangle such that ω(B′) = ω(B) + r.

Proof. To build G′, we first add to G a set F of r new isolated edges e1 . . . er such
that B′(ei) = 1 for all i ∈ [r]. Then we add to the resulting graph k′ − (k + r) gadgets
as follows: let ej = ujvj (with j ∈ [k′ − (k + r)]) be an arbitrary 1-edge of G; add the
triangles ujvjxj , vjxjyj with B′(vjyj) = B′(xjyj) = 0. The edges ej ’s are not necessar-
ily distinct. Observe that in any valid edge-bicoloring of G′ extending B′, the edge vjxj
(for every j ∈ [k′ − (k + r)]) is a 0-edge while the edge ujxj is a 1-edge. It follows that
(G,B, k) is a positive instance if and only if (G′, B′, k′) is a positive instance as the set
F increases the weight by r and the added triangles by k′ − (k + r). �

Consider a sequence (G1, B1, k) . . . (Gt, Bt, k) of instances of Not-1-in-3-edge-
triangle. We denote by E1(j) the set of 1-edges of (Gj , Bj , k). By Claim 4.2, we
can assume w.l.o.g. that |E1(j)| = s 6 k, for 1 6 j 6 t. We can also assume that t 6 3k

since otherwise an exact branching algorithm could solve the problem. Moreover, for
the sake of the construction, we assume t = 2l (duplicating some instance (Gi, Bi, k) if
necessary).

Intuitively, the graph G of the composed instance (G,B, k′) is built on the disjoint
union of the Gj ’s, 1 6 j 6 t. Then, as a selection gadget, we add a ”tree-like graph” T
connecting a ”root edge” r to edges ej for j = 1, ..., t. Finally, for every 1 6 j 6 t, the
1-edges of the graph Gj are connected via a propagation gadget to the edge ej in T .
The root edge is the unique 1-edge of G. The copies of the Gj ’s inherit the 0-edges of
the Gj ’s. The idea is that the selection gadget guarantees that at least one of the ej ’s
edge gets colored 1. Then the propagation gadgets attached to that edge ej transmit
color 1 to the copies of every 1-edge of Gj .
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Formally, we do the following: (i) we start with a complete binary tree T0 with
t leaves; (ii) to each node u of T0, we associate an edge eu in T as follows: if u is
associated to the edge xy and if u has two children v, v′, we create a new vertex z
and we let ev = xz, ev′ = yz. The leaves of T0 are then associated to edges e1, ..., et.
Now, for every 1 6 j 6 t, the propagation gadget Sj consists of vertex-disjoint graphs
Sj,e for every edge e of E1(j). If e = uv and ej = xy, then Sj,e consists of four
triangles uva, vab, abx, bxy, with edges ua, vb, ax, by colored 0 by B (the other edges
remain uncolored). Again the unique 1-edge of B is the root edge of T , in particular
the edges of the E1(j) are uncolored by B. However, the 0-edge sets of the Gj ’s are
inherited by B. (see Figure 3)
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Figure 3: The instance (G,B, k′) built from a sequence (G1, B1, k), . . . , (Gt, Bt, k) with
t = 23. The unique 1-edge is r. Every ”leaf edge” ej of T is linked to the copies of the
1-edges of (Gj , Bj , k) via the propagation gadget. The 0-edges are depicted as dotted
lines: they either belong to a propagation gadget or correspond to a 0-edge of some
(Gj , Bj , k).

Observe first that every valid edge-bicoloring extending B has to assign color 1 to at
least one edge ej , for 1 6 j 6 t. Then the edges of E1(j) and the 3s non 0-edges of Sj

are also assigned color 1. It follows that if we choose k′ = k+ 3s+ l, then (G,B, k′) is a
positive instance if and only if there exists 1 6 j 6 t such that (Gj , Bj , k) is a positive
instance. �

The following corollary follows from Theorem 2.1:

Corollary 4.3 The Not-1-in-3-edge-triangle problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

The problem Tripartite-Not-1-in-3-edge-triangle is the restriction of Not-
1-in-3-edge-triangle where the input graph G is 3-colorable. The hardness results
obtained for Not-1-in-3-edge-triangle carry over to this restriction:
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Lemma 4.4 The Tripartite-Not-1-in-3-edge-triangle problem does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof: The proof uses Theorem 2.2, that is we provide a polynomial parameter-
preserving transformation from Not-1-in-3-edge-triangle to Tripartite-Not-1-
in-3-edge-triangle. By Proposition 4.1, Not-1-in-3-edge-triangle is NP-complete.
Observe that Tripartite-Not-1-in-3-edge-triangle clearly belongs to NP.

Let (G,B, k) be an instance of Not-1-in-3-edge-triangle. We build an instance
(G′, B′, 6k) of Tripartite-Not-1-in-3-edge-triangle in the following way. Suppose
that G = (V,E), then G′ has vertex set V ′ = {v1, v2, v3 : v ∈ V }, and has edge set
E′ = {u1v2, u1v3, u2v3 : u = v or uv ∈ E}. The partial edge-bicoloring B′ is defined
as follows: B′(uiuj) = 0 for 1 6 i < j 6 3; if the edge uv of G is colored, then
B′(uivj) = B(uv) for 1 6 i, j 6 3; the other edges of G′ are uncolored.

Observe that every valid edge-bicoloring extending B′ assigns the same color to the
six edges of G′ associated with an edge uv of G: indeed, given uivj , ukvl 1 6 i, j, k, l 6 3,
if i = j this holds since B′(vkvl) = 0, if k = l this holds since B′(uiuj) = 0, and otherwise
this follows by transitivity. It is then easy to see that solutions of (G,B, k) and solutions
of (G′, B′, 6k) are in one-to-one correspondence. �

4.2 Negative results for Γ-free edge deletion problems

In this section, we show that unless NP ⊆ coNP/poly, the Cl-free edge-deletion
and the Pl-free edge-deletion problems have no polynomial kernel for large enough
l ∈ N. To that aim, we provide polynomial time and parameter transformations
from Tripartite-Not-1-in-3-edge-triangle to the Annotated Cl-free edge-
deletion problem and to the Annotated Pl-free edge-deletion problem. For
a graph Γ, the Annotated Γ-free edge-deletion problem is defined as follows:

Annotated Γ-free edge-deletion
Input: An undirected graph G = (V,E) and a subset S of vertices.
Parameter: An integer k ∈ N.
Question: Is there a subset F ⊆ E ∩ (S × S) such that H = (V,E \ F ) is Γ-free?

Observe that the Annotated Γ-free edge-deletion problem reduces to the
(unannotated) Γ-free edge-deletion problem whenever Γ is closed under twin addi-
tion: it suffices to add for every vertex v ∈ V \ S a set of k + 1 twin vertices. Clearly
this transformation also preserves the parameter.

Observe also that we can restrict the Tripartite-Not-1-in-3-edge-triangle
problem to instances (G,B, k) not containing any 0-edge (i.e. B(e) = 1 whenever
it is defined). The reason is that any uncolored edge e = uw of G can be forced to
be assigned color 0 in every valid edge-bicoloring extending B by adding to G k + 1
new vertices v1, . . . , vk such that uviw, 1 6 i 6 k, is an uncolored triangle. Clearly if
e is a 1-edge of an edge-bicoloring B′ extending B, B′ needs at least k + 1 1-edges to
be valid: e plus one edge per triangle. The same argument was used in [15] for the
Not-1-in-3-sat problem.
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Theorem 4.5 The Cl-free edge-deletion problem has no polynomial kernel for any
l > 12, unless NP ⊆ coNP/poly.

Proof: We describe a polynomial time and parameter transformation from the re-
striction of Tripartite-Not-1-in-3-edge-triangle without 0-edges to Annotated
Cl-free edge-deletion. The statement then follows from Theorem 2.2 and the fact
that Annotated Cl-free edge-deletion reduces to Cl-free edge-deletion.

Let (G,B, k) be an instance of the Tripartite-Not-1-in-3-edge-triangle prob-
lem, where V1, V2, V3 are disjoint independent sets of G = (V,E). The construction of
the instance (H,S, k′) of Annotated Cl-free edge-deletion works as follows. First
the sets V1, V2 and V3 are turned into cliques and the 1-edges of G are removed. In ad-
dition to V , the graph H contains a set U of new vertices. For each pair t = (e, v) with
e = uw an edge of G and v a vertex of G, such that {u, v, w} induces a triangle in G,
we create a path Pt of length l−1 between u and w in H (the internal vertices of Pt are
added to U). Notice that each triangle of G generates three such paths in H. It remains
to add some safety edges incident to the vertices of U . Every two vertices x and y of
U that do not belong to the same path are made adjacent. In every path Pt, we select
an internal vertex ct, called its centre, at distance (l− 1)/2 from u. Every centre vertex
ct is made adjacent to V \ {u, v, w}. We denote by H = (VH , EH) the resulting graph.
To complete the description of (H,S, k′) we set S = V and the parameter k′ = k − k1
where k1 is the number of 1-edges of (G,B, k).

3
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wu

Pt ct

P Pt’ t"

1
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V
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2

1

Figure 4: The graph H = (VH , EH) built from an instance (G,B, k) of the Tripartite-
Not-1-in-3-edge-triangle problem for l = 12. The white and the square vertices
form the set U of new vertices. The independent sets V1, V2 and V3 of G are turned into
cliques. The thick dotted edges are the removed 1-edges of (G,B, k). The non 1-edges
of (G,B, k) are preserved in H.

Claim 4.6 A subset of vertices C ∈ VH induces a cycle of length l iff G contains a
triangle uvw, with e = uw a 1-edge and uv, vw uncolored edges, such that C = Pt∪{v}
with t = (e, v).
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Proof. By construction, if G contains a triangle uvw with a unique 1-edge e = uw,
then C = Pt ∪ {v} (with t = (e, v)) induces a cycle of length l in H (keep in mind that
the 1-edges of G are removed from H). Let C be an induced Cl in H. Observe that as
V1, V2 and V3 are turned into cliques, |C ∩ V | 6 6. Thereby C intersects the vertex set
U . We now argue that there exists a path Pt, with t = (e, v) and e = uw, containing
the vertices of C ∩ U . Otherwise, since every pair of vertices of U belonging to two
distinct paths Pt and Pt′ (with t 6= t′) are adjacent, we would have |C ∩U | 6 4 and thus
|C| 6 4 + 6 < l. It follows that u or w belongs to C. We prove that they both belong
to C. Assume w /∈ C, then C uses a safety edge incident to the centre vertex ct and
half of the internal vertices of Pt does not belong to C. Thereby |C| 6 6 + (l− 3)/2 + 1:
contradiction with the hypothesis l > 12. Finally as Pt contains l − 1 vertices, C con-
tains an extra vertex and uw are not adjacent. As ct is adjacent to every vertex of V
except u, v and w, we have that C = Pt ∩ {v} as announced and uv,wv ∈ EH . Now
the existence of Pt witnesses the existence of the triangle uvw in G. As uv,wv ∈ EH

and uw /∈ EH , uw is the only 1-edge of the triangle uvw. �

We now argue for the correctness of the transformation. Suppose that there exists a
set F of allowed edges of size at most k′ such that H ′ = (VH , EH \F ) is Cl-free. Define
the edge-bicoloring B′ of E as follows: B′(e) = 1 if e ∈ F , B′(e) = 0 otherwise. As
by assumption B does not assign color 0 to any edge, B′ extends B and has weight at
most |F |+ k1 6 k′ + k1 = k. Besides, B′ is a valid edge-bicoloring of G. Let t = (e, v)
with e = uw be a pair such that {u, v, w} induces a triangle in G. If we had B(uw) = 1,
B′(uv) = B′(vw) = 0, we would obtain that Pt ∪ {v} induces a Cl in H ′, impossible.
Conversely, suppose that B′ is valid edge-bicoloring of weight at most k of G which
extends B. Let F ⊆ E be the set of edges such that B′(e) = 1 but are uncolored
by B. By construction F is a set of allowed edges of H of size at most k − k1. Since
B′ is a valid edge-bicoloring of G, Claim 4.6 implies that H ′ = (VH , EH \F ) is Cl-free. �

A slight modification of the above construction yields the following:

Theorem 4.7 The Pl-free edge-deletion problem has no polynomial kernel for any
l > 13, unless NP ⊆ coNP/poly.

Proof: Let (G,B, k) be an instance of the Tripartite-Not-1-in-3-edge-triangle
problem not containing any 0-edge and such that V1, V2, V3 are disjoint independent sets
of G = (V,E). We modify the construction given in Theorem 4.5 to obtain an instance
(H,S, k′) of Annotated Pl-free edge-deletion problem. The vertex set VH of H
consists of the union of V and a set U of new vertices. The sets V1, V2 and V3 are
again turned into cliques and the 1-edges of E are not duplicated in EH . But for each
pair t = (e, v), with e = uw ∈ E and v ∈ V such that {u, v, w} is a triangle of G, the
associated gadget Qt is no longer a path. Instead, Qt consist of two paths Qu

t and Qw
t :

Qu
t is a path of length (l − 1)/3 containing u as extremity and Qw

t is a path of length
2(l − 1)/3 containing w as extremity. The vertices of Qt \ {u,w} are added to U . As
before for every t 6= t′ we add all the edges between vertices of Qt and Qt′ . The centre
vertex ct of Qt is the vertex of Qw

t at distance (l − 1)/3 from w. The centre vertex is
made adjacent to every vertex of V except u, v and w. To complete the description of
(H,S, k′) we set S = V and k′ = k − k1 where k1 is the number of 1-edges of (G,B, k).
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The correctness proof of the construction follows the same lines than the proof of
Proposition 4.5. It now relies on the following claim that characterizes the possible
induced Pl’s.

Claim 4.8 A subset of vertices Q ∈ VH induces a path of length l iff G contains a
triangle uvw, with e = uw a 1-edge and uv, vw uncolored edges, such that Q = Qt∪{v}
with t = (e, v).

Proof. By construction, if G contains a triangle uvw with a unique 1-edge e = uw,
then Q = Qt ∪ {v} (with t = (e, v)) induces a path of length l in H (keep in mind that
the 1-edges of G are removed from H). Let Q be an induced Pl in H. As in the proof
of Claim 4.6, observe that |Q ∩ V | 6 6 and thereby Q intersects the vertex set U and
that there exists a unique pair t = (e, v) with e = uw such that Qt contains Q ∩ U . By
the choice of the length of Qu

t and Qw
t , Q ∩ U intersects both Qu

t and Qw
t . It follows

that u and w belongs to Q. Assume that Q uses an edge xct such that x /∈ Qt. Then
half of the vertices of Qw

t does not belong to Q, which would contradict the hypothesis
l > 13. Finally as by construction Qt contains l− 1 vertices, we need at least one extra
vertex from V . Since ct is adjacent to all vertices of V except u, v and v, that extra
vertex can only be v. Moreover the chord uw cannot exist in H, meaning that uw is a
1-edge of (G,B, k). �

5 Conclusion

In this paper we have shown that the parameterized cograph edge modification
problems admit vertex cubic kernels. Moreover, we provide evidence that the Cl-free
edge-deletion and the Pl-free edge-deletion problems do not admit polynomial
kernels for large enough l (under a complexity-theoretic assumption [1]). These problems
were left open by Kratsch and Wahlström in [15]. The value of l being respectively (at
least) 12 and 13, one remaining question is thus to determine whether the Cp-free
edge-deletion and the Pp-free edge-deletion problems admit polynomial kernels
for 4 6 p < 12 in the former case, and 4 < p < 13 in the latter.
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Conflict Packing yields linear vertex-kernels for Rooted Triplet

Inconsistency and other problems ∗

Christophe Paul, Anthony Perez, Stéphan Thomassé
LIRMM - Université Montpellier 2, CNRS - FRANCE

Abstract

We develop a technique that we call Conflict Packing in the context of kernelization. We
illustrate this technique on several well-studied problems: Feedback Arc Set in Tourna-
ments, Dense Rooted Triplet Inconsistency and Betweenness in Tournaments. For
the former, one is given a tournament T = (V,A) and seeks a set of at most k arcs whose reversal
in T leads to an acyclic tournament. While a linear vertex-kernel is already known for this prob-
lem [6], using the Conflict Packing allows us to find a so-called safe partition, the central tool
of the kernelization algorithm in [6], with simpler arguments. Regarding the Dense Rooted
Triplet Inconsistency problem, one is given a set of vertices V and a dense collection R of
rooted binary trees over three vertices of V and seeks a rooted tree over V containing all but at
most k triplets from R. Using again the Conflict Packing, we prove that the Dense Rooted
Triplet Inconsistency problem admits a linear vertex-kernel. This result improves the best
known bound of O(k2) vertices for this problem [19]. Finally, we use this technique to obtain a
linear vertex-kernel for Betweenness in Tournaments, where one is given a set of vertices
V and a dense collection R of betweenness triplets and seeks an ordering containing all but at
most k triplets from R. To the best of our knowledge this result constitutes the first polynomial
kernel for the problem.

1 Introduction

The concept of fixed parameter algorithms [13] has been introduced to cope with NP-Hard problems.
For a given (parameterized) problem, the goal is to identify a parameter k, independent from the
data-size n, which captures the exponential growth of the complexity cost to solve the problem in
hand. That is the complexity of such an (FPT) algorithm is f(k) · n0(1), where f is an arbitrary
computable function. As one of the most powerful techniques to design efficient fixed parameter
algorithms, kernelization algorithms [7] have attracted a lot of attention during the last few years. A
kernelization algorithm transforms, in polynomial time (via reduction rules), an arbitrary instance
(I, k) of a parameterized problem into an equivalent instance (I ′, k′) with the property that the
parameter k′ and the size |I ′| of the reduced instance only depend on k. The smaller the size of the
reduced instance (called kernel) is, the faster the problem can be solved. Indeed, once reduced the
instance can be efficiently tackle with any exact algorithms (e.g. bounded search tree or exponential
time algorithms).

∗Research supported by the AGAPE project (ANR-09-BLAN-0159) and the Phylariane project (ANR-08-EMER-
011-01).
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In the design of polynomial kernels, a few type of reduction rules are oftenly used. Sunflower
rules or domination rules are classical reduction rules which locally affect the instance. These type
of rules may be enough to obtain polynomial size kernels but linear kernels often require a more
global ”attack”. More recently, reduction rules based on matching theory [28] or on bidimensionality
theory [15] have been proposed. In this paper, we develop and push further a kernelization technique
used for a few parameterized problems [9, 30], called Conflict Packing, which also uses matching
arguments. Combined with a polynomial time algorithm that computes an accurate vertex partition
(called safe partition in [6]), Conflict Packing yields linear vertex-kernels.

In this extended abstract, we illustrate the Conflict Packing technique on three parameterized
problems. We first obtain a linear vertex-kernel for Feedback Arc Set in Tournaments: while
such a kernel was already known to exist [6], our proofs are simpler and shorter. Then we obtain
the main result of this paper, namely the first linear vertex-kernel for Dense Rooted Triplet
Inconsistency. Finally we apply the technique on Betweenness in Tournaments and obtain
a linear vertex-kernel. No polynomial kernel was known before.

Feedback Arc Set in Tournaments (k-FAST) Let T = (V,A) be a tournament on n vertices,
i.e. a directed graph obtained from an arbitrary orientation of the complete (undirected) graph,
and k be an integer. The task is to check whether there exists a subset of at most k arcs of A whose
reversal transform T into an acyclic (i.e. transtive) tournament. In other words, k-FAST consists
of computing a linear vertex ordering v1 . . . vn having at most k backward arcs (vi → vj with i > j).
It is well known that a tournament is transitive if and only if it does not contain a directed triangle
(circuit on 3 vertices). k-FAST is a well studied problem from the combinatorial [14, 25] as well
as from the algorithmic point of view [3, 23, 29]. It is known to be NP-complete [3, 11], but fixed
parameter tractable [4, 22, 24]. The first kernelization algorithms for k-FAST [4, 12] yield O(k2)
vertex-kernels. Recently, a linear vertex-kernel has been proposed [6]. More precisely, using a PTAS
which computes a linear vertex ordering with at most (1 + ε)k backward arcs, the authors of [6]
show how to find in polynomial time an ordered vertex partition, called safe partition P, of T .
Roughly speaking, a vertex partition is safe if the backward arcs whose extremities lie in different
part can be reversed independently from the others (inside the parts). We prove that the Conflict
Packing technique (a maximal collection of arc-disjoint triangles) can be used to compute such a
partition.

Dense Rooted Triplet Inconsistency (k-dense RTI) The use of fixed parameter algorithms
in computational biology and more specifically in phylogenetics has lead to efficient solutions to
handle practical data set, see [17] for a survey. This evolutionary history of a set V of species is
often represented by a tree (rooted or not), whose leaves represent the species of V . In this context,
if we are given a set of phylogenetic trees on overlapping set of species, one would like to check
whether this partial information can be combined in a common supertree [16]. The tree to be
reconstructed could be unrooted or rooted. In this paper we consider the rooted setting. Then, the
simplest case consists in testing whether a collection R of rooted binary trees of three leaves in V ,
called rooted triplets, are consistent : does there exist a binary tree T on leaves V such that every
triplet {a, b, c} of R is homeomorphic to the subtree of T spanning {a, b, c}? This problem can be
solved in polynomial time [1]. When R is not consistent, different optimization problems can be
considered: removing a minimum number of leaves or removing a minimum number of triplets (see
e.g. [10, 27]). We consider the parameterized version of the latter problem, called k-dense RTI,
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where one is given a dense collection of rooted triplets R and an integer k (the parameter) and
seeks a rooted tree over V containing all but at most k triplets from R. It is known that when R
is dense, i.e. contains exactly one rooted triplet for every triple of leaves (or vertices), then it is
consistent with a binary tree if and only if it does not contain any conflict on four leaves [5, 19].
The k-dense RTI problem is known to be NP-complete [10] but fixed parameter tractable [18, 19],

the fastest algorithm running in time O(n4 + 2O(k1/3logk)) [19]. Moreover, [19] provided a quadratic
vertex-kernel for k-dense RTI. However, unlike k-FAST, no PTAS nor constant approximation
algorithm is known [19]. Using Conflict Packing enables us to obtain a linear vertex-kernel for this
problem. This result improves the best known bound of O(k2) vertices for this problem [19].

Betweenness in Tournaments (k-BetweennessTour) In this problem one is given a set
of vertices V and a dense collection R of betweenness triplets and seeks an ordering containing
all but at most k triplets from R. The k-BetweennessTour problem is NP-Complete [2] but
fixed-parameter tractable [22, 26]. Using Conflict Packing we obtain a linear vertex-kernel for this
problem, which is to the best of our knowledge the first polynomial kernel for this problem.

Outline We first illustrate the Conflict Packing technique on the k-FAST problem, proving how
to compute a so-called safe partition in polynomial time (Section 2). Next, we generalize the results
to the k-dense RTI problem (Section 3). Finally, we give another example where this technique
can be applied, namely k-BetweennessTour (Section 4).

2 Linear vertex-kernel for k-FAST

Preliminaries. Let T = (V,A) be a tournament. We write uv whenever the arc of A between
vertices u and v is oriented from u to v. If V ′ ⊆ V , then T [V ′] = (V ′, A′) is the subtournament
induced by V ′, that is A′ = {uv ∈ A | u ∈ V ′, v ∈ V ′}. If A′ ⊆ A, then T [A′] = (V ′, A′) denotes the
digraph where V ′ ⊆ V contains the vertices incident to some arc of A′. A tournament T = (V,A)
is transitive if for every triple of vertices u, v, w such that uv ∈ A and vw ∈ A, then uw ∈ A. A
directed triangle is a circuit of size three, i.e. a set of vertices {u, v, w} such that {uv, vw,wu} ⊆ A.

Lemma 2.1 (Folklore) Let T = (V,A) be a tournament. Then the following properties are equiv-
alent: (i) T is acyclic; (ii) T is transitive; (iii) T does not contain any directed triangle.

Clearly T is transitive if and only if there exists an ordering σ on V such that for every u ∈ V
and v ∈ V with σ(u) < σ(v) (also denoted u <σ v) then uv ∈ A. Such an ordering is called
transitive. We use Tσ = (V,A, σ) to denote a tournament whose vertices are ordered with respect
to some ordering σ. An arc vu ∈ A such that u <σ v is called backward in Tσ. In other words,
T is transitive if and only if there exists a total ordering σ of its vertices such that Tσ does not
contains any backward arc. Hereafter, a directed triangle will be called a conflict. Our kernel uses
the following rule from [4].

Rule 1 (Irrelevant vertex) Remove any vertex v that does not belong to any conflict.
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Certificate and safe partition The following definitions are adapted from notions introduced
in [6]. Let e = vu be a backward arc of an ordered tournament Tσ. The span of e is the set of
vertices span(e) = {w ∈ V | u <σ w <σ v}. If w ∈ span(e) is a vertex not incident to any backward
arc, then c(e) = {u, v, w} is a certificate of e. Observe that c(e) induces a directed triangle. By
convention, when speaking of an arc e of a certificate c we mean that e belongs to T [c]. If F ⊆ A
is a set of backward arcs of Tσ, we can certify F whenever there exists a set c(F ) = {c(f) : f ∈ F}
of arc-disjoint certificates (i.e. for every distinct e and f of F , |c(e) ∩ c(f)| 6 1).

If Tσ = (V,A, σ), then P = {V1, . . . , Vl} is an ordered partition of Tσ if it is a partition of V
and for every i ∈ [l], Vi is a set of consecutive vertices in σ. By convention, if i < j, then for every
u ∈ Vi and v ∈ Vj we have u <σ v. We denote by AO = {uv ∈ A | u ∈ Vi, v ∈ Vj , i 6= j} the
subset of outer-arcs. We say that an ordered partition P = {V1, . . . , Vl} is a safe partition of an
ordered tournament Tσ = (V,A, σ) if AO contains at least one backward arc and if it is possible to
certify the backward arcs of Tσ[AO] only with outer-arcs of AO. The following rule was central in
the linear kernel of [6]:

Rule 2 (Safe partition) Let Tσ be an ordered tournament, and P = {V1, . . . , Vl} be a safe parti-
tion of Tσ with F the set of backward arcs of Tσ[AO]. Then reverse all the arcs of F and decrease
k by |F |.

Conflict packing. Our kernelization algorithm applies the two rules above. The basic idea to
identify a safe partition in polynomial time is to compute a maximal packing of arc-disjoint conflicts
C, called conflict packing. We first give a bound on the number of vertices V (C) covered by a conflict
packing C. An instance of k-FAST is positive if there exists a set of at most k arcs whose reversal
lead to a transitive tournament.

Lemma 2.2 Let T = (V,A) be a positive instance of k-FAST and C be a conflict packing of T .
Then |V (C)| ≤ 3k.

Proof. By definition, the conflicts of C are arc-disjoint. Hence at least one arc per triangle of C
has to be reversed. As |C| ≤ k, C covers at most 3k vertices. �

We now use the maximality of a conflict packing C to compute a particular ordering σ of T .
Providing that V \ V (C) is large enough (with respect to parameter k) we will next prove that a
safe partition P of Tσ can be identified.

Lemma 2.3 (Conflict Packing) Let T = (V,A) be an instance of k-FAST and C a conflict
packing of T . There exists an ordering of T whose backward arcs uv are such that u, v ∈ V (C).

Proof. We denote by G the set of good vertices, i.e. G = V \ V (C). Clearly by maximality of C,
T ′ = T [G] is acyclic. Observe also that for every v ∈ V (C), T [G∪{v}] is acyclic: otherwise it would
contain a conflict which is by construction arc-disjoint from those of C. Let σ′ be the transitive
ordering of T ′. For every vertex v ∈ V (C), there is a unique pair of consecutive vertices u and w in
σ′ such that the insertion of v between u and w yields the transitive ordering of T [G ∪ {v}]. The
pair u,w is the locus of v. Consider any ordering σ on V such that: for u,w ∈ G, if u <σ′ w, then
u <σ w; and if v ∈ V (C), then u <σ v <σ w where the pair u,w is the locus of v. By the previous
arguments, every backward arc uv of σ is such that u, v ∈ V (C). �
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An ordering obtained through the above statement is a nice ordering. We now prove the claimed
result.

Theorem 2.4 The k-FAST problem admits a kernel with at most 4k vertices that can be computed
in polynomial time.

Proof. Let T = (V,A) be a positive instance of k-FAST reduced under Rule 1. We greedily
(hence in polynomial time) compute a conflict packing C of T and let σ be a nice ordering of V .
Consider the bipartite graph B = (I ∪ G,E) where (i) G = V \ V (C), (ii) there is a vertex ivu
in I for every backward arc vu of Tσ and (iii) ivuw ∈ E if w ∈ G and {u, v, w} is a certificate of
vu. Observe that any matching in B of size at least k + 1 would correspond to a conflict packing
(i.e. a collection of arc-disjoint conflicts) of size at least k+ 1, which cannot be. Hence a minimum
vertex cover D of B has size at most k [8]. We denote D1 = D ∩ I and D2 = D ∩G. Assume that
|V | > 4k. Then since |D2| 6 k and |V (C)| 6 3k (by Lemma 2.2), G \D2 6= ∅. Let P = {V1, . . . , Vl}
be the ordered partition of Tσ such that every part Vi consists of either a vertex of G \ D2 or a
maximal subset of consecutive vertices (in σ) of V \ (G \D2).

Claim 1 P is a safe partition of Tσ.

Proof. Let w be a vertex of G \ D2. By Lemma 2.3, w is is not incident to any backward arc.
As T is reduced under Rule 1, there must exist a backward arc e = vu such that w ∈ span(e). It
follows that AO contains at least one backward arc. Let e = vu ∈ AO be a backward arc of σ. By
construction of P, there exists a vertex w ∈ (G \D2) ∩ span(e). Then {u, v, w} is a certificate of
e and ivuw is an edge of B. Observe that as D is a vertex cover and w /∈ D2, the vertex ivu has
to belong to D1 to cover the edge ivuw. Thereby the subset I ′ ⊆ I corresponding to the backward
arcs of AO is included in D1.

Finally, we argue that I ′ can be matched into G \D2 in B. Assume there exists I ′′ ⊆ I ′ such
that |I ′′| > |N(I ′′) ∩ (G \D2)|. As there is no edge in B between I \D1 and G \D2 (D is a vertex
cover of B), the set D′ = (D \ I ′′) ∪ (N(I ′′) ∩ (G \ D2)) is a vertex cover of B and |D′| < |D|:
contradicting the minimality of D (see Figure 1). Thereby for every subset I ′′ ⊆ I ′, we have
|I ′′| 6 |N(I ′′) ∩ (G \D2)|. By Hall’s theorem [20], I ′ can be matched into G \D2.
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I G

G \D2

I \D1

I′′
D1

N(I′′) ∩ (G \D2)

D2

Figure 1: Illustration of the case |I ′′| > |N(I ′′) ∩ (G \D2)|. The dashed sets represent the vertex
cover D′.

As every vertex of G \ D2 is a singleton in P, the existence of the matching shows that the
backward arcs of AO can be certified using arcs of AO only, and hence P is safe. �
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Hence if |V | > 4k, there exists a safe partition that can be computed in polynomial time, and
we can reduce the tournament using Rule 2. We then apply Rule 1 and repeat the previous steps
until we either do not find a safe partition or k < 0. In the former case we know that |V | 6 4k; in
the latter case, we return a small trivial No-instance. This concludes the proof. �

3 Linear vertex-kernel for k-dense RTI

The kernelization algorithm for k-dense RTI follows the same lines than the kernelization algo-
rithm for k-FAST. It involves two rules: the first removes irrelevant leaves and the second deals
with a safe partition of the instance. The first rule was already used to obtain a quadratic kernel
in [19]. As an instance of k-dense RTI is constituted of triplets that choose one vertex (observe
that an instance of k-FAST can be seen as couples that choose one vertex), we have to adapt the
notions of conflict and certificate. In k-FAST, the goal was to find an adequate ordering on the
vertices of the input tournament, and a safe partition was thus defined as an ordered partition.
Here, as we seek for a tree, the notion of safe partition needs to be adjusted. To prove our safe
partition rule, we use again the technique of conflict packing presented in the previous section. We
first give some definitions and notations.

Preliminaries. A rooted triplet t is a rooted binary tree on a set of three leaves V (t) = {a, b, c}.
We write t = ab|c if a and b are siblings of a child of the root of t, the other child of the root being
c. We also say that t chooses c. An instance of k-dense RTI is a pair R = (V,R), where R is
a set of rooted triplets on V . We only consider dense instances, that is R contains exactly one
rooted triplet for every triple of V . For a subset S ⊆ V , we define R[S] = {t ∈ R | V (t) ⊆ S} and
R[S] = (S,R[S]). A rooted binary tree is defined over a set V if the elements of V are in one-to-one
correspondence with the leaves of T . Hereafter the elements of V are called leaves and the term
nodes stands for internal nodes of T . By T|S , with S ⊆ V , we denote the rooted binary tree over S
which is homeomorphic to the subtree of T spanning the leaves of S. Let t ∈ R be a rooted triplet
and T be a tree over V . Then t is consistent with T if T|V (t) = t, and inconsistent otherwise. A set
of rooted triplets R is consistent if there exists a rooted binary tree T over V such that every t ∈ R
is consistent with respect to T . If such a tree does not exist, then R is inconsistent. A conflict C is
a subset of V such that R[C] is inconsistent. If a dense set of rooted triplets R is consistent, then
there exists a unique binary tree T in which every rooted triplet of R is consistent. We know from
[19] that:

Lemma 3.1 Let R = (V,R) be an instance of k-dense RTI. The following properties are equiv-
alent: (i) R is consistent; (ii) R contains no conflict on four leaves; (iii) R contains no conflict
of the form {ab|c, cd|b, bd|a} or {ab|c, cd|b, ad|b}.

It follows that, as in k-FAST where it was enough to consider directed triangles as conflict, we
can restrict our attention to conflicts on sets of four leaves. Hereafter, the term of conflict is only
used on set of four leaves. Our kernelization algorithm uses the following rule from [19].

Rule 3 (Irrelevant leaf) Remove any leaf v ∈ V that does not belong to any conflict.
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Certificate. An embedded instance of k-dense RTI is a triple RT = (V,R, T ) such that R is
a dense set of rooted triplets on V and T is a rooted binary tree over V . When dealing with
an embedded instance RT , the inconsistency of a rooted triplet always refers to the tree T . If
x is a node of T , then Tx denotes the subtree of T rooted in x. Given three leaves {a, b, c}, we
define span(t) as the set of leaves of V contained in Tlca({a,b,c}), where lca stands for least common
ancestor. Moreover, given S ⊆ V we define RT [S] = (S,R[S], T|S). Finally, editing an inconsistent
rooted triplet t = ab|c w.r.t. T means replacing t with the rooted triplet on {a, b, c} consistent
w.r.t. T . As mentioned earlier, our kernelization algorithm only uses conflicts on sets of four leaves.
The following lemma describes more precisely the topology of such conflicts.

Lemma 3.2 Let RT = (V,R, T ) be an embedded instance of k-dense RTI. Let {a, b, c, d} be a set
of leaves such that t = bc|a is the only inconsistent rooted triplet of RT [{a, b, c, d}]. Then {a, b, c, d}
is a conflict if and only if d ∈ span(t).

Proof. Since t = bc|a is inconsistent, T|{a,b,c} is homeomorphic to ab|c or ac|b. The two cases
are symmetric, so assume the former holds. Suppose that d ∈ span(t). By assumption the rooted
triplet t′ ∈ R on {b, c, d} is consistent with T . Consider the two possible cases for t′ (observe that
t′ = bc|d is not possible since it implies d /∈ span(t)):

• t′ = bd|c: observe that if t′ and bc|a are consistent with a tree T ′, then T ′|{a,c,d} is homeo-

morphic to cd|a. Whereas if t′ and ab|c are consistent with another tree T ′′, then T ′′|{a,c,d} is

homeomorphic to ad|c.

• t′ = cd|b: observe that if t′ and bc|a are consistent with a tree T ′, then T ′|{a,b,d} is homeo-

morphic to bd|a. Whereas if t′ and ab|c are consistent with another tree T ′′, then T ′′|{a,b,d} is

homeomorphic to ab|d.

So if d ∈ span(t), whichever choice on {b, c, d} leads to an inconsistency. It follows that {a, b, c, d} is
a conflict. Assume now that d /∈ span(t). Again, as bc|a is the unique rooted triplet of RT [{a, b, c, d}]
inconsistent with T , every rooted triplet containing d chooses d. It follows that {a, b, c, d} is not a
conflict. �

In the following, given an embedded instance RT = (V,R, T ) of k-dense RTI, a conflict
containing exactly one rooted triplet inconsistent with T is called a simple conflict. We now formally
define the notion of certificate for an embedded instance RT . Let t be a rooted triplet inconsistent
with T . If d ∈ span(t) does not belong to any inconsistent rooted triplet then c(t) = V (t) ∪ {d} is
a certificate of t. Observe that c(t) induces a simple conflict. By convention, when speaking of a
rooted triplet t of a certificate c we mean that t belongs to R[c]. If F ⊆ R is a set of rooted triplets
inconsistent with T , we can certify F whenever it is possible to find a set c(F) = {c(t) : t ∈ F} of
triplet-disjoint certificates (i.e. for every distinct t and t′, |c(t) ∩ c(t′)| 6 2).

Safe partition reduction rule. Let RT = (V,R, T ) be an embedded instance of k-dense RTI.
We say that P = {T1, . . . , Tl} is a tree partition of V if there exist l nodes and leaves x1, . . . , xl of
T such that: (i) for every i ∈ [l] Ti = Txi and (ii) the set of leaves in ∪li=1Txi partition V . A tree
partition of RT naturally distinguishes two sets of rooted triplets: RI = {t ∈ R | ∃i ∈ [l] V (t) ⊆
V (Ti)} and RO = R \RI . Let us call a rooted triplet of RO, an outer triplet.
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Definition 3.3 Let RT = (V,R, T ) be an embedded instance of k-dense RTI and P = {T1, . . . , Tl}
a tree partition of RT such that RO contains at least one triplet inconsistent with T . Then P is
a safe partition if it is possible to certify the rooted triplets of RO inconsistent with T only with
rooted triplets of RO.

We show that it is possible to reduce any embedded instance which has a safe partition.

Rule 4 (safe partition) Let RT = (V,R, T ) be an embedded instance of k-dense RTI and P be
a safe partition of T with F the set of rooted triplets of RO inconsistent with T . Edit every rooted
triplet t ∈ F w.r.t. T and decrease k by |F|.

Lemma 3.4 The safe partition rule (Rule 4) is sound.

Proof. We use the following observation, which follows from the definition of a tree partition:

Observation 3.5 Let P = {T1, . . . , Tl} be a tree partition of an embedded instance RT = (V,R, T ).
Let t be a rooted triplet such that V (t) ⊆ V (Ti) for some 1 6 i 6 l, and l ∈ V \ V (Ti). Then
l /∈ span(t).

As P is a safe partition, there exists a set c(F) of triplet-disjoint certificates for F . By construc-
tion of c(F), at least one edition has to be done for every such certificate. We prove that RT can be
made consistent by editing k of its triplets iff the instance R′ obtained by editing every triplet of F
w.r.t. T can be made consistent by editing k − |F| of its triplets. Assume that the rooted triplets
of F have been edited as described in Rule 4. Let C = {a, b, c, d} be a conflict of the resulting
instance and let t be a rooted triplet of C inconsistent with T (suppose that V (t) = {a, b, c}).
Clearly, as t /∈ F , we have t ∈ RI and thus {a, b, c} is a subset of leaves of some subtree Ti (with
i ∈ [l]). Moreover, by Lemma 3.2, we have d ∈ span(t), since otherwise d would not belong to
any inconsistent rooted triplet in RT [C]. It follows that d is also a leaf of Ti, implying that every
conflict is a subset of leaves of some tree Ti of P.

To conclude it suffices to observe that the edition of a rooted triplet of RI cannot create a
conflict involving a rooted triplet of RO. Let t be a rooted triplet such that V (t) = {a, b, c} is a
subset of leaves of Ti. Let d be a leaf not in Ti. By Observation 3.5, d /∈ span(t) and the three
rooted triplets of R[{a, b, c, d}] involving d are consistent with T . By Lemma 3.2, {a, b, c, d} is not a
conflict for any choice of t. This means that there exists an edition of RT that contains the triplets
of F . Hence RT has can be made consistent by editing k of its triplets iff R′ can be made consistent
by editing k − |F| of its triplets. �

Conflict packing. The remaining problem is now to either compute in polynomial time a safe
partition if one exists or bound the size of the instance with respect to k. To that end, we use
the conflict packing technique as for k-FAST. Observe that the aim of a conflict packing is to
provide a lower bound on the number of editions required to obtain a consistent instance. In the
context of k-dense RTI, two conflicts may share a rooted triplet t but still require two distinct
editions. To see this, let {a, b, c, d, e} be a set of leaves and consider the following conflicts: C =
{ab|c, ac|d, ad|b, cd|b} and C ′ = {ed|c, ed|b, bc|e, bd|c}. Observe first that C remains a conflict for
any choice of {b, c, d}. Since C and C ′ only have this rooted triplet in common, no edition on C ′

can solve C. Hence (at least) two distinct editions are require to solve both C and C ′. Due to
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this remark, we refine our definition of conflict packing as follows. A leaf a belonging to a conflict
{a, b, c, d} is a seed if {a, b, c, d} is a conflict for any choice of {b, c, d}. A conflict packing is a
maximal sequence of conflicts C = {C1, C2, . . . , Cl} such that for every 2 ≤ i ≤ l:

• Either Ci intersects ∪16j<iCj on at most two leaves,

• Or Ci has a unique leaf not belonging to ∪16j<iCj and that leaf is a seed of Ci.

As in Section 2 we will use a conflict packing C to compute a safe partition P (providing that
V \ V (C) is large enough w.r.t. parameter k).

Lemma 3.6 Let R = (V,R) be a positive instance of k-dense RTI and C be a conflict packing of
R. Then l ≤ k and |V (C)| ≤ 4k.

Proof. Assume C = {C1, . . . , Cl}. We prove by induction on the number of conflicts l contained
in C that at least l editions are necessary to solve all conflicts of C. If l = 1 then the result trivially
holds. Otherwise, we know that l− 1 editions are necessary to solve all conflicts of {C1, . . . , Cl−1}.
If Cl intersects the union of Cj , 1 6 j 6 l− 1 in at most two leaves, then one clearly needs to do an
extra edition for Cl. Otherwise, we know by definition that the unique leaf of Cl not belonging to
∪16j<iCj is a seed of Cl: hence none of the editions made to solve the conflicts of {C1, . . . , Cl−1}
can solve Cl. Hence l 6 k; since the conflicts involve four leaves, we also have |V (C)| 6 4k. �

Lemma 3.7 (Conflict packing) Let R = (V,R) be an instance of k-dense RTI and C a conflict
packing of R. There exists an embedded tree T of R such that every rooted triplet t inconsistent
with T is such that V (t) ⊆ V (C).

Proof. The leaves of G = V \V (C) are called good leaves. As already observed R[G] is consistent
with a unique tree T ′. Notice that for every leaf a ∈ V (C), Ra = R[G ∪ {a}] is also consistent
(otherwise C would not be maximal). Thereby there exists a unique binary tree Ta such that every
rooted triplet t of Ra is consistent with Ta. In other words T ′ contains a unique tree edge e = xz
which can be subdivided into xyz to attach the leaf a to node y. Hereafter the edge e will be called
the locus of a. The maximality argument on C also implies that for any pair of leaves a and b in
V (C), Rab = R[G∪ {a, b}] is consistent. If a and b have different loci, then Rab is clearly consistent
with the tree T obtained from T ′ by inserting a and b in their respective loci. It remains to consider
the case where a and b have the same locus.

Let e = xy be a tree edge of T ′ such that x is the child of y and let Be ⊆ V (C) be the subset of
leaves whose locus is e. Given a, b ∈ Be, we define the following binary relations <e and ∼e on Be
as follows:

a <e b if there exists c ∈ G such that ac|b ∈ R

a ∼e b if neither a <e b nor b <e a

Using the maximality of C we will prove that <e is a strict weak ordering (i.e. <e is a transitive
and asymmetric relation and ∼e is transitive). This implies that the equivalence classes of ∼e
partition the leaves of Be and are totally ordered by <e.

Claim 2 The relation <e is a strict weak ordering.
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Proof. Observe first that if a <e b then the vertex c belongs to T ′x (otherwise since Rab is consistent
we would have ab|c ∈ R). Assume <e is not asymmetric. Then there exist two leaves c ∈ G ∩ T ′x
and d ∈ G ∩ T ′x such that {ca|b, db|a, cd|a, cd|b} = R[{a, b, c, d}]. Thereby {a, b, c, d} is a conflict:
contradicting the fact that Rab is consistent for every a, b ∈ Be. So <e is asymmetric.

Suppose we have a, b, c ∈ Be such that a <e b and b <e c. So there exists d such that ad|b ∈ R.
Since d is a leaf of Tx and <e is asymmetric, we also have bd|c ∈ R. Now assume that dc|a ∈ R
(the case ac|d is similar). Then whatever the rooted triplet on {a, b, c} is, {a, b, c, d} is a conflict.
Hence d is a seed of the conflict {a, b, c, d}. This means that the conflict packing C is not maximal:
contradiction. If follows that da|c ∈ R and thereby a <e c. So <e is transitive.

Suppose we have a, b, c ∈ Be such that a ∼e b and b ∼e c. Then for every d ∈ G, ab|d and bc|d
are rooted triplets of R. Now assume that ad|c ∈ R (the case dc|a is similar). Then whatever the
rooted triplet on {a, b, c} is, {a, b, c, d} is a conflict. Hence d is a seed of the conflict {a, b, c, d}.
This means that the conflict packing C is not maximal: contradiction. If follows that neither ad|c
nor cd|a belong to R: thereby a ∼e c and ∼e is transitive. �

We can now describe how the tree T is build from T ′. For every tree edge e = xy with x a child
of y such that Be 6= ∅ we proceed as follows. Let B1 . . . Bq be the equivalence classes of ∼e such
that Bi <e Bj for 1 6 i < j 6 q. The tree edge e is subdivided into the path x, z1 . . . , zq, y. For
every i ∈ [q], if Bi contains a unique leaf a, then a is attached to node zi. Otherwise, a new node wi
is attached to zi and we add an arbitrary binary tree (rooted in wi) over the leaves of Bi. We now
prove that T has the desired property. Let t = {a, b, c} be any triplet of R, and assume first that
V (t) ⊆ G. Then t is consistent by construction. Next, assume w.l.o.g. that V (t) ∩ V (C) = {a}:
then t is consistent with T since Ra is consistent and a has been inserted to its locus. Finally,
assume V (t)∩V (C) = {a, b}. If a and b have different loci then t is clearly consistent with T . Now,
if a and b have the same locus e then t is consistent since a and b have been added to e according
to the strict weak ordering <e. It follows that any triplet of T such that V (t)∩G 6= ∅ is consistent
with T . �

We now state the main result of this section.

Theorem 3.8 The k-dense RTI problem admits a kernel with at most 5k vertices.

Proof. Let R = (V,R) be a positive instance of k-dense RTI reduced under Rule 3. We say
that a tree T obtained through Lemma 3.7 is a nice tree. We greedily (hence in polynomial time)
compute a conflict packing C and let T be a nice tree. Consider the bipartite graph B = (I ∪G,E)
where:

• G = V \ V (C),

• there is a vertex it in I for every rooted triplet t inconsistent with T and,

• itg ∈ E if a ∈ G and {a} ∪ V (t) is a certificate of t.

Observe that any matching in B of size at least k+ 1 would correspond to a conflict packing of
size at least k+ 1, which cannot be. Hence a minimum vertex cover D of B has size at most k [8].
We denote D1 = D ∩ I and D2 = D ∩G.

Assume that |V | > 5k. Then since |D2| 6 k and |V (C)| 6 4k (by Lemma 3.6), G \ D2 6= ∅.
Let P = {T1, . . . , Tl} be a tree partition of RT such that every tree Ti, i ∈ [l], consists of either
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a leaf of G \ D2 or a connected component of T \ S where S is the smallest spanning subtree of
(G \D2) ∪ {r} (r being the root of T , see Figure 2).

r

Figure 2: Illustration of the construction of P. The black vertices belong to G \D2 and the bold
edges represent S. The partition P is pictured by the dotted sets, while its associated nodes u are
in grey.

Claim 3 The partition P = {T1, . . . , Tl} is safe.

Proof. Let a be any leaf of G \ D2. By Lemma 3.7, a is not contained in any rooted triplet
inconsistent with T . As R is reduced under Rule 3, there exists an inconsistent rooted triplet t
such that a ∈ span(t). It follows that RO contains at least one inconsistent rooted triplet.

Let t ∈ RO be a rooted triplet inconsistent with T . By construction of P, there exists a leaf
a ∈ (G \D2) ∩ span(t). Then {a} ∪ V (t) is a certificate of t and ita is an edge of B. Observe that
as D is a vertex cover and a /∈ D2, the vertex it has to belong to D1 to cover the edge ita. Thereby
the subset I ′ ⊆ I corresponding to the rooted triplets of RO inconsistent with T is included in D1.

Finally, we argue that I ′ can be matched into G \D2 in B. Assume there exists I ′′ ⊆ I ′ such
that |I ′′| > |N(I ′′) ∩ (G \D2)|. As there is no edge in B between I \D1 and G \D2 (D is a vertex
cover of B), the set D′ = (D \ I ′′) ∪ (N(I ′′) ∩ (G \ D2)) is a vertex cover of B and |D′| < |D|:
contradicting the minimality of D.

Thereby for every subset I ′′ ⊆ I ′, we have |I ′′| 6 |N(I ′′) ∩ (G \D2)|. By Hall’s theorem [20],
I ′ can be matched into G \ D2. As every leaf of G \ D2 is a singleton in P, the existence of the
matching shows that the set of rooted triplets of RO inconsistent with T can be certified using
rooted triplet of RO only, and hence P is safe. �

Hence if |V | > 5k, there exists a safe partition that can be computed in polynomial time, and
we can reduce the instance using Rule 4. We then apply Rule 3 and repeat the previous steps until
we either do not find a safe partition or k < 0. In the former case we know that |V | 6 5k; in the
latter case, we return a small trivial No-instance. This concludes the proof. �
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4 Linear vertex-kernel for k-BetweennessTour

Preliminaries. A betweenness triplet t defined over a set of three vertices {a, b, c} chooses one of
its vertices. We write t = abc to illustrate that t chooses b. An instance of k-BetweennessTour
is a pair B = (V,R) where R is a set of betweenness triplets defined over V . We only consider
dense instances, that is R contains exactly one triplet for every triple of V . Let t = abc ∈ R be a
betweenness triplet (or triplet for short) and σ be an ordering on V . Then t is consistent with σ if
a <σ b <σ c or c <σ b <σ a. A set of triplets R is consistent if there exists an ordering σ on V such
that every t ∈ R is consistent with σ. If such an ordering does not exist, then R is inconsistent.
A conflict C is a subset of V such that R[C] is inconsistent. Given an instance B = (V,R), an
edition for a triplet t ∈ R is a modification of its choosen vertex. A set F of edited triplets of R is
an edition for B if the edition of every t ∈ R leads to a consistent instance. We use Bσ = (V,R, σ)
to denote an instance of k-BetweennessTour fixed under some ordering σ. For a subset S ⊆ V ,
we define R[S] = {t ∈ R | V (t) ⊆ S} and Bσ[S] = (S,R[S], σ|S) (i.e. the ordering σ restricted to
elements of S). Finally, given an ordered instance Bσ = (V,R, σ) and a triplet t = {a, b, c} such
that a <σ b <σ c, editing t w.r.t. σ means that the choice of t is set to b. When dealing with an
ordered instance the inconsistency of a triplet is always considered w.r.t. σ.

Lemma 4.1 Let B = (V,R) be an instance of k-BetweennessTour. Then B is consistent if
and only if B does not contain any conflict on 4 vertices.

Proof. (⇒) This direction follows by definition of consistency.
(⇐) The proof is by induction on the number of vertices. Observe that for n = 4 the statement
clearly holds. Assume that the statement holds for n−1 vertices and let B = (V,R) be an instance
of k-BetweennessTour on n vertices that does not contain any conflict on 4 vertices. Let d ∈ V
be any vertex; by induction hypothesis, we know that Bσ = B[V \{d}] admits a (unique) consistent
ordering σ. We will prove how to insert d in σ to obtain a consistent ordering σd for B. Let a, b, c
be respectively the first, second and last vertex of σ. Since Bσ is consistent, abc ∈ R. Moreover,
since there are no conflicts on 4 vertices there is a unique way to insert d in σ to obtain an ordering
σd such that R[{a, b, c, d}] is consistent with σd. There are several cases to consider: either d <σd a
(or c <σd d) or a <σd d <σd b or b <σd d <σd c. In the latter case we repeat the previous steps on
σ|V \{a} (i.e. the ordering σ restraint to V \ {a}).

Let a′b′c′ be the last triplet considered in the process and assume that d is between a′ and b′

in σd (the other cases are similar). We will prove that σd is a consistent ordering of B. Let t
be a triplet containing d (observe that the other triplets are consistent with σd by construction).
Assume first w.l.o.g. that V (t) = {a′, d, e} with e /∈ {a′, b′, c′}. Observe that the triplets {a′, b′, d}
and {a′, b′, e} are consistent with σd by construction. This means that a′db′, {ea′b′ ∨ a′b′e} ∈ R: it
follows that t is consistent with σd, since otherwise {a′, b′, d, e} would be a conflict on 4 vertices.
Now, assume w.l.o.g. V (t) = {d, e, f} with {e, f} /∈ {a′, b′, c′}. By the previous arguments we
know that the triplets {a′, d, e}, {a′, d, f} and {a′, e, f} are consistent with σd. It follows that t
is consistent with σd since otherwise {a′, d, e, f} would be a conflict on 4 vertices. In all cases we
have shown that σd does not contain any inconsistent triplet, implying that B is consistent. �

Sunflower reduction rule. The main difference with the previous section lies in the definition of
simple conflict for an ordered instance Bσ = (V,R, σ): given an inconsistent triplet t and a vertex d
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that does not belong to any inconsistent triplet, we do not need to require that d belongs to span(t)
to obtain a conflict. As indicated by Lemma 4.3, any such vertex can be used to form a conflict with
V (t). In particular, this result allows us to replace the Safe Partition rule with a Sunflower -based
reduction rule. A sunflower S is a set of conflicts {C1, . . . , Cm} pairwise intersecting in exactly one
triplet t. We say that t is the centre of S.

Lemma 4.2 (Sunflower Lemma) Let B = (V,R) be an instance of k-BetweennessTour.
Let S = {C1, . . . , Cm}, m > k be a sunflower of centre t. Any edition of size at most k has to edit
t.

Proof. Let F be any edition of size at most k, and assume that F does not contain t. This means
that F must contain one triplet for every conflict Ci, 1 ≤ i ≤ m. Since m > k, we conclude that F
contains more than k triplets, a contradiction. �

Observe that there exist two ways to edit the centre t. By setting m > 2k we can fix this and
obtain a quadratic vertex-kernel for k-BetweennessTour (by adapting techniques from [19]).
Nevertheless, this is not enough to obtain a linear vertex kernel. To that aim, we combine Conflict
Packing and a sunflower rule on simple conflicts.

Lemma 4.3 Let Bσ = (V,R, σ) be an ordered instance of k-BetweennessTour. Let {a, b, c, d}
be a set of vertices such that bca ∈ R is the only inconsistent triplet of Bσ[{a, b, c, d}]. Then
{a, b, c, d} is a conflict.

Proof. Since bca ∈ R is inconsistent with σ, c is not between a and b in σ. Hence we either have
b between a and c or a between b and c. Assume w.l.og. that a <σ b <σ c or b <σ a <σ c. The
two cases are similar, so assume the former holds. By assumption, the triplet t ∈ R on {b, c, d} is
consistent with σ. Consider the three possible cases for t:

• t = bcd: observe that if t and bca are consistent with an ordering ρ, then w.l.o.g. c <ρ d <ρ a
or c <ρ a <ρ d holds (the cases a <ρ d <ρ c and d <ρ a <ρ c are symmetric). On the other
hand, if t and abc are consistent with another ordering γ, then a <γ c <γ d holds.

• t = cbd: observe that if t and bca are consistent with an ordering ρ, then d <ρ c <ρ a holds.
On the other hand, if t and abc are consistent with another ordering γ, then c <γ d <γ a or
c <γ a <γ d holds.

• t = bdc: observe that if t and bca are consistent with an ordering ρ, then d <ρ c <ρ a holds.
On the other hand, if t and abc are consistent with another ordering γ, then a <γ d <γ c
holds.

Since t and abc are consistent with σ, it follows that {a, b, c, d} is a conflict for any choice of {b, c, d}.
This concludes the proof. �

Given an ordered instance Bσ = (V,R, σ), a triplet t = {a, b, c} inconsistent with σ and a vertex
d that does not belong to any inconsistent triplet, the set V (t) ∪ {d} is called a simple conflict. A
sunflower S = {C1, . . . , Cm} of Bσ is simple if the Ci’s are simple conflicts and if the centre of S is
the only triplet inconsistent with σ for every Ci, 1 6 i 6 m. The soundness of the Simple sunflower
rule follows from Lemmas 4.2 and 4.3.
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Rule 5 (Simple sunflower) Let Bσ = (V,R, σ) be an ordered instance of k-BetweennessTour.
Let S = {C1, . . . , Cm}, m > k be a simple sunflower of centre t. Edit t w.r.t. σ and decrease k by
1.

Proof. Let F be any edition of size at most k: by Lemma 4.2, F must contain t. Since |F| 6 k,
there exists a conflict Ci whose only edited triplet is t. Assume that t was not edited w.r.t. σ:
since no other triplet has been edited in Ci it still contains only one inconsistent triplet in Bσ[Ci].
By Lemma 4.3, it follows that Ci induces a conflict, contradicting the fact that F is an edition. �

Conflict Packing. The definition of a conflict packing C, involving the notion of seed, is the
same than the one given in Section 3. Given a conflict packing C, we can compute in polynomial
time an ordering σ such that any triplet t inconsistent with σ verifies V (t) ⊆ V (C). The following
result is similar to Lemma 3.6.

Lemma 4.4 Let B = (V,R) be a positive instance of k-BetweennessTour and C be a conflict
packing of T . Then |V (C)| ≤ 4k.

Lemma 4.5 (Conflict Packing) Let B = (V,R) be an instance of k-BetweennessTour and
C a conflict packing of B. There exists an ordering whose inconsistent triplets {a, b, c} are such
that a, b, c ∈ V (C).

Proof. Let G = V \ V (C). Observe that B′ = B[G] is consistent with a (unique) ordering
σ. Moreover, notice that for every vertex a ∈ V (C) the instance Ba = B[G ∪ {a}] is consistent
(otherwise C would not be maximal). Thereby there exists a unique ordering σa such that every
triplet of Ba is consistent with σa. In other words, σ contains a unique pair of consecutive vertices
(u,w) such that we have u <σa< a <σa w. We wall such a pair (u,w) the locus of a. Using again
the maximality argument on C, we know that for any pair of vertices a, b ∈ V (C) the instance
Bab = B[G∪ {a, b}] is consistent. Hence if a and b have different loci then Bab is clearly consistent
with the ordering obtained from σ by inserting a and b in their respective loci. It remains to
consider the case where a and b have the same locus. Given two consecutive vertices u and w of
σ, let Buw ⊆ V (C) be the subset of vertices of V (C) whose locus is uw. Given a, b ∈ Buw we define
the binary relation <uw on Buw as follows (observe that there are exactly two ways to add a and
b w.r.t. their locus):

a <uw b if abw ∈ R

Claim 4 The relation <uw is a strict total order (i.e. asymmetric and transitive).

Proof. Observe that <uw is asymmetric by definition. Hence it remains to prove that <uw is
transitive. Suppose that a, b, c ∈ Buw are such that a <uw b and b <uw c. This means that
abw ∈ R and bcw ∈ R. Now assume that acw /∈ R, i.e. w.l.o.g. that wac ∈ R. Then {a, b, c, w} is
a conflict for any choice of {a, b, c}. Moreover, observe that w is a seed of the conflict {a, b, c, w},
meaning that the conflict packing C is not maximal: contradiction. It follows that acw ∈ R and
thereby a <uw c. Hence <uw is transitive. �

We now describe how the ordering σ′ is built from σ. For any two consecutive vertices u and
w such that Buw 6= ∅ we introduce the vertices of Buw according to the (strict) total order <uw.
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We now prove that σ′ satisfies the desired property. Let t = {a, b, c} be any triplet of R such that
V (t) ∩G 6= ∅. Observe that if t is such that V (t) ⊆ G then t is consistent by construction. Next,
if |V (t) ∩ G| = 2 then t is consistent by construction. Finally, if |V (t) ∩ G| = 1 with a, b ∈ V (C),
then t is consistent since Bab is consistent. It follows that σ′ is the sought ordering. �

Using Lemma 4.5 and the Simple sunflower rule, we prove that the k-BetweennessTour
problem can be solved in polynomial time on instances whose parameter is such that k < (|V |/5).

Theorem 4.6 Let B = (V,R) be an instance of k-BetweennessTour such that k < (|V |/5).
There exists an algorithm that either computes an edition of size at most k or answers No in
polynomial time.

Proof. Let B = (V,R) be an instance of k-BetweennessTour. We say that an ordering
obtained through Lemma 4.5 is a nice ordering. We greedily compute a conflict packing C of B
and let σ be a nice ordering of B. Observe that |V | > 5k (since we assume k < (|V |/5)) and let
G = V \ V (C). We know that |V (C)| 6 4k. Hence G contains at least k + 1 vertices that do not
belong to any triplet inconsistent with σ by construction.

Claim 5 There exists a simple sunflower S = {C1, . . . , Cm}, m > k that can be computed in
polynomial time.

Proof. Let t be any triplet inconsistent with σ and G′ ⊆ G be a set of k + 1 vertices of G. By
Lemma 4.3 we know that Cd = V (t) ∪ {d} is a simple conflict for any vertex d ∈ G′. Assuming
G′ = {d1, . . . , dk+1}, it follows that Ci = V (t) ∪ {di} is a simple conflict whose only inconsistent
triplet is t for every 1 6 i 6 k + 1. Hence S = {C1, . . . , Ck+1} is a simple sunflower of centre t. �

Using Rule 5 we have to edit the centre t ∈ R of S w.r.t. to σ. Since σ still contains at least
k+ 1 vertices that do not belong to any inconsistent triplet, every inconsistent triplet of σ must be
edited. Hence if σ contains at most k inconsistent triplets then editing such triplets is an edition
of B and we answer Yes; otherwise we answer No. �

As a particular consequence of Theorem 4.6 we obtain the following result.

Corollary 4.7 The k-BetweennessTour problem admits a kernel with at most 5k vertices.

Proof. Let B = (V,R) be an instance of k-BetweennessTour. By Theorem 4.6, the problem
can be solved in polynomial time if k < (|V |/5). Hence we can assume k > (|V |/5), which implies
that |V | 6 5k. �

Conclusion

In this paper we develop a technique to design kernelization algorithms, namely Conflict Packing. In
particular, we applied this technique to the k-FAST and k-dense RTI problems. Although a linear
vertex-kernel was already known for k-FAST [6], our analysis gives more insights on the structure of
this problem. Regarding the k-dense RTI problem, the Conflict Packing allows us to obtain a linear
vertex-kernel, improving the previous bound of O(k2) vertices [19]. Moreover, we provide a linear
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vertex-kernel for the k-BetweennessTour problem, answering a question left open in [22]. Such a
kernel may improve the parameterized complexity of the k-BetweennessTour problem [22]. We
defer this analysis to a full version of the paper. We conclude by addressing some open problems.
First, observe that the simple sunflower rule together with a PTAS for k-BetweennessTour [21]
implies the existence of a linear vertex-kernel for the problem (but using a more complicated
algorithm). One important remaining question is thus whether the k-dense RTI problem admits
a constant-factor approximation algorithm? We would like to mention that such an algorithm
together with the safe partition reduction rule would also imply a linear vertex-kernel for the
problem. Finally, there exist a large number of problems on dense instances (see e.g. [2, 21]): we
believe that our technique will yield linear vertex-kernels for a number of these problems as well.
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[11] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem is NP-hard for
tournaments. Combin. Probab. Comput., 16(1):1–4, 2007.
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Abstract

Given a graph G = (V,E) and a positive integer k, the Proper Interval Completion
problem asks whether there exists a set F of at most k pairs of (V ×V ) \E such that the graph
H = (V,E ∪F ) is a proper interval graph. The Proper Interval Completion problem finds
applications in molecular biology and genomic research [14, 22]. First announced by Kaplan,
Tarjan and Shamir in FOCS ’94, this problem is known to be FPT [14], but no polynomial kernel
was known to exist. We settle this question by proving that Proper Interval Completion
admits a kernel with at most O(k5) vertices. Moreover, we prove that a related problem, the
so-called Bipartite Chain Deletion problem, admits a kernel with at most O(k2) vertices,
completing a previous result of Guo [12].

Introduction

The aim of a graph modification problem is to transform a given graph in order to get a certain
property Π satisfied. Several types of transformations can be considered: for instance, in vertex
deletion problems, we are only allowed to delete vertices from the input graph, while in edge
modification problems the only allowed operation is to modify the edge set of the input graph. The
optimization version of such problems consists in finding a minimum set of edges (or vertices) whose
modification makes the graph satisfy the given property Π. Graph modification problems cover
a broad range of NP-Complete problems and have been extensively studied in the literature [18,
21, 22]. Well-known examples include the Vertex Cover [8], Feedback Vertex Set [24], or
Cluster Editing [5] problems. These problems find applications in various domains, such as
computational biology [14, 22], image processing [21] or relational databases [23].

Due to these applications, one may be interested in computing an exact solution for such
problems. Parameterized complexity provides a useful theoretical framework to that aim [9, 19]. A
problem parameterized by some integer k is said to be fixed-parameter tractable (FPT for short)
whenever it can be solved in time f(k) · nc for any constant c > 0. A natural parameterization for
graph modification problems thereby consists in the number of allowed transformations. As one of
the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have
been extensively studied in the last decade (see [2] for a survey). A kernelization algorithm is a
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polynomial-time algorithm (called reduction rules) that given an instance (I, k) of a parameterized
problem P computes an instance (I ′, k′) of P such that (i) (I, k) is a Yes-instance if and only if
(I ′, k′) is a Yes-instance and (ii) |I ′| ≤ h(k) for some computable function h() and k′ ≤ k. The
instance (I ′, k′) is called the kernel of P . We say that (I ′, k′) is a polynomial kernel if the function
h() is a polynomial. It is well-known that a parameterized problem is FPT if and only if it has a
kernelization algorithm [19]. But this equivalence only yields kernels of super-polynomial size. To
design efficient fixed-parameter algorithms, a kernel of small size - polynomial (or even linear) in k -
is highly desirable [20]. However, recent results give evidence that not every parameterized problem
admits a polynomial kernel, unless NP ⊆ coNP/poly [3]. On the positive side, notable kernelization
results include a less-than-2k kernel for Vertex Cover [8], a 4k2 kernel for Feedback Vertex
Set [24] and a 2k kernel for Cluster Editing [5].

We follow this line of research with respect to graph modification problems. It has been shown
that a graph modification problem is FPT whenever Π is hereditary and can be characterized by
a finite set of forbidden induced subgraphs [4]. However, recent results proved that several graph
modification problems do not admit a polynomial kernel even for such properties Π [11, 16]. In this
paper, we are in particular interested in completion problems, where the only allowed operation is
to add edges to the input graph. We consider the property Π as being the class of proper interval
graphs. This class is a well-studied class of graphs, and several characterizations are known to
exist [17, 28]. In particular, there exists an infinite set of forbidden induced subgraphs that charac-
terizes proper interval graphs [28] (see Figure 1). More formally, we consider the following problem:

Proper Interval Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F of at most k pairs of (V ×V ) \E such that the graph H = (V,E ∪F ) is a proper
interval graph.

Interval completion problems find applications in molecular biology and genomic research [13,
14], and in particular in physical mapping of DNA. In this case, one is given a set of long contiguous
intervals (called clones) together with experimental information on their pairwise overlaps, and the
goal is to reconstruct the relative position of the clones along the target DNA molecule. We focus
here on the particular case where all intervals have equal length, which is a biologically important
case (e.g. for cosmid clones [13]). In the presence of (a small number of) unidentified overlaps, the
problem becomes equivalent to the Proper Interval Completion problem. It is known to be
NP-Complete for a long time [10], but fixed-parameter tractable due to a result of Kaplan, Tarjan
and Shamir in FOCS ’94 [14, 15]. 1 The fixed-parameter tractability of the Proper Interval
Completion can also be seen as a corollary of a characterization of Wegner [28] combined with
Cai’s result [4]. Nevertheless, it was not known whether this problem admit a polynomial kernel
or not.

Our results We prove that the Proper Interval Completion problem admits a kernel with
at most O(k5) vertices. To that aim, we identify nice parts of the graph that induce proper interval
graphs and can hence be safely reduced. Moreover, we apply our techniques to the so-called
Bipartite Chain Deletion problem, closely related to the Proper Interval Completion

1Notice also that the vertex deletion of the problem is fixed-parameter tractable [26].
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problem where one is given a graph G = (V,E) and seeks a set of at most k edges whose deletion
from E result in a bipartite chain graph (a graph that can be partitioned into two independent
sets connected by a join). We obtain a kernel with O(k2) vertices for this problem. This result
completes a previous result of Guo [12] who proved that the Bipartite Chain Deletion With
Fixed Bipartition problem admits a kernel with O(k2) vertices.

Outline We begin with some definitions and notations regarding proper interval graphs. Next,
we give the reduction rules the application of which leads to a kernelization algorithm for the
Proper Interval Completion problem. These reduction rules allow us to obtain a kernel with
at most O(k5) vertices. Finally, we prove that our techniques can be applied to Bipartite Chain
Deletion to obtain a quadratic-vertex kernel, completing a previous result of Guo [12].

1 Preliminaries

1.1 Proper interval graphs

We consider simple, loopless, undirected graphs G = (V,E) where V (G) denotes the vertex set of
G and E(G) its edge set2. Given a vertex v ∈ V , we use NG(v) to denote the open neighborhood
of v and NG[v] = NG(v) ∪ {v} for its closed neighborhood. Two vertices u and v are true twins
if N [u] = N [v]. If u and v are not true twins but uv ∈ E, we say that a vertex of N [u]4 N [v]
distinguishes u and v. Given a subset of vertices S ⊆ V , NS(v) denotes the set NG(v) ∩ S and
NG(S) denotes the set {NG(s) \ S : s ∈ S}. Moreover, G[S] denotes the subgraph induced by S,
i.e. G[S] = (S,ES) where ES = {uv ∈ E : u, v ∈ S}. A join in a graph G = (V,E) is a bipartition
(X,Y ) of G and an order x1, . . . , x|X| on X such that for all i = 1, . . . , |X|−1, NY (xi) ⊆ NY (xi+1).
The edges between X and Y are called the edges of the join, and a subset F ⊆ E is said to form a
join if F corresponds to the edges of a join of G. Finally, a graph is an interval graph if it admits a
representation on the real line such that: (i) the vertices of G are in bijection with intervals of the
real line and (ii) uv ∈ E if and only if Iu ∩ Iv 6= ∅, where Iu and Iv denote the intervals associated
to u and v, respectively. Such a graph is said to admit an interval representation. A graph is a
proper interval graph if it admits an interval representation such that Iu 6⊂ Iv for every u, v ∈ V .
In other words, no interval strictly contains another interval.
We will make use of the two following characterizations of proper interval graphs to design our
kernelization algorithm.

Theorem 1.1 (Forbidden subgraphs [28]). A graph is a proper interval graph if and only if it does
not contain any {hole, claw, net, 3-sun} as an induced subgraph (see Figure 1).

The claw graph is the bipartite graph K1,3. Denoting the bipartition by ({c}, {l1, l2, l3}), we
call c the center and {l1, l2, l3} the leaves of the claw.

Theorem 1.2 (Umbrella property [17]). A graph is a proper interval graph if and only if its vertices
admit an ordering σ (called umbrella ordering) satisfying the following property: given vivj ∈ E
with i < j then vivl, vlvj ∈ E for every i < l < j (see Figure 2).

In the following, we associate an umbrella ordering σG to any proper interval graph G = (V,E).
There are several things to remark. First, note that in an umbrella ordering σG of a graph G, every

2In all our notations, we forget the mention to the graph G whenever the context is clear.
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claw hole3−sun net

Figure 1: The forbidden induced subgraphs of proper interval graphs. A hole is an induced cycle
of length at least 4.

vi vl

σ
vj

Figure 2: Illustration of the umbrella property. The edge vivj is extremal. 3

maximal set of true twins of G is consecutive, and that σG is unique up to permutation of true
twins of G. Remark also that for any edge uv with u <σG v, the set {w ∈ V : u ≤σG w ≤σG v} is
a clique of G, and for every i with 1 ≤ i < l, ({v1, . . . , vi}, {vi+1, . . . , vn}) is a join of G.
According to this ordering, we say that an edge uv is extremal if there does not exist any edge u′v′

different of uv such that u′ ≤σG u and v ≤σG v′ (see Figure 2).
Let G = (V,E) be an instance of Proper Interval Completion. A completion of G is a

set F ⊆ (V × V ) \ E such that the graph H = (V,E ∪ F ) is a proper interval graph. In a slight
abuse of notation, we use G+F to denote the graph H. A k-completion of G is a completion such
that |F | ≤ k, and an optimal completion F is such that |F | is minimum. We say that G = (V,E)
is a positive instance of Proper Interval Completion whenever it admits a k-completion. We
state a simple observation that will be very useful for our kernelization algorithm.

Observation 1.3. Let G = (V,E) be a graph and F be an optimal completion of G. Given an
umbrella ordering σ of G+ F , any extremal edge of σ is an edge of G.

Proof. Assume that there exists an extremal edge e in σ that belongs to F . By definition, σ is still
an umbrella ordering if we remove the edge e from F , contradicting the optimality of F .

1.2 Branches

We now give the main definitions of this Section. The branches that we will define correspond to
some parts of the graph that already behave like proper interval graphs. They are the parts of the
graph that we will reduce in order to obtain a kernelization algorithm.

3In all the figures, (non-)edges between blocks stand for all the possible (non-)edges between the vertices that lie
in these blocks, and the vertices within a gray box form a clique of the graph.
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Definition 1.4 (1-branch). Let B ⊆ V . We say that B is a 1-branch if the following properties
hold (see Figure 3):

(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \ B can be partitioned into two sets R and C with: no edges between B
and C, every vertex in R has a neighbor in B, no edges between {b1, . . . , bl−1} and R where
bl is the neighbor of b|B| with minimal index in σB, and for every l ≤ i < |B|, we have
NR(bi) ⊆ NR(bi+1).

We denote by B1 the set of vertices {v ∈ V : bl ≤σB v ≤σB b|B|}, which is a clique (because bl
is a neighbor of b|B|). We call B1 the attachment clique of B, and use BR to denote B \B1.

R C

B1

bl b|B|b1
B

BR

Figure 3: A 1-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

Definition 1.5 (2-branch). Let B ⊆ V . We say that B is a 2-branch if the following properties
hold (see Figure 4):

(i) The graph G[B] is a connected proper interval graph admitting an umbrella ordering σB =
b1, . . . , b|B| and,

(ii) The vertex set V \B can be partitioned into sets L,R and C with:

• no edges between B and C,

• every vertex in L (resp. R) has a neighbor in B,

• no edges between {b1, . . . , bl−1} and R where bl is the neighbor of b|B| with minimal index
in σB,

• no edges between {bl′+1, . . . , b|B|} and L where bl′ is the neighbor of b1 with maximal
index in σB and,

• NR(bi) ⊆ NR(bi+1) for every l ≤ i < |B| and NL(bi+1) ⊆ NL(bi) for every 1 ≤ i < l′.

Again, we denote by B1 (resp. B2) the set of vertices {v ∈ V : b1 ≤σB v ≤σB bl′} (resp.
{v ∈ V : bl ≤σB v ≤σB b|B|}). We call B1 and B2 the attachment cliques of B, and use BR to
denote B \ (B1∪B2). Observe that the cases where L = ∅ or R = ∅ are possible, and correspond to
the definition of a 1-branch. Finally, when BR = ∅, it is possible that a vertex of L or R is adjacent
to all the vertices of B. In this case, we will denote by N the set of vertices that are adjacent to
every vertex of B, remove them from R and L and abusively still denote by L (resp. R) the set
L \N (resp. R \N). We will precise when we need to use the set N .
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b1 bl b|B| R C

B

Figure 4: A 2-branch of a graph G = (V,E). The vertices of B are ordered according to the
umbrella ordering σB.

In both cases, in a 1- or 2-branch, whenever the proper interval graph G[B] is a clique, we say
that B is a K-join. Observe that, in a 1- or 2-branch B, for any extremal edge uv in σB, the set of
vertices {w ∈ V : u ≤σB w ≤σB v} defines a K-join. In particular, this means that a branch can
be decomposed into a sequence of K-joins. Observe however that the decomposition is not unique:
for instance, the K-joins corresponding to all the extremal edges of σB are not disjoint. We will
precise in Section 2.1.5, when we will reduce the size of 2-branches, how to fix a decomposition.
Finally, we say that a K-join is clean whenever its vertices are not contained in any claw or 4-cycle.
Remark that a subset of a K-join (resp. clean K-join) is also a K-join (resp. clean K-join).

2 Kernel for Proper Interval Completion

The basic idea of our kernelization algorithm is to detect the large enough branches and then to
reduce them. This section details the rules we use for that.

2.1 Reduction rules

2.1.1 Basic rules

We say that a rule is safe if when it is applied to an instance (G, k) of the problem, (G, k) admits
a k-completion iff the instance (G′, k′) reduced by the rule admits a k′-completion.

The first reduction rule gets rid of connected components that are already proper interval
graphs. This rule is trivially safe and can be applied in O(n + m) time using any recognition
algorithm for proper interval graphs [6].

Rule 2.1 (Connected components). Remove any connected component of G that is a proper interval
graph.

The following reduction rule can be applied since proper interval graphs are closed under true
twin addition and induced subgraphs. For a class of graphs satisfying these two properties, we
know that this rule is safe [1] (roughly speaking, we edit all the large set of true twins in the same
way).

Rule 2.2 (True twins [1]). Let T be a set of true twins in G such that |T | > k. Remove |T |−(k+1)
arbitrary vertices from T .

We also use the classical sunflower rule, allowing to identify a set of edges that must be added
in any optimal completion.
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Rule 2.3 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of claws having two leaves u, v in
common but distinct third leaves. Add uv to F and decrease k by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

Lemma 2.1. Rule 2.3 is safe and can be carried out in polynomial time.

Proof. We only prove the first rule. The second rule can be proved similarly. Let F be a k-
completion of G and assume that F does not contain (u, v). Since any two claws in S only share
(u, v) as a common non-edge, F must contain one edge for every Ci, 1 ≤ i ≤ m. Since m > k, we
have |F | > k, which cannot be. Observe that a sunflower can be found in polynomial time once we
have enumerated all the claws and 4-cycles of a graph, which can clearly be done in O(n4).

2.1.2 Extracting a clean K-join from a K-join

Now, we want to reduce the size of the ’simplest’ branches, namely the K-joins. More precisely,
in the next subsection we will bound the number of vertices in a clean K-join (whose vertices are
not contain in any claw or 4-cycle), and so, we first indicate how to extract a clean K-join from a
K-join.

Lemma 2.2. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.3 has been applied. There are at most k2 claws with distinct sets of leaves, and at most
k2 + 2k vertices of G are leaves of claw. Furthermore, there are at most 2k2 + 2k vertices of G that
are vertices of a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, every claw or 4-cycle of G
has a non-edge that will be completed and then is an edge of F . Let xy be an edge of F . As we
have applied Rule 2.3 on G, there are at most k vertices in G that form the three leaves of a claw
with x and y. So, at most (k + 2)k vertices of G are leaves of claws. Similarly, there are at most
k non-edges of G, implying at most 2k vertices, that form a 4-cycle with x and y. So, at most
(2k + 2)k vertices of G are in a 4-cycle.

Lemma 2.3. Let G = (V,E) be a positive instance of Proper Interval Completion on which
Rule 2.2 and Rule 2.3 have been applied and B be a K-join of G. There are at most k3+4k2+5k+1
vertices of B that belong to a claw or a 4-cycle.

Proof. By Lemma 2.2, there are at most 3k2 + 4k vertices of B that are leaves of a claw or in 4-
cycles. We remove these vertices from B and denote B′ the set of remaining vertices, which forms
a K-join. Now, we remove from B′ all the vertices that do not belong to any claw and contract
all the true twins in the remaining vertices. As Rule 2.2 has been applied on B, every contracted
set has size at most k + 1. We denote by B′′ the obtained set which can be seen as a subset of B
and then, B′′ is also a K-join of G. Remark that every vertex of B′′ is the center of a claw. We
consider an umbrella ordering b1, . . . , bl of B′′. We will find a set of l − 1 claws with distinct sets
of leaves, which will bound l by k2 + 1, by Lemma 2.2. As, for all i = 1, . . . , l − 1, bi and bi+1 are
not true twins, there exists ci such that bici ∈ E and bi+1ci /∈ E or bici /∈ E and bi+1ci ∈ E. As B′′

is K-join, by definition, all the ci’s are distinct. Now, for every i = 1, . . . , l− 1, we will find a claw
containing ci as leaf. Assume that bici /∈ E and bi+1ci ∈ E. As bi+1 is the center of a claw, there
exists a set {x, y, z} which is an independent set and is fully adjacent to bi+1. If ci ∈ {x, y, z}, we
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are done. Assume this is not the case. This means that bi is adjacent to any vertex of {x, y, z}
(otherwise one of this vertex would be adjacent to bi+1 and not to bi, and we choose it to be ci).
Now, if two elements of this set, say x and y, are adjacent to ci, then {x, ci, y, bi} forms a 4-cycle
that contains bi, which is not possible. So, at least two elements among {x, y, z}, say x and y, are
not adjacent to ci and then, we find the claw {bi+1, x, y, ci} of center bi+1 that contains ci. In the
case where bici ∈ E and bi+1ci /∈ E, we proceed similarly by exchanging the role of bi and bi+1

and find also a claw containing ci. Finally, all the considered claws have distinct sets of leaves and
there are at most k2 such claws by Lemma 2.2. What means that B′′ has size at most k2 + 1 and
B′ at most (k + 1)(k2 + 1). As we removed at most 3k2 + 4k vertices of B that could be leaves of
claws or contain in 4-cycles, we obtain k3 + 4k2 + 5k+ 1 vertices of B that are possibly in claws or
4-cycles.

Since any subset of a K-join forms a K-join, Lemma 2.3 implies that it is possible to remove a
set of at most k3 + 4k2 + 5k + 1 vertices from any K-join to obtain a clean K-join.

2.1.3 Bounding the size of the K-joins

Now, we set a rule that will bound the number of vertices in a clean K-join, once applied. Although
quite technical to prove, this rule is the core tool of our process of kernelization.

Rule 2.4 (K-join). Let B be a clean K-join of size at least 2k+2. Let BL be the k+1 first vertices
of B, BR be its k+ 1 last vertices and M = B \ (BR ∪BL). Remove the set of vertices M from G.

Lemma 2.4. Rule 2.4 is safe.

Proof. Let G′ = G\M . Observe that the restriction to G′ of any k-completion of G is a k-completion
of G′, since proper interval graphs are closed under induced subgraphs. So, let F be a k-completion
for G′. We denote by H = G′ + F the resulting proper interval graph and by σH = b1, . . . , b|H| an
umbrella ordering of H. We prove that we can insert the vertices of M into σH and modify it if
necessary, to obtain an umbrella ordering for G without adding any edge (in fact, some edges of F
might even be deleted during the process). This will imply that G admits a k-completion as well.
To see this, we need the following structural description of G. As explained before, we denote by
N the set ∩b∈BNG(b) \ B, and abusively still denote by L (resp. R) the set L \ N (resp. R \ N)
(see Figure 5).

Claim 2.5. The sets L and R are cliques of G.

Proof. We prove that R is a clique in G. The proof for L uses similar arguments. No vertex
of R is a neighbor of b1, otherwise such a vertex must be adjacent to every vertex of B and then
stand in N . So, if R contains two vertices u, v such that uv /∈ E, we form the claw {b|B|, b1, u, v}
of center b|B|, contradicting the fact that B is clean. �

The following observation comes from the definition of a K-join.

Observation 2.6. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r). Similarly,
given any vertex l ∈ L, if NB(l) ∩BR 6= ∅ holds then M ⊆ NB(l).

We use these facts to prove that an umbrella ordering can be obtained for G by inserting the
vertices of M into σH . Let bf and bl be respectively the first and last vertex of B \M appearing
in σH . We let BH denote the set {u ∈ V (H) : bf ≤σH u ≤σH bl}. Observe that BH is a clique in
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Figure 5: The structure of the K-join B.

H since bfbl ∈ E(G) and that B \M ⊆ BH . Now, we modify σH by ordering the true twins in H
according to their neighborhood in M : if x and y are true twins in H, are consecutive in σH , verify
x <σH y <σH bf and NM (y) ⊂ NM (x), then we exchange x and y in σH . This process stops when
the considered true twins are ordered following the join between {u ∈ V (H) : u <σH bf} and M .
We proceed similarly on the right of BH , i.e. for x and y consecutive twins with bl <σH x <σH y
and NM (x) ⊂ NM (y). The obtained order is clearly an umbrella ordering too (in fact, we just
re-labeled some vertices in σH), and we abusively still denote it by σH .

Claim 2.7. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪M is a
clique of G.

Proof. Let u be any vertex of BH . We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So assume u /∈ B. Recall that BH is a clique in H. It follows that
u is adjacent to every vertex of B \M in H. Since BL and BR both contain k + 1 vertices, we
have NG(u) ∩ BL 6= ∅ and NG(u) ∩ BR 6= ∅. Hence, u belongs to L ∪ N ∪ R and um ∈ E(G) by
Observation 2.6. �

Claim 2.8. Let m be any vertex of M and σ′H be the ordering obtained from σH by removing BH
and inserting m to the position of BH . The ordering σ′H respects the umbrella property.

Proof. Assume that σ′H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)
two vertices u and v of H \ BH such that either (1) u <σ′H v <σ′H m, um ∈ E(H) and uv /∈ E(H)
or (2) u <σ′H m <σ′H v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′H v <σ′H m, um ∈ E(H) and
vm /∈ E(H). First, assume that (1) holds. Since uv /∈ E(H) and σH is an umbrella ordering,
uw /∈ E(H) for any w ∈ BH , and hence uw /∈ E(G). This means that BL ∩ NG(u) = ∅ and
BR ∩ NG(u) = ∅, which is impossible since um ∈ E(G). Then, assume that (2) holds. Since
uv ∈ E(H) and σH is an umbrella ordering, BH ⊆ NH(u), and in particular BL and BR are
included in NH(u). As |BL| = |BR| = k + 1, we know that NG(u) ∩BL 6= ∅ and NG(u) ∩BR 6= ∅,
but then, Observation 2.6 implies that um ∈ E(G). So, (3) holds, and we choose the first u
satisfying this property according to the order given by σ′H . So we have wm /∈ E(G) for any
w <σ′H u. Similarly, we choose v to be the first vertex after u satisfying vm /∈ E(G). Since
um ∈ E(G), we know that u belongs to L ∪N ∪ R. Moreover, since vm /∈ E(G), v ∈ C ∪ L ∪ R.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that ubl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vbl ∈ E(H) and BH ⊆ NH(v). Since
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|BL| = |BR| = k + 1, we know that NG(v) ∩ BL 6= ∅ and NG(v) ∩ BR 6= ∅. But, then
Observation 2.6 implies that vm ∈ E(G).

(ii) u ∈ R, v /∈ R: since um ∈ E(G), BR ⊆ NG(u). Let b ∈ BR be the vertex such that
BR ⊆ {w ∈ V : u <σH w ≤σH b}. Since ub ∈ E(G), this means that BR ⊆ NH(v). Now,
since |BR| = k + 1, it follows that NG(v) ∩ BR 6= ∅. Observation 2.6 allows us to conclude
that vm ∈ E(G).

(iii) u, v ∈ R: in this case, uv ∈ E(G) by Claim 2.7 but u and v are not true twins in H (otherwise
v would be placed before u in σH due to the modification we have applied to σH). This means
that there exists a vertex w ∈ V (H) that distinguishes u from v in H.
Assume first that w <σH u and uw ∈ E(H), vw /∈ E(H). We choose the first w satisfying this
according to the order given by σH . There are two cases to consider. First, if uw ∈ E(G), then
since wm /∈ E(G) for any w <σH u by the choice of u, {u, v, w,m} is a claw in G containing a
vertex of B (see Figure 6 (a) ignoring the vertex u′), which cannot be. So assume uw ∈ F . By
Observation 1.3, uw is not an extremal edge of σH . By the choice of w and since vw /∈ E(H),
there exists u′ with u <σH u′ <σH v such that u′w is an extremal edge of σH (and hence
belongs to E(G), see Figure 6 (a)). Now, by the choice of v we have u′m ∈ E(G) and hence
u′ ∈ N ∪ R ∪ L. Observe that u′v /∈ E(G): otherwise {u′, v, w,m} would form a claw in G.
Since R is a clique of G, it follows that u′ ∈ L∪N . Moreover, since u′m ∈ E(G), BL ⊆ NG(u′).
We conclude like in configuration (ii) that v should be adjacent to a vertex of BL and hence
to m.
Hence we can assume that all the vertices that distinguish u and v are after u in σH and that
uw′′ ∈ E(H) implies vw′′ ∈ E(H) for any w′′ <σH u. Now, suppose that there exists w ∈ H
such that bl <σH w and uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v).
Since |BL| = k+1 we have NG(v)∩BL 6= ∅, implying vm ∈ E(G) by Observation 2.6. Assume
now that there exists a vertex w which distinguishes u and v with v <σH w <σH bf . In this
case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅, which cannot be
since u ∈ R. Finally, assume that there is w ∈ BH with wu /∈ E(H) and wv ∈ E(H). Recall
that wm ∈ E(G) as BH ∪ {m} is a clique by Claim 2.7. We choose w in BH distinguishing u
and v to be the last according to the order given by σH (i.e. vw′ /∈ E(H) for any w <σH w′,
see Figure 6 (b), ignoring the vertex u′).

(a)

m

u vu′

(b)

w′w ∈ BH

m

u′u vw

Figure 6: (a) u and v are distinguished by some vertex w <σH u; (b) u and v are distinguished by
a vertex w ∈ BH .

If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which cannot be.
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Hence vw ∈ F and by the choice of w, there exists u′ ∈ V (H) such that u <σH u′ <σH v
and u′w is an extremal edge (and then belongs to E(G)). By the choice of v we know that
u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in H (if a
vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would distinguishes
u and v, not between u and w because it would be adjacent to u′ and v, and not after w, by
choice of w). This leads to a contradiction since we assumed that NM (x) ⊆ NM (y) for any
true twins x and y with x <σH y <σH bf .

The cases where u ∈ L are similar, what concludes the proof of Claim 2.8 �

Claim 2.9. Let m ∈ M . Then m can be added to the graph H while preserving an umbrella
ordering.

Proof. Let m ∈ M and vi (resp. vj) be the vertex with minimal (resp. maximal) index in σH
such that vim ∈ E(G) (resp. vjm ∈ E(G)). By definition, we have vi−1m, vj+1m /∈ E(G) and
through Claim 2.8, we know that NH(m) = {w ∈ V : vi ≤σH w ≤σH vj}. Moreover, since BH ∪M
is a clique by Claim 2.7, it follows that vi−1 <σH bf and bl <σH vj+1. Hence, by Claim 2.8, we know
that vi−1vj+1 /∈ E(G), otherwise the ordering σ′H defined in Claim 2.8 would not be an umbrella
ordering. The situation is depicted in Figure 7 (a). For any vertex v ∈ NH(m), let N−(v) (resp.
N+(v)) denote the set of vertices {w ≤σH vi−1 : wv ∈ E(H)} (resp. {w ≥σH vj+1 : wv ∈ E(H)}).
Observe that for any vertex v ∈ NH(m), if there exist two vertices x ∈ N−(v) and y ∈ N+(v) such
that xv, yv ∈ E(G), then the set {v, x, y,m} defines a claw containing m in G, which cannot be.
We now consider bvi−1 the neighbor of vi−1 with maximal index in σH . Similarly we let bvj+1 be the
neighbor of vj+1 with minimal index in σH . Since vi−1vj+1 /∈ E(G), we have bvi−1 , bvj+1 ∈ NH(m).
We study the behavior of bvi−1 and bvj+1 in order to conclude.

Assume first that bvj+1 <σH bvi−1 . Let X be the set of vertices {w ∈ V : bvj+1 ≤σH w ≤σH
bvi−1}. Remark that we have bvi−1 ≤σH bl and bf ≤σH bvj+1 , otherwise for instance, if we have
bvi−1 >σH bl, then BH ⊆ NH(vi−1) implying, as usual, that vi−1m ∈ E(G) which is not. So,
we know that X ⊆ BH . Then, let X1 ⊆ X be the set of vertices x ∈ X such that there exists
w ∈ N+(x) with xw ∈ E(G) and X2 = X \X1. Let x ∈ X1: observe that by construction xw′ ∈ F
for any w′ ∈ N−(x). Similarly, given x ∈ X2, xw

′′ ∈ F for any w′′ ∈ N+(x). We now reorder the
vertices of X as follows: we first put the vertices from X2 and then the vertices from X1, preserving
the order induced by σH for both sets. Moreover, we remove from E(H) all edges between X1 and
N−(X1) and between X2 and N+(X2). Recall that such edges have to belong to F . We claim that
inserting m between X2 and X1 yields an umbrella ordering (see Figure 7 b). Indeed, by Claim 2.8,
we know that the umbrella ordering is preserved between m and the vertices of H \BH .

Now, remark that there is no edge between X1 and {w ∈ V : w ≤σH vi−1}, that there is no
edge between X2 and {w ∈ V : w ≥σH vj+1}), that there are still all the edges between NH(m)
and X1 ∪X2 and that the edges between X1 and {w ∈ V : w ≥σH vj+1} and the edges between
X2 and {w ∈ V : w ≤σH vi−1} are unchanged. So, it follows that the new ordering respects the
umbrella property, and we are done.

Next, assume that bvi−1 <σH bvj+1 . We let bvi (resp. bvj ) be the neighbor of vi (resp. vj)
with maximal (resp. minimal) index in NH(m). Notice that bvi−1 ≤σH bvi and bvj ≤σH bvj+1 (see
Figure 8). Two cases may occur:

(i) First, assume that bvi <σH bvj , case depicted in Figure 8 (a). In particular, this means that
vivj /∈ E(G). If bvi and bvj are consecutive in σH , then inserting m between bvi and bvj yields
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vj+1vj

m

m

vj+1vjbvi−1bvj+1vivi−1 vivi−1

(b)(a)

X2 X1

Figure 7: Illustration of the reordering applied to σH . The thin edges stand for edges of G. On the
left, the gray vertices represent vertices of X1 while the white vertex is a vertex of X2.

an umbrella ordering (since bvj (resp. bvi) does not have any neighbor before (resp. after) vi
(resp. vj) in σH). Now, if there exists w ∈ V such that bvi <σH w <σH bvj , then one can see
that the set {m, vi, w, vj} forms a claw containing m in G, which is impossible.

(ii) The second case to consider is when bvj ≤σH bvi . In such a case, one can see that m and the
vertices of {w ∈ V : bvj ≤σH w ≤σH bvi} are true twins in H ∪ {m}, because their common
neighborhood is exactly {w ∈ V : vi ≤σH w ≤σH vj}. Hence, inserting m just before bvi (or
anywhere between bvi and bvj or just after bvj ) yields an umbrella ordering.

bvj+1bvj vj+1vjvi−1vi bvi−1 wbvi bvj+1bvi vj+1vjvi−1vi bvi−1 wbvj

m

(b)(a)

m

Figure 8: The possible cases for bvi−1 <σH bvj+1 .
�

Since the proof of Claim 2.9 does not use the fact that the vertices of H do not belong to M ,
it follows that we can iteratively insert the vertices of M into σH , preserving an umbrella ordering
at each step. This concludes the proof of Lemma 2.4.

The complexity needed to compute Rule 2.4 will be discussed in the next section. The following
observation results from the application of Rule 2.4 and from Section 2.1.2.

Observation 2.10. Let G = (V,E) be a positive instance of Proper Interval Completion
reduced under Rules 2.2 to 2.4. Any K-join of G has size at most k3 + 4k2 + 7k + 3.
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Proof. Let B be any K-join of G, and assume |B| > k3 +4k2 +7k+3. By Lemma 2.2 we know that
it is possible to extract a clean K-join from B of size at least |B| − (k3 + 4k2 + 5k + 1) > 2(k + 1)
what is impossible after having applied Rule 2.4.

2.1.4 Cutting the 1-branches

We now turn our attention to branches of a graph G = (V,E), proving how they can be reduced.

Lemma 2.11. Let G = (V,E) be a connected graph and B be a 1-branch of G associated with
the umbrella ordering σB. Assume that |BR| ≥ 2k + 1 and let Bf be the 2k + 1 last vertices of
BR according to σB. For any k-completion F of G into a proper interval graph, there exists a
k-completion F ′ of G with F ′ ⊆ F and a vertex b ∈ Bf such that the umbrella ordering of G+ F ′

preserves the order of the set Bb = {v ∈ V : b1 ≤σB v ≤σB bl′}, where l′ is the maximal index
such that bbl′ ∈ E(G). Moreover, the vertices of Bb are the first in an umbrella ordering of G+F ′.

Proof. Let F be any k-completion of G, H = G+ F and σH be the umbrella ordering of H. Since
|Bf | = 2k + 1 and |F | ≤ k, there exists a vertex b ∈ Bf not incident to any added edge of F . We
let ND be the set of neighbors of b that are after b in σB, B′ the set of vertices that are before
NG[b] in σB, Bb = B′ ∪NG[b] and C = V \Bb (see Figure 9).

Claim 2.12. (i) G[C] is a connected graph and
(ii) Either ∀u ∈ C b <σH u holds or ∀u ∈ C u <σH b holds.

Proof. The first point follows from the fact that G is connected and that, by construction,
B1 ⊆ C and B1 is connected. To see the second point, assume that there exist u, v ∈ C such that
w.l.o.g. u <σH b <σH v. Since G[C] is a connected graph, there exists a path between u and v
in G that avoids NG[b], which is equal to NH [b] since b is not incident to any edge of F . Hence
there exist u′, v′ ∈ C such that u′ <σH b <σH v′ and u′v′ ∈ E(G). Then, we have u′b, v′b /∈ E(H),
contradicting the fact that σH is an umbrella ordering for H. �

In the following, we assume w.l.o.g. that b <σH u holds for any u ∈ C. We now consider the
following ordering σ of H: we first put the set Bb according to the order of B and then put the
remaining vertices C according to σH (see Figure 9). We construct a completion F ′ from F as
follows: we remove from F the edges with both extremities in Bb, and remove all edges between
Bb \ND and C. In other words, we set:

F ′ = F \ (F [B] ∪ F [(Bb \ND)× C])

Finally, we inductively remove from F ′ any extremal edge of σ that belongs to F , and abusively
still call F ′ the obtained edge set.

Claim 2.13. The set F ′ is a k-completion of G.

Proof. We prove that σ is an umbrella ordering of H ′ = G+F ′. Since |F ′| ≤ |F | by construction,
the result will follow. Assume this is not the case. By definition of F ′, H ′[Bb] and H ′[C] induce
proper interval graphs. This means that there exists a set of vertices S = {u, v, w}, u <σ v <σ w,
intersecting both Bb and C and violating the umbrella property. We either have (1) uw ∈ E, uv /∈ E
or (2) uw ∈ E, vw /∈ E. Since neither F ′ nor G contain an edge between Bb \ND and C, it follows
that S intersects ND and C. We study the different cases:
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B′

∈ G

︸ ︷︷ ︸NDb

NG(b)

C

Bb σH [C]

︸ ︷︷ ︸
Figure 9: The construction of the ordering σ according to σH .

(i) (1) holds and u ∈ ND, v, w ∈ C: since the edge set between ND and C is the same in H
and H ′, it follows that uv /∈ E(H). Since σH is an umbrella ordering of H, we either have
v <σH u <σH w or v <σH w <σH u (recall that C is in the same order in both σ and σH).
Now, recall that b <σH {v, w} by assumption. In particular, since bu ∈ E(G), this implies in
both cases that σH is not an umbrella ordering, what leads to a contradiction.

(ii) (1) holds and u, v ∈ ND, w ∈ C: this case cannot happen since ND is a clique of H ′.

(iii) (2) holds and u ∈ ND, v, w ∈ C: this case is similar to (i). Observe that we may assume
uv ∈ E(H) (otherwise (i) holds). By construction vw /∈ E(H) and hence v <σH w <σH u or
v <σH u <σH w. The former case contradicts the fact that σH is an umbrella ordering since
bu ∈ E(H). In the latter case, since σH is an umbrella ordering this means that bv ∈ E(H).
Since b is non affected vertex and bv /∈ E(G), this leads to a contradiction.

(iv) (2) holds and u, v ∈ ND, w ∈ C: first, if uw ∈ E(G), then we have a contradiction since
NC(u) ⊆ NC(v). So, we have uw ∈ F ′. By construction of F ′, we know that uw is not an
extremal edge. Hence there exists an extremal edge (of G) containing uw, which is either uw′

with w <σ w
′ , u′w with u′ <σ u or u′w′ with u′ <σ u <σ w <σ w

′. The three situation are
depicted in Figure 10. In the first case, vw′ ∈ E(G) (since NC(u) ⊆ NC(v) in G) and hence
we are in configuration (i) with vertex set {v, w,w′}. In the second case, since u′w ∈ E(G),
we have a contradiction since NC(u′) ⊆ NC(v) in G (observe that u′ ∈ B by construction).
Finally, in the third case, uw′, vw′ ∈ E(G) since NC(u′) ⊆ NC(u) ⊆ NC(v) in G, and we are
in configuration (i) with vertex set {v, w,w′}.

(a) (c)(b)

w ∈ Cv ∈ NDu′ ∈ B u ∈ ND u′ ∈ B u ∈ ND v ∈ ND w ∈ C w′ ∈ Cw′ ∈ Cu ∈ ND v ∈ NDw ∈ C

Figure 10: Illustration of the different cases of configuration (iv) (the bold edges belong to F ′).

�

Altogether, we proved that for any k-completion F , there exists an umbrella ordering where the
vertices of Bb are ordered in the same way than in the ordering of B and stand at the beginning of
this ordering, what concludes the proof.
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Rule 2.5 (1-branches). Let B be a 1-branch such that |BR| ≥ 2k + 1. Remove BR \ Bf from G,
where Bf denotes the 2k + 1 last vertices of BR.

Lemma 2.14. Rule 2.5 is safe.

Proof. Let G′ = G \ (BR \ Bf ) denote the reduced graph. Observe that any k-completion of G is
a k-completion of G′ since proper interval graphs are closed under induced subgraphs. So let F
be a k-completion of G′. We denote by H = G′ + F the resulting proper interval graph and let
σH be the corresponding umbrella ordering. By Lemma 2.11 we know that there exists a vertex
b ∈ Bf such that the order of Bb = NG[b] ∪ {v ∈ Bf : v <σB NG[b]} is the same than in B and
the vertices of Bb are the first of σH . Since NG(BR \ Bf ) ⊆ NG[b], it follows that the vertices of
BR \Bf can be inserted into σH while respecting the umbrella property. Hence F is a k-completion
for G, implying the result.

Here again, the time complexity needed to compute Rule 2.5 will be discussed in the next
section. The following property of a reduced graph will be used to bound the size of our kernel.

Observation 2.15. Let G = (V,E) be a positive instance of Proper Interval Completion
reduced under Rules 2.2 to 2.5. The 1-branches of G contain at most k3 + 4k2 + 9k + 4 vertices.

Proof. Let B be a 1-branch of a graph G = (V,E) reduced under Rules 2.2 to 2.5. Assume
|B| > k3 + 4k2 + 9k+ 4. Since G is reduced under Rule 2.4, we know by Observation 2.10 that the
attachment clique B1 of B, which is a K-join, contains at most k3 + 4k2 + 7k + 3 vertices. This
implies that |BR| > 2k + 1, which cannot be since G is reduced under Rule 2.5.

2.1.5 Cutting the 2-branches

To obtain a rule reducing the 2-branches, we need to introduce a particular decomposition of 2-
branches into K-joins. Let B be a 2-branch with an umbrella ordering σB = b1, . . . , b|B|. As
usual, we denote by B1 = b1, . . . , bl′ its first attachment clique and by B2 = bl, . . . , b|B| its second.
The reversal of the permutation σB gives a second possibility to fix B1 and B2. We fix one of
these possibilities and define B, the K-join decomposition of B. The K-joins of B are defined by
B′i = bli−1+1, . . . , bli where bli is the neighbor of bli−1+1 with maximal index. The first K-join of
B is B1 (so, l0 = 0 and l1 = l′), and once B′i−1 is defined, we set B′i: if bli−1+1 ∈ B2, then we set
B′i = bli−1+1, . . . , b|B|, otherwise, we choose B′i = bli−1+1, . . . , bli (see Figure 11).

B1 B2

B′1 B′2 B′3 B′p−1 B′p

b1 bl2+1 blp−2+1 blp−1
blp−1+1 blpbl1 bl2 bl3bl1+1

Figure 11: The K-join decomposition.

Now, we can prove the next lemma, which bounds the number of K-joins in the K-join decom-
position of a 2-branch providing that some connectivity assumption holds.

Lemma 2.16. Let G = (V,E) be an instance of Proper Interval Completion and B be a
2-branch containing p ≥ (k + 4) K-joins in its K-join decomposition. Assume the attachment
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cliques B1 and B2 of B belong to the same connected component of G[V \ BR] . Then there is no
k-completion for G.

Proof. Let B be a 2-branch of an instance G = (V,E) of Proper Interval Completion respect-
ing the conditions of Lemma 2.16. Since B1 and B2 belong to the same connected component in
G[V \ BR], let π be a shortest path between B1 and B2 in G[V \ BR]. As B has p ≥ k + 4 ≥ 3
K-joins in its decomposition, no vertex of B1 is adjacent to a vertex f B2 and π has length at
least two. We denote by u ∈ B1 and v ∈ B2 the extremities of such a path. We now construct
an induced path Puv of length at least p − 1 between u and v within B. To do so, considering
the K-join decomposition B = {B′1, . . . , B′p} of B, we know that u ∈ B′1 and that v ∈ B′p−1 ∪ B′p.
We define u1 = u and while v /∈ N [ui], we choose ui+1 the neighbor of ui with maximum index in
the umbrella ordering of B. In this case, we have ui ∈ ∪ij=1B

′
j for every 1 ≤ i ≤ p. Indeed, the

neighbor of a vertex of ∪i−1j=1B
′
j with maximum index in the umbrella ordering of B is in ∪ij=1B

′
j .

Finally, when v ∈ N [ui], we just choose ui+1 = v. So, the path Puv = u1, . . . , ul is an induced path
of length at least p − 1, with u1 = u, ul = v and the only vertices that could have neighbors in
G \ B are u1, ul−1 and ul (u1 ∈ B1, ul ∈ B2 and ul−1 is possibly in B2). Using π, we can form
an induced cycle of length at least p ≥ k + 4 in G. Since at least q − 3 completions are needed to
triangulate any induced cycle of length q [14], it follows that there is no k-completion for G.

The following observation is a straightforward implication of Lemma 2.16.

Observation 2.17. Let G = (V,E) be a connected positive instance of Proper Interval Com-
pletion, reduced by Rule 2.4 and B be a 2-branch such that G[V \BR] is connected. Then B con-
tains at most k+3 K-joins in its K-join decomposition and hence at most (k+3)(k3+4k2+5k+1)
vertices.

Rule 2.6 (2-branches). Let G be a connected graph and B be a 2-branch such that G[V \ BR] is
not connected. Assume that |BR| ≥ 4(k + 1) and let B′1 be the 2k + 1 vertices after B1 and B′2 the
2k + 1 vertices before B2. Remove B \ (B1 ∪B′1 ∪B′2 ∪B2) from G.

Lemma 2.18. Rule 2.6 is safe.

Proof. As usual, we denote by σb = b1, . . . , b|B| the umbrella ordering defined on B, with B1 =

{b1, . . . , bl′} and B2 = {bl, . . . , b|B|}. We partition BR into two sets B′ = {bl′+1, . . . , bi} and
B′′ = {bi+1, . . . , bl−1} such that |B′| ≥ |B′′| ≥ 2k+1. We now remove the edges E(B′, B′′) between
B′ and B′′, obtaining two connected components of G, G1 and G2. Observe that B′ defines a 1-
branch of G1 with attachment clique B1 such that B′\B1 contains at least 2k+1 vertices. Similarly
B′′ defines a 1-branch of G2 with attachment clique B2 such that B′′ \B2 contains at least 2k + 1
vertices. Hence Lemma 2.11 can be applied to both G1 and G2 and we continue as if Rule 2.5 has
been applied to G1 and G2, preserving exactly 2k+ 1 vertices B′f and B′′f , respectively. We denote
by G′ the reduced graph. Let F be a k-completion of G. Let F1 and F2 be the completions of G1

and G2 such that |F1|+ |F2| ≤ k. Moreover, let H1 = G1 +F1 and H2 = G2 +F2. By Lemma 2.11,
we know that the vertices of B′ \ B′f (resp. B′′ \ B′′f ) can be inserted into the umbrella ordering
σH1 of H1 (resp. σH2) in the same order than in B′ (resp. B′′). We thus obtain two proper interval
graphs H ′1 and H ′2 whose respective umbrella ordering preserve the order of B′ and B′′. We now
connect H ′1 and H ′2 by putting back the edges contained in E(B′, B′′), obtaining a graph H with
ordering σH . Since G[B] is a proper interval graph and B′ and B′′ are ordered according to B in
H ′1 and H ′2 , it follows that H is a proper interval graph, and hence F = F1 ∪ F2 is a k-completion
of G.
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Observation 2.19. Let G = (V,E) be a positive instance of Proper Interval Completion
reduced under Rules 2.2 to 2.6. The 2-branches of G contain at most (k + 3)(k3 + 4k2 + 5k + 1)
vertices.

Proof. Let B be a 2-branch of a graph G = (V,E) and C be the connected component containing
B. If G[C \BR] is connected, then Observation 2.17 implies the result. Otherwise, as G has been
reduced under Rules 2.2 to 2.6, we know that |BR| ≤ 4k+ 4 and then that |B| ≤ 2(k3 + 4k2 + 5k+
1) + (4k + 4) which is less than (k + 3)(k3 + 4k2 + 5k + 1), provided that k ≥ 1.

2.2 Detecting the branches

We now turn our attention to the complexity needed to compute reduction rules 2.4 to 2.6. Mainly,
we indicate how to obtain the maximum branches in order to reduce them. The detection of a
branch is straightforward except for the attachment cliques, where several choices are possible.
So, first, we detect the maximum 1-branches of G. Remark that for every vertex x of G, the set {x}
is a 1-branch of G. The next lemma indicates how to compute a maximum 1-branch that contains
a fixed vertex x as first vertex.

Lemma 2.20. Let G = (V,E) be a graph and x a vertex of G. In time O(n2), it is possible to
detect a maximum 1-branch of G containing x as first vertex.

Proof. To detect such a 1-branch, we design an algorithm which has two parts. Roughly speaking,
we first try to detect the set BR of a 1-branch B containing x. We set BR

0 = {x} and σ0 = x. Once
BR
i−1 has been defined, we construct the set Ci of vertices ofG\(∪i−1l=1B

R
l ) that are adjacent to at least

one vertex of BR
i−1. Two cases can appear. First, assume that Ci is a clique and that it is possible

to order the vertices of Ci such that for every 1 6 j < |Ci|, we have NBR
i−1

(cj+1) ⊆ NBR
i−1

(cj) and

(NG(cj) \ BR
i−1) ⊆ (NG(cj+1) \ BR

i−1). In this case, the vertices of Ci correspond to a new K-join
of the searched 1-branch (remark that, along this inductive construction, there is no edge between
Ci and ∪i−2l=1B

R
l ). So, we let BR

i = Ci and σi be the concatenation of σi−1 and the ordering defined
on Ci. In the other case, such an ordering of Ci can not be found, meaning that while detecting a
1-branch B, we have already detected the vertices of BR and at least one (possibly more) vertex of
the attachment clique B1 with neighbors in BR. Assume that the process stops at step p and let
C be the set of vertices of G \ ∪pl=1B

R
l which have neighbors in ∪pl=1B

R
l and B′1 ⊆ BR

p be the set of
vertices that are adjacent to all the vertices of C. Remark that B′1 6= ∅, as B′1 contains at least the
last vertex of σp. We denote by BR the set (∪pl=1B

R
l ) \B′1 and we will construct the largest K-join

containing B′1 in G \BR which is compatible with σp, in order to define the attachment clique B1

of the desired 1-branch. The vertices of C are the candidates to complete the attachment clique.
On C, we define the following oriented graph: there is an arc from x to y if: xy is an edge of G,
NBR(y) ⊆ NBR(x) and NG\BR [x] ⊆ NG\BR [y]. This graph can be computed in time O(n2). Now,
it is easy to check that the obtained oriented graph is a transitive graph, in which the equivalent
classes are made of true twins in G. A path in this oriented graph corresponds, by definition, to a
K-join containing B′1 and compatible with σp. As it is possible to compute a longest path in linear
time in this oriented graph, we obtain a maximum 1-branch of G that contains x as first vertex.

Now, to detect the 2-branches, we first detect for all pairs of vertices a maximum K-join with
these vertices as ends. More precisely, if {x, y} are two vertices of G linked by an edge, then {x, y}
is a K-join of G, with N = NG(x) ∩NG(y), L = NG(x) \NG[y] and R = NG(y) \NG[x]. So, there
exist K-joins with x and y as ends, and we will compute such a K-join with maximum cardinality.
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Lemma 2.21. Let G = (V,E) be a graph and x and y two adjacent vertices of G. It is possible to
compute in cubic time a maximum (in cardinality) K-join that admits x and y as ends.

Proof. We denote NG[x]∩NG[y] by N , NG(x)\NG[y] by L and NG(y)\NG[x] by R. Let us denote
by N ′ the set of vertices of N that contains N in their closed neighborhood. The vertices of N ′

are the candidates to belong to the desired K-join. Now, we construct on N ′ an oriented graph,
putting, for every vertices u and v of N ′, an arc from u to v if: NG(v) ∩ L ⊆ NG(u) ∩ L and
NG(u) ∩ R ⊆ NG(v) ∩ R. Basically, it could take a O(n) time to decide if there is an arc from u
to v or not, and so the whole oriented graph could be computed in time O(n3). Now, it is easy
to check that the obtained oriented graph is a transitive graph in which the equivalent classes are
made of true twins in G. In this oriented graph, it is possible to compute a longest path from x
to y in linear time. Such a path corresponds to a maximal K-join that admits x and y as ends. It
follows that the desired K-join can be identified in O(n3) time.

Now, for every edge xy of G, we compute a maximum K-join that contains x and y as ends and
a reference to all the vertices that this K-join contains. This computation takes a O(n3m) time
and gives, for every vertex, some maximum K-joins that contain this vertex. These K-joins will
be useful to compute the 2-branches of G, in particular through the next lemma.

Lemma 2.22. Let B be a 2-branch of G with BR 6= ∅, and x a vertex of BR. Then, for every
maximal (by inclusion) K-join B′ that contains x there exists an extremal edge uv of σB such that
B′ = {w ∈ B : u ≤σB w ≤σB v}.

Proof. As usually, we denote by L, R and C the partition of G \ B associated with B and by σB
the umbrella ordering associated with B. Let B′ be a maximal K-join that contains x and define
by bf (resp. bl) the first (resp. last) vertex of B′ according to σB. As there is no edge between
{u ∈ B : u <σB bf} ∪ L ∪C and bl and no edge between {u ∈ B : bl <σB u} ∪R ∪C and bf , we
have B′ ⊆ {u ∈ B : bf ≤σB u ≤ bl}. Furthermore, as {u ∈ B : bf ≤σB u ≤ bl} is a K-join and
B′ is maximal, we have B′ = {u ∈ B : bf ≤σB u ≤ bl}. Now, if bfbl was not an extremal edge of
σB, it would be possible to extend B′, contradicting the maximality of B′.

Now, we can detect the 2-branches B with a set BR non empty. Observe that this is enough
for our purpose since we want to detect 2-branches of size at least (k + 3)(k3 + 4k2 + 5k + 1) and
the attachment cliques contain at most 2(k3 + 4k2 + 7k + 3) vertices.

Lemma 2.23. Let G = (V,E) be a graph, x a vertex of G and B′ a given maximal K-join that
contains x. There is a quadratic time algorithm to decide if there exists a 2-branch B of G which
contains x as a vertex of BR, and if it exists, to find a maximum 2-branch with this property.

Proof. By Lemma 2.22, if there exists a 2-branch B of G which contains x as a vertex of BR, then
B′ corresponds to a set {u ∈ B : bf ≤σB u ≤σB bl} where bfbl is an extremal edge of B. We
denote by L′, R′ and C ′ the usual partition of G \B′ associated with B′, and by σB′ the umbrella
ordering of B′. In G, we remove the set of vertices {u ∈ B′ : u <σB′ x} and the edges between
L′ and {u ∈ B′ : x ≤σB′ u} and denote by H1 the resulting graph. From the definition of the
2-branch B, {u ∈ B : x ≤σB u} is a 1-branch of H1 that contains x as first vertex. So, using
Lemma 2.20, we find a maximal 1-branch B1 that contains x as first vertex. Remark that B1 has
to contain {u ∈ B : x ≤σB u} ∩BR at its beginning. Similarly, we define H2 from G by removing
the vertex set {u ∈ B′ : x <σB′ u} and the edges between R′ and {u ∈ B′ : u ≤σB′ x}. We detect

18



in H2 a maximum 1-branch B2 that contains x as last vertex, and as previously, B2 has to contain
{u ∈ B : u ≤σB x} ∩ BR at its end. So, B1 ∪ B2 forms a maximum 2-branch of G containing
x.

We would like to mention that it could be possible to improve the execution time of our detecting
branches algorithm, using possibly more involved techniques (as for instance, inspired from [7]).
However, this is not our main objective here.
Anyway, using a O(n4) brute force detection to localize all the 4-cycles and the claws, we obtain
the following result.

Lemma 2.24. Given a graph G = (V,E), the reduction rules 2.4 to 2.6 can be carried out in
polynomial time, namely in time O(n3m).

2.3 Kernelization algorithm

We are now ready to the state the main result of this Section. The kernelization algorithm consists
of an exhaustive application of Rules 2.1 to 2.6.

Theorem 2.25. The Proper Interval Completion problem admits a kernel with O(k5) ver-
tices.

Proof. Let G = (V,E) be a positive instance of Proper Interval Completion reduced under
Rules 2.1 to 2.6. Let F be a k-completion of G, H = G + F and σH be the umbrella ordering of
H. Since |F | ≤ k, G contains at most 2k affected vertices (i.e. incident to an added edge). Let
A = {a1 <σH . . . <σH ai <σH . . . <σH ap} be the set of such vertices, with p ≤ 2k. The size of the
kernel is due to the following observations (see Figure 12):

• Let L0 = {l ∈ V : l <σH a1} and Rp+1 = {r ∈ V : ap <σH r}. Since the vertices of L0 and
Rp+1 are not affected, it follows that G[L0] and G[Rp+1] induce a proper interval graph. As
Rule 2.1 has been applied, G[L0] and G[Rp+1] both contain one connected component, and
L0 and Rp+1 are 1-branches of G. So, by Observation 2.15, L0 and Rp+1 both contain at
most k3 + 4k2 + 9k + 4 vertices.

• Let Si = {s ∈ V : ai <σH s <σH ai+1} for every 1 ≤ i < p. Again, since the vertices of Si
are not affected, it follows that G[Si] is a proper interval graph. As Rule 2.1 as been applied,
there are at most two connected components in G[Si]. If G[Si] is connected, then, Si is a
2-branch of G and, by Observation 2.19, Si contains at most (k+3)(k3+4k2+5k+1) vertices.
Otherwise, if G[Si] contains two connected components, they correspond to two 1-branches of
G, and by Observation 2.15, Si contain at most 2(k3 + 4k2 + 9k + 4) vertices. In both cases,
we bound the number of vertices of Si by (k + 3)(k3 + 4k2 + 5k + 1), provided that k ≥ 1.

Altogether, the proper interval graph H (and hence G) contains at most:

2(k3 + 4k2 + 9k + 4) + (2k − 1)((k + 3)(k3 + 4k2 + 5k + 1))

vertices, which implies the claimedO(k5) bound. The complexity directly follows from Lemma 2.24.
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a1 ai ai+1 ap

Rp+1L0 Si

Figure 12: Illustration of the size of the kernel. The figure represents the graph H = G + F , the
square vertices stand for the affected vertices, L0 and Rp+1 are 1-branches of G, and, on the figure,
Si defines a 2-branch.

3 A special case: Bi-clique Chain Completion

Bipartite chain graphs are defined as bipartite graphs whose parts are connected by a join. Equiv-
alently, they are known to be the graphs that do not admit any {2K2, C5,K3} as an induced
subgraph [29] (see Figure 13). In [12], Guo proved that the so-called Bipartite Chain Deletion
With Fixed Bipartition problem, where one is given a bipartite graph G = (V,E) and seeks
a subset of E of size at most k whose deletion from E leads to a bipartite chain graph, admits a
kernel with O(k2) vertices. We define bi-clique chain graph to be the graphs formed by two disjoint
cliques linked by a join. They correspond to interval graphs that can be covered by two cliques.
Since the complement of a bipartite chain graph is a bi-clique chain graph, this result also holds for
the Bi-clique Chain Completion With Fixed Bi-clique Partition problem. Using similar
techniques than in Section 2, we prove that when the bipartition is not fixed, both problems admit
a quadratic-vertex kernel. For the sake of simplicity, we consider the completion version of the
problem, defined as follows.

Bi-clique Chain Completion:
Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Output: A set F ⊆ (V ×V )\E of size at most k such that the graph H = (V,E∪F ) is a bi-clique
chain graph.

It follows from definition that bi-clique chain graphs do not admit any {C4, C5, 3K1} as an
induced subgraph, where a 3K1 is an independent set of size 3 (see Figure 13). Observe in particular
that bi-clique chain graphs are proper interval graphs, and hence admit an umbrella ordering.

2K2 K3 C5 C4 3K1

Figure 13: The forbidden induced subgraphs for bipartite and bi-clique chain graphs.

We provide a kernelization algorithm for the Bi-clique Chain Completion problem which
follows the same lines that the one in Section 2.

Rule 3.1 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of 3K1 having two vertices u, v in
common but distinct third vertex. Add uv to F and decrease k by 1.
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Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv in common. Add
uv to F and decrease k by 1.

The following result is similar to Lemma 2.2.

Lemma 3.1. Let G = (V,E) be a positive instance of Bi-clique Chain Completion on which
Rule 3.1 has been applied. There are at most k2+2k vertices of G contained in 3K1’s. Furthermore,
there at most 2k2 + 2k vertices of G that are vertices of a 4-cycle.

We say that a K-join is simple whenever L = ∅ or R = ∅. In other words, a simple K-join
consists in a clique connected to the rest of the graph by a join. We will see it as a 1-branch which
is a clique and use for it the classical notation devoted to the 1-branch. Moreover, we (re)define
a clean K-join as a K-join whose vertices do not belong to any 3K1 or 4-cycle. The following
reduction rule is similar to Rule 2.4, the main ideas are identical, only some technical arguments
change. Anyway, to be clear, we give the proof in all details.

Rule 3.2 (K-join). Let B be a simple clean K-join of size at least 2(k + 1) associated with an
umbrella ordering σB. Let BL (resp. BR) be the k + 1 first (resp. last) vertices of B according to
σB, and M = B \ (BL ∪BR). Remove the set of vertices M from G.

Lemma 3.2. Rule 3.2 is safe and can be computed in polynomial time.

Proof. Let G′ = G \M . Observe that any k-completion of G is a k-completion of G′ since bi-clique
chain graphs are closed under induced subgraphs. So, let F be a k-completion for G′. We denote
by H = G′ + F the resulting bi-clique chain graph and by σH an umbrella ordering of H. We
prove that we can always insert the vertices of M into σH and modify it if necessary, to obtain an
umbrella ordering of a bi-clique chain graph for G without adding any edge. This will imply that
F is a k-completion for G. To see this, we need the following structural property of G. As usual,
we denote by R the neighbors in G \B of the vertices of B, and by C the vertices of G \ (R ∪B).
For the sake of simplicity, we let N = ∩b∈BNG(b) \ B, and remove the vertices of N from R. We
abusively still denote by R the set R \N , see Figure 14.

M BR

B

N CRBL

Figure 14: The K-join decomposition for the Bi-clique Chain Completion problem.

Claim 3.3. The set R ∪ C is a clique of G.

Proof. Observe that no vertex of R is a neighbor of b1, since otherwise such a vertex must be
adjacent to all the vertices of B and then must stand in N . So, if R ∪C contains two vertices u, v
such that uv /∈ E, we form the 3K1 {b1, u, v}, contradicting the fact that B is clean. �

The following observation comes from the definition of a simple K-join.

Observation 3.4. Given any vertex r ∈ R, if NB(r) ∩BL 6= ∅ holds then M ⊆ NB(r).
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We use these facts to prove that an umbrella ordering of a bi-clique chain graph can be ob-
tained for G by inserting the vertices of M into σH . Let bf , bl be the first and last vertex of B \M
appearing in σH , respectively. We let BH denote the set {u ∈ V (H) : bf <σH u <σH bl}. Now, we
modify σH by ordering the twins in H according to their neighborhood in M : if x and y are twins
in H, are consecutive in σH , verify x <σH y <σH bf and NM (y) ⊂ NM (x), then we exchange x
and y in σH . This process stops when the considered twins are ordered following the join between
{u ∈ V (H) : u <σH bf} and M . We proceed similarly on the right of BH , i.e. for x and y
consecutive twins with bl <σH x <σH y and NM (x) ⊂ NM (y). The obtained order is clearly an
umbrella ordering of a bi-clique chain graph too (in fact, we just re-labeled some vertices in σH ,
and we abusively still denote it by σH).

Claim 3.5. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently BH ∪M is a
clique of G.

Proof. Let u be any vertex of BH . We claim that um ∈ E(G). Observe that if u ∈ B then
the claim trivially holds. So, assume that u /∈ B. By definition of σH , BH is a clique in H since
bfbl ∈ E(G). It follows that u is incident to every vertex of B \H in H. Since BL contains k + 1
vertices, it follows that NG(u)∩BL 6= ∅. Hence, u belongs to N∪R and um ∈ E by Observation 2.6.
�

Claim 3.6. Let m be any vertex of M and σ′H be the ordering obtained from σH by removing BH
and inserting m to the position of BH . The ordering σ′H respects the umbrella property.

Proof. Assume that σ′H does not respect the umbrella property, i.e. that there exist (w.l.o.g.)
two vertices u, v ∈ H \BH such that either (1) u <σ′H v <σ′H m, um ∈ E(H) and uv /∈ E(H) or (2)
u <σ′H m <σ′H v, um /∈ E(H) and uv ∈ E(H) or (3) u <σ′H v <σ′H m, um ∈ E(H) and vm /∈ E(H).
First, assume that (1) holds. Since uv /∈ E and σH is an umbrella ordering, uw /∈ E(H) for
any w ∈ BH , and hence uw /∈ E(G). This means that BR ∩ NG(u) = ∅, which is impossible
since um ∈ E(G). If (2) holds, since uv ∈ E(H) and σH is an umbrella ordering of H, we have
BH ⊆ NH(u). In particular, BL ⊆ NH(u) holds, and as |BL| = k + 1, we have BL ∩ NG(u) 6= ∅
and um should be an edge of G, what contradicts the assumption um /∈ E(H). So, (3) holds,
and we choose the first u satisfying this property according to the order given by σ′H . So we have
wm /∈ E(G) for any w <σ′H u. Similarly, we choose v to be the first vertex satisfying vm /∈ E(G).
Since um ∈ E(G), we know that u belongs to N ∪ R. Moreover, since vm /∈ E(G), v ∈ R ∪ C.
There are several cases to consider:

(i) u ∈ N : in this case we know that B ⊆ NG(u), and in particular that ubl ∈ E(G). Since
σH is an umbrella ordering for H, it follows that vbl ∈ E(H) and that BL ⊆ NH(v). Since
|BL| = k+ 1 we know that NG(v)∩BL 6= ∅ and hence v ∈ R. It follows from Observation 2.6
that vm ∈ E(G).

(ii) u ∈ R, v ∈ R ∪C: in this case uv ∈ E(G), by Claim 3.3, but u and v are not true twins in H
(otherwise v would be placed before u in σH due to the modification we have applied to σH).
This means that there exists a vertex w ∈ V (H) that distinguishes u from v in H.

Assume first that w <σH u and that uw ∈ E(H) and vw /∈ E(H). We choose the first w
satisfying this according to the order given by σ′H . Since vm,wm, vw /∈ E(H), it follows that
{v, w,m} defines a 3K1 of G, which cannot be since B is clean. Hence we can assume that
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for any w′′ <σH u, uw′′ ∈ E(H) implies that vw′′ ∈ E(H). Now, suppose that bl <σH w and
uw /∈ E(H), vw ∈ E(H). In particular, this means that BL ⊆ NH(v). Since |BL| = k + 1
we have NG(v) ∩ BL 6= ∅, implying vm ∈ E(G) (Observation 2.6). Assume now that v <σH
w <σH bf . In this case, since uw /∈ E(H), B ∩ NH(u) = ∅ holds and hence B ∩ NG(u) = ∅,
which cannot be since u ∈ R. Finally, assume that w ∈ BH and choose the last vertex w
satisfying this according to the order given by σ′H (i.e. vw′ /∈ E(H) for any w <σH w′ and
w′ ∈ BH). If vw ∈ E(G) then {u,m,w, v} is a 4-cycle in G containing a vertex of B, which
cannot be (recall that BH ∪ {m} is a clique of G by Claim 2.7). Hence vw ∈ F and there
exists an extremal edge above vw. The only possibility is that this edge is some edge u′w for
some u′ with u′ ∈ V (H), u <σH u′ <σH v and u′w ∈ E(G). By the choice of v we know that
u′m ∈ E(G). Moreover, by the choice of w, observe that u′ and v are true twins in H (if a
vertex s distinguishes u′ and v in H, s cannot be before u, since otherwise s would distinguish
u and v, and not before w, by choice of w). This leads to a contradiction because v should
have been placed before u through the modification we have applied to σH . �

Claim 3.7. Every vertex m ∈M can be added to the graph H while preserving an umbrella ordering.

Proof. Letm be any vertex ofM . The graphH is a bi-clique chain graph. So, we know that in its
associated umbrella ordering σH = b1, . . . , b|H|, there exists a vertex bi such that H1 = {b1, . . . , bi}
and H2 = {bi+1, . . . , b|H|} are two cliques of H linked by a join. We study the behavior of BH
according to the partition (H1, H2).

(i) Assume first that BH ⊆ H1 (the case BH ⊆ H2 is similar). We claim that the set H1∪{m} is a
clique. Indeed, let v ∈ H1 \BH : since H1 is a clique, BH ⊆ NH(v) and hence NG(v)∩BL 6= ∅.
In particular, this means that vm ∈ E(G) by Observation 3.4. Since BH ∪ {m} is a clique
by Claim 3.5, the result follows. Now, let u be the neighbor of m with maximal index in σH ,
and bu the neighbor of u with minimal index in σH . Observe that we may assume u ∈ H2

since otherwise NH(m) ∩ H2 = ∅ and hence we insert m at the beginning of σH . First, if
bu ∈ H1, we prove that the order σm obtained by inserting m directly before bu in σH yields
an umbrella ordering of a bi-clique chain graph. Since H1 ∪ {m} is a clique, we only need to
show that NH2(v) ⊆ NH2(m) for any v ≤σm bu and NH2(m) ⊆ NH2(w) for any w ∈ H2 with
w ≥σm bu. Observe that by Claim 3.6 the set {w ∈ V : m ≤σm w ≤σm u} is a clique. Hence
the former case holds since vu′ /∈ E(G) for any v ≤σm bu and u′ ≥σm u. The latter case also
holds since NH(m) ⊆ NH(bu) by construction. Finally, if bu ∈ H2, then bu = b|H1|+1 since H2

is a clique. Hence, using similar arguments one can see that inserting m directly after b|H1| in
σH yields an umbrella ordering of a bi-clique chain graph.

(ii) Assume now that BH ∩H1 6= ∅ and BH ∩H2 6= ∅. In this case, we claim that H1 ∪ {m} or
H2∪{m} is a clique in H. Let u and u′ be the neighbors of m with minimal and maximal index
in σH , respectively. If u = b1 or u′ = b|H| then Claims 3.5 and 3.6 imply that H1 ∪ {m} or
H2∪{m} is a clique and we are done. So, none of these two conditions hold and mb1 /∈ E(H)
and mb|H| /∈ E(H) Then, by Claim 3.6, we know that b1b|H| and the set {b1, b|H|,m} defines
a 3K1 containing m in G, which cannot be. This means that we can assume w.l.o.g. that
H1 ∪ {m} is a clique, and we can conclude using similar arguments than in (i).

�
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Since the proof of Claim 3.7 does not use the fact that the vertices of H do not belong to M , it
follows that we can iteratively insert the vertices of M into σH , preserving an umbrella ordering at
each step. To conclude, observe that the reduction rule can be computed in polynomial time using
Lemma 2.21.

Observation 3.8. Let G = (V,E) be a positive instance of Bi-clique Chain Completion
reduced under Rule 3.2. Any simple K-join B of G has size at most 3k2 + 6k + 2.

Proof. Let B be any simple K-join of G, and assume |B| > 3k2 + 6k + 2. By Lemma 3.1 we know
that at most 3k2 + 2k vertices of B are contained in a 3K1 or a 4-cycle. Hence B contains a set B′

of at least 2k+ 3 vertices not contained in any 3K1 or a 4-cycle. Now, since any subset of a K-join
is a K-join, it follows that B′ is a clean simple K-join. Since G is reduced under rule 3.2, we know
that |B′| ≤ 2(k + 1) what gives a contradiction.

Finally, we can prove that Rules 3.1 and 3.2 form a kernelization algorithm.

Theorem 3.9. The Bi-clique Chain Completion problem admits a kernel with O(k2) vertices.

Proof. Let G = (V,E) be a positive instance of Bi-clique Chain Completion reduced under
Rules 3.1 and 3.2, and F be a k-completion for G. We let H = G+F and H1, H2 be the two cliques
of H. Observe in particular that H1 and H2 both define simple K-joins. Let A be the set of affected
vertices of G. Since |F | ≤ k, observe that |A| ≤ 2k. Let A1 = A ∩H1, A2 = A ∩H2, A

′
1 = H1 \A1

and A′2 = H2 \ A2 (see Figure 15). Observe that since H1 is a simple K-join in H, A′1 ⊆ H1 is a
simple K-join of G (recall that the vertices of A′1 are not affected). By Observation 3.8, it follows
that |A′1| ≤ 3k2 + 6k + 2. The same holds for A′2 and H contains at most 2(3k2 + 6k + 2) + 2k
vertices.

H1 H2

A′1 A′2

Figure 15: Illustration of the bi-clique chain graph H. The square vertices stand for affected
vertices, and the sets A′1 = H1 \A1 and A′2 = H2 \A2 are simple K-joins of G, respectively.

Corollary 3.10. The Bipartite Chain Deletion problem admits a kernel with O(k2) vertices.

4 Conclusion

In this paper we prove that the Proper Interval Completion problem admits a kernel with
O(k5) vertices. Two natural questions arise from our results: firstly, does the Interval Com-
pletion problem admit a polynomial kernel? Observe that this problem is known to be FPT
not for long [27]. The techniques we developed here intensively use the fact that there are few
claws in the graph, what help us to reconstruct parts of the umbrella ordering. Of course, these
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considerations no more hold in general interval graphs. The second question is: does the Proper
Interval Edge-Deletion problem admit a polynomial kernel? Again, this problem admits a
fixed-parameter algorithm [25], and we believe that our techniques could be applied to this prob-
lem as well. Finally, we proved that the Bi-clique Chain Completion problem admits a kernel
with O(k2) vertices, which completes a result of Guo [12]. In all cases, a natural question is thus
whether these bounds can be improved?
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