
Une classe de grammaires catégorielles

apprenable à partir d’Exemples Typés

Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi

Grappa et Université Charles de Gaulle-Lille3

59 653 Villeneuve d’Ascq Cedex

dudau@grappa.univ-lille3.fr

tellier, tommasi@univ-lille3.fr
http://www.grappa.univ-lille3.fr

Abstract

La classe des grammaires catégorielles dites AB ou classiques a donné
lieu ces dernières années à des résultats d’apprenabilité au sens de Gold
(principalement dus à Kanazawa) intéressants. Cette classe mérite d’être
étudiée parce que ses membres permettent de générer l’ensemble des lan-
gages algébriques et parce que l’interface qu’elle permet avec une in-
terprétation sémantique la rend apte à modéliser certaines particularités
des langues naturelles. Mais les résultats d’apprenabilité connus ne con-
cernent que les classe des grammaires k-valuées avec k ≥ 1. Nous définissons
dans cet article une nouvelle sous-classe de grammaires catégorielles clas-
siques à la fois intéressante du point de vue de la théorie des langages
(puisque ses représentants permettent de générer l’ensembles des langages
de structures de toutes les grammaires categorielles classiques) et du point
de vue de l’apprentissage (puisqu’elle est apprenable au sens de Gold à
condition de fournir des données adaptées).

Mots clef inférence grammaticale, grammaires catégorielles, apprentis-
sage à la limite, exemples typés

1 Introduction

Categorial Grammars are well known lexicalized formalisms, often used to model
natural languages. Their main interest is their expressivity and the fact that
they allow good connections with formal semantics in Montague’s tradition.
Furthermore, this grammatical formalism seems well adapted to a learning pro-
cess because the rules are expressed by a limited set of schemes and it remains
only to infer the syntactic categories associated with lexical items. That’s way,
nowadays the interest in studying various models and variants of such grammars
is growing [Adr92, Kan98] and [BR01, FlN02] 1.

Classical Categorial Grammars (CCG in the following) is one well known
instance of the family of Categorial Grammars. Although too rudimentary

1This research was done during the cooperative research action of INRIA, ArcGracq 2001-
2002

1

to model subtle linguistic phenomena, this family is interesting to study be-
cause some formal learnability results (in Gold’s model) have recently been
proved for large subclasses of CCGs [Kan98]. But these results do not provide
tractable learning algorithms, as most of the problems to be solved are NP-hard
[Flo01, Flo02]. The only favorable case is when rigid CCGs are to be learned
from Structural Examples because this can be performed in linear time. Be-
sombes and Marion [BM02] have shown that the class of grammars generating
the same languages as reversible tree automata, strictly larger then the class
of rigid CCGs is also efficiently learnable from Structural Examples. But the
class of rigid grammars has poor expressive power with respect to natural lan-
guage. Moreover, learning algorithms must have access to Structural Examples
which corresponds to derivation trees of sentences and it seems to us that this
requirement is not natural.

We define a new subclass of CCGs with good properties from a language-
theoretic point of view. Our main result is that for every CCG, another CCG
producing the same structure language as (i.e. strongly equivalent with) the
first one and belonging to this new subclass can be built. This new subclass is
then proved learnable from Typed Examples. Typed Examples are sentences
enriched with lexicalized information which can be interpreted as coming from
semantics, and can be thus considered more “naturally available” than Struc-
tural Examples.

We argue the availability of the Typed Examples firstly from a theoretical
point of view, exploiting the compositionality and secondly by the efforts we
do to constitute a natural language resource (corpus) from texts enriched with
semantic information. As a matter of fact, we have already noticed that one of
the main interests of Categorial Grammars is their connection with semantics.
This connection relies on a formal statement of the well known Principle of Com-
positionality [Jan97]. Its contemporary version states that : “the meaning of a
compound expression is a function of the meaning of its parts and of the syntactic
rules by which they are combined” [Par90]. If the “parts” mentioned in this defi-
nition are assimilated with words and the “compound expressions” with phrases,
this formulation implies that words have individual meanings and the semantics
of a phrase (and thus of a sentence) only depends of the meaning of its words and
of its syntactic structure. We believe that this Principle is still under-exploited
in formal models of grammatical inference. Links between Structural Examples
and semantic information have been shown in [Tel99]. This first approach was
still not satisfactory as it did not avoid combinatorial explosion. This paper
presents a new way of considering learning Categorial Grammars from semantic
knowledge. But, here, we will not need to suppose that word meanings are fully
known before the grammar learning process can start. Instead, we make the
smoother hypothesis that the crucial information to be extracted from the envi-
ronment is the semantic type of words. Semantic types, in the usual sense, are
general information making a distinction between facts, entities and properties
satisfied by entities. Most knowledge representation formalisms use this notion,
so types can be supposed to be directly extracted from the environment. Types
can also be considered as lexicalized structural information.

For practical reasons, to achieve experiments, we need corpora of typed texts.
But such corpora are not available and they have to be built. For this construc-
tion, tree banks (necessary to obtain Structural Examples) are of no interest.
On the contrary, because semantic types are lexicalized, simpler resources like

2

lexical taggers are of great help. A tagger is able to recognize proper nouns,
common nouns and other lexical items whose lexical tag is easily transformable
in a lexical type. For verbs, a tagger does not necessarily make the distinction
between transitive and intransitive ones, and a post-treatment needs to be done.
We are working to produce a clean version of a typed corpus in French of almost
100000 words that will be used for experiments.

This paper is organized in five sections. The second section introduces the
preliminary notions : CCGs, semantic types and the definition of the new in-
troduced sub-class of CCGs . The third section presents the main result of
strong equivalence and the fourth section is about the learnability from typed
examples. We conclude with some comparative remarks.

2 A New Subclass of Classical Categorial Gram-

mars

2.1 Classical Categorial Grammars

Let B be a countably infinite set of basic categories containing a distinguished
category S ∈ B, called the axiom. We note CatB the term algebra built over
the two binary symbols /, \ and the set B: CatB is the smallest set such that
B ⊂ CatB and for any A ∈ CatB and B ∈ CatB we have: /(A, B) ∈ CatB and
\(A, B) ∈ CatB.

Let Σ be a fixed alphabet called vocabulary. A categorial grammar over
Σ is any finite relation between Σ and CatB, i.e. G ⊂ Σ×CatB and G is finite.
For a symbol a ∈ Σ and a category A ∈ CatB if 〈a, A〉 ∈ G, we say that the
category A is assigned to a.

In the general framework of categorial grammars, the language L(G) of a
grammar G is the set of finite concatenations of elements of the vocabulary
for which there exists an assignment of categories that can be reduced to the
axiom S. For Classical Categorial Grammars (or CCGs), the admitted
reduction rules for any categories A and B in CatB are2:

• forward application FA : /(A, B).A → B;

• backward application BA : A.\(A, B) → B

We denote by G the set of every CCG and for any integer k ≥ 1, Gk is the set
of k-valued CCGs, i.e. the set of CCGs assigning at most k different categories
to each member of its vocabulary.

As usual in term algebras, a context is a category with exactly one occurrence
of a distinguished constant (not in B). We denote C[] a context and C[A] is
the category obtained by replacing the distinguished constant by the category
A. Forward and backward rules justify that for any category X = C[/(A, B)]
(or X = C[\(A, B)]) we say that A occurs in X at an argument position and B
occurs in X at a result position.

Any mapping Φ defined from B to CatB can be extended to contexts and
elements of CatB in the following way: for every A ∈ CatB and B ∈ CatB,

2These rules justify the fractional notations of the category-building operators / and \
usually used in the literature. Categories, often written B/A (resp. A\B), can be considered
as functors expecting as argument the category A and providing as result the category B.

3

Φ(\(A, B)) = \(Φ(A), Φ(B)) and Φ(/(A, B)) = /(Φ(A), Φ(B)). For any CCG
G, we can also define Φ(G) = {〈a, Φ(A)〉 | 〈a, A〉 ∈ G}.

We denote by B(G) the (finite) set of basic categories that occur in G and
CatB(G) ⊂ CatB is the set of categories that occur in G.

2.2 Canonical Types

For any countable set of basic categories B, we define the set of Canonical Types
Types(B) as the smallest set such that B ⊂ Types(B) and for any U ∈ Types(B)
and V ∈ Types(B) we have (U, V) ∈ Types(B). The type (U, V) is to be read
as a functor taking as argument the type U and providing as result the type
V . Canonical Types can thus be seen as non oriented categories, i.e. categories
where both operators / and \ are erased. We call the Canonical Typing Function
h the unique function from CatB to Types(B) recursively defined by: (1) h|B =
IdB where IdB denotes the identity function on the set B; (2) for any A ∈
CatB and B ∈ CatB we have: h(/(A, B)) = h(\(A, B)) = (h(A), h(B)). The
Canonical Typing Function simply transforms categories into the corresponding
Canonical Types by deleting the operators. h can also be naturally extended to
contexts of categories.

2.3 The Class GType

Definition 1 For any vocabulary Σ and any set of basic categories B, we note
GType the set of CCGs G on Σ satisfying the property:

∀〈a, A〉 ∈ G, 〈a, A′〉 ∈ G h(A) = h(A′) ⇒ A = A′. (1)

In other words, in the CCGs of GType , the types corresponding with the cate-
gories of a single member of the vocabulary are all distinct. Different categories
assigned to the same symbol of the vocabulary can be distinguished looking at
their type. We can compare the class GType with the classes Gk of k-valued
CCGs. Interestingly, the two notions do not coincide.

Example 1 Let Σ = {a, b} and let us consider a CCG grammar G0 recognizing
the language a∗ba∗. G0 is defined by the assignments {〈b, S〉, 〈a, /(S, S)〉, 〈a, \(S, S)〉}.
It is worth noting that G0 belongs to the class G2 of 2-valued CCGs and therefore
belongs to any Gk, k ≥ 2 but is not in GType .

Let (Xi)i≥0 be a sequence of categories defined by X0 = A, X1 = /(A, S)
and Xi = /(A, Xi−1) for i > 1. Let us consider the grammar Gk defined
by: Gk = {〈a, Xi〉|0 ≤ i ≤ k}. For k ≥ 1, the language recognized by Gk is
L(Gk) = {ai | 2 ≤ i ≤ k + 1}. For every k ≥ 1, Gk is in GType and Gk is
(k + 1)-valued but not k-valued.

Proposition 1 G1 ⊂ GType and ∀k > 1, GType ∩ Gk 6= ∅, Gk 6⊆ GType and
GType 6⊆ Gk.

Proof 1 The fact that G1 ⊂ GType is obvious and other properties are easily
proved using the grammars given in Example 1.

Therefore, the situation is the one displayed in Figure 1.
The set of languages generated (or recognized) by CCGs is the set of ε-

free context-free languages, where ε is the empty word (Gaifman’s theorem in

4

G1

G2

×G1 ×G2 · · · ×Gk · · ·

Gk
G

GType

×G0

Figure 1: Comparisons between classes of k-valued categorial grammars and the
GType class.

[BHGS60]). Now that we have defined a subclass of G, it is natural to wonder if
its members allow to generate the same set of languages or only a subset of it.

Proposition 2 For every fixed sets Σ and B and every ε-free context-free lan-
guage L ⊂ Σ∗ there exists a CCG G ∈ GType so that L(G) = L.

Proof 2 It has long been recognized that Gaifman’s proof is equivalent with the
existence of the strong Greibach normal form for ε-free context-free languages.
That is, for every ε-free context-free language L ⊂ Σ∗ there exists a phrase
structure grammar G′ = 〈Σ, NT, P, S〉 (where Σ is the set of terminal symbols,
NT the set of nonterminal symbols, P the set of production rules and S ∈ NT
the axiom) in strong Greibach normal form satisfying L(G′) = L. This normal
form specifies that every production rule in P is of the form X −→ a or X −→
aX1 or X −→ aX1X2 with X, X1 and X2 elements of NT and a element of
Σ. To build a CCG G that is strongly equivalent with G′, proceed as follows:
(1) define a bijection f between NT and a part of B satisfying f(S) = S; (2)
for every rule of the form X −→ a in P , let 〈a, f(X)〉 ∈ G; (3) for every rule
of the form X −→ aX1 in P , let 〈a, /(f(X1), f(X))〉 ∈ G; (4) for every rule of
the form X −→ aX1X2 in P , let 〈a, /(f(X1), /(f(X2), f(X)))〉 ∈ G. We have
L(G) = L(G′) = L. Because f is a bijection and, by construction, types are
pairwise distinct in G, it is trivial to check that G ∈ GType .

Though constructive, this proof is not satisfying, as the CCG obtained produces
syntactic analysis trees of a very peculiar form, where only the rule FA is used.
The next section will take into account the structures of the analysis trees
produced by CCGs and provide a much more interesting (because structure-
preserving) result of the same kind.

3 Structure Languages of GType

A functor-argument structure over an alphabet Σ is a binary-branching tree
whose leaf nodes are labeled by elements of Σ and whose internal nodes are
labeled either by BA or FA. The set of functor-argument structures over Σ is
denoted ΣF . Let G be a CCG. A Structural Example for G is an element of ΣF

5

obtained from the parse tree of a sentence w in L(G) by deleting categories. The
Structure Language of G, denoted by FL(G), is the set of Structural Examples
of G.

The notion of Structural Example is of crucial importance as it is the basis
of every learning result about CCGs [BP90, Kan98]. Furthermore, it allows
the connection between syntax and semantics [Tel99]. In the domain of CCGs,
two grammars can be said strongly equivalent if they share the same Structure
Language.

Example 2 Let us consider the grammar G0 of Example 1. The sentence aba
has two parses in this grammar and therefore there are two Structural Examples
for G and aba: FA(a,BA(b, a)) and BA(FA(a, b), a).

3.1 The Main Result

Theorem 1 For any vocabulary Σ and any set of basic categories B, for every
CCG G ∈ G, there exists a CCG G′ ∈ GType so that FL(G) = FL(G′).

The theorem states that the class GType has the same expressive power in a
strong sense as the entire class G of Classical Categorial Grammar. That is to
say that the restriction imposed by Eq. (1) has no incidence on the expressive
power of the grammars in GType .

The proof of this theorem is constructive, having as support the two algo-
rithms respectively named: algorithm 1 G to Gtype and algorithm 2 Transform.
We construct a finite chain of grammars G0, G1, . . .Gm ∈ G such that G0 = G,
Gm = G′ and ∀k < m, FL(Gk) = FL(Gk+1) every time performing some trans-
formations over some pairs of categories that contradict Eq. (1). To transform
assignments that do not fulfill Eq. (1), we need new basic categories and we
must also introduce new assignments. Therefore, the counterpart of this result
is that the grammar G′ can be much larger w.r.t. to the number of assignments
than the grammar G. In fact the explosion can be enormous w.r.t. the number
of assignments (we are not yet able to give a satisfying evaluation), but linear
w.r.t. the number of new basic categories introduced 3. This transformation is
important from a theoretic point of view, to prove the expressivity of a class of
grammars, but it is not to be applied when practical algorithms working with
real data are executed.

We illustrate the construction by a small example.

Let G0 =

〈a, /(B, S)〉, 〈a, \(B, S)〉, (1)
〈b, /(A, B)〉, 〈b, \(A, B)〉, (2)
〈e, /(/(B, S), S)〉,
〈d, /(B, S)〉, 〈c, A〉

For this grammar G0 we have 2 pairs of assignments (denoted by (1) and (2))
that contradict Eq. (1). We begin by applying a transformation on the first pair:
we introduce two basic categories Bf , Bb ∈ B in order to replace occurrences
of B in the argument position of the two categories. The two basic categories
Bf , Bb are new categories for G0, that is to say that they do not occur in any
assignment of G0. In order to memorize which categories have been introduced

3In fact, the number of new basic categories introduced is equal to the number of assign-
ments in the initial grammar that, pairwise contradict the Eq. (1)

6

and their corresponding category in the initial grammar we define a mapping Φ
that maps Bf and Bb to B.

But this replacement has two consequences. First, if a sequence w ∈ Σ∗ is
reduced by G0 into B then wa aw are in L(G0). Therefore, to preserve the set
of correct sentences, for every category in the grammar where B occurs at a
result position, we add new assignments where these occurrences are replaced
respectively by Bf and Bb. Second, if a sequence w ∈ Σ∗ is reduced by G0

into /(B, S), then ew is also in L(G0). Again, to preserve the set of correct
sentences, for every assignment 〈l, C〉 in G0 where /(B, S) occurs in C, we need
to add a new assignment 〈l, C〉′ where /(B, S) has been replaced by /(Bf , S)
(the same stands for \(B, S)). This leads to the grammar:

G1 =

〈a, /(Bf , S)〉, 〈a, \(Bb, S)〉,
〈b, /(A, B)〉, 〈b, \(A, B)〉, (2a)
〈b, /(A, Bf)〉, 〈b, \(A, Bf)〉, (2b)
〈b, /(A, Bb)〉, 〈b, \(A, Bb)〉, (2c)
〈e, /(/(B, S), S)〉, 〈e, /(/(Bf , S), S)〉
〈d, /(B, S)〉, 〈d, /(Bf , S)〉, 〈c, A〉

Now, the replacement process repeats with the grammar G1. In G1 there
are no more assignments for the symbol a that contradicts Eq. (1), but the
transformation has introduced four assignments for the symbol b that also con-
tradicts Eq. (1). Fortunately, couples of assignments (2a), (2b) and (2c) can
be processed simultaneously, i.e. only two new basic categories Af and Ab are
necessary. This is true because the three pairs in G1 have been obtained from
the unique couple (2) of G0 and this can be checked using Φ. This trick is
essential in our proof to obtain the termination of the replacement process.

G2 =

〈a, /(Bf , S)〉, 〈a, \(Bb, S)〉,
〈b, /(Af , B)〉, 〈b, \(Ab, B)〉,
〈b, /(Af , Bf)〉, 〈b, \(Ab, Bf)〉,
〈b, /(Af , Bb)〉, 〈b, \(Ab, Bb)〉,
〈e, /(/(B, S), S)〉, 〈e, /(/(Bf , S), S)〉
〈d, /(B, S)〉, 〈d, /(Bf , S)〉, 〈c, A〉, 〈c, Af 〉, 〈c, Ab〉

and we obtain that G2 is in GType .
We now enlighten the properties satisfied by couples of assignments that

must be processed simultaneously. In the algorithm we will apply a transfor-
mation step for sets that are type-indistinguishable w.r.t Φ, G and maximal in
size.

Definition 2 Let G and G′ be two CCGs and let Φ be a mapping from B(G′)
into CatB(G) such that Φ(G′) = G. Let Γ be a set of couples of assignments
{(α1, β1), . . . , (αn, βn)} such that αi, βi ∈ G′ for every 1 ≤ i ≤ n. We say that
Γ is type-indistinguishable w.r.t Φ, G if
there exists:

a ∈ Σ, two contexts C, C ′ and A, B, A′, B′ ∈ CatB(G), and
∀i ∈ {1, . . . , n}, Ai, Bi, A

′
i, B

′
i ∈ CatB(G′), and 2 × n contexts Ci, C

′
i

such that
h(C) = h(C ′), h(A) = h(A′), h(B) = h(B′), and
〈a, C[/(A, B)]〉 ∈ G and 〈a, C[\(A′, B′)]〉 ∈ G

7

∀i ∈ {1, . . . , n}, αi = 〈a, Ci[/(Ai, Bi)]〉,
βi = 〈a, C ′

i [\(A
′
i, B

′
i)]〉

h(Ci) = h(C ′
i),

h(Ai) = h(A′
i),

h(Bi) = h(B′
i)

and
Φ(Ci) = C, Φ(C ′

i) = C ′,
Φ(Ai) = A, Φ(A′

i) = A′,
Φ(Bi) = B, Φ(B′

i) = B′.

A sketch of proof for the theorem 1 can be now given. We need to prove three
things: given as input an initial grammar Gi ∈ G the algorithm terminates, it
ultimately outputs a final grammar Gf ∈ GType and FL(Gi) = FL(Gf).

The algorithm iteratively builds a sequence of grammars G0, . . . , Gm, where
G0 = Gi and Gm = Gf . Let nk be the number of disjoint sets Γ maximal in size
in Gk that are type-indistinguishable w.r.t Φ, Gi. n0 can be easily calculated
w.r.t. the initial grammar. Termination proof relies on the fact that nk decreases
at each step of the iteration. The Transform algorithm only introduces new
assignments such that, if they contradict Eq. (1), then they increase the size of
some type-indistinguishable sets w.r.t Φ, Gi. That is to say that no such new
sets are introduced by the transformation algorithm. Moreover, when Transform
applies, it suppresses such a type-indistinguishable set from the input grammar.

To prove that Gf is in GType , we use the fact that if nk = 0 for some grammar
Gk in the sequence above, then Gk is in GType .

For the last point, we first prove that FL(Gi) ⊇ FL(Gf) using the fact that
Φ(Gf) = Gi. Indeed, the equality is invariant with the Transform algorithm
and trivially true at the beginning. Then, using properties of substitutions in
CCGs, to which our mappings can be assimilated (see [BP90]), we obtain the
inclusion. The proof for the reverse inclusion is more technical and relies on case
analysis. We develop the proof ideas in one case in this sketch of proof, other
cases being similar. Since some assignments have been removed we must check
that the same derivations are still possible using new assignments. Consider
that G′ is obtained from G by the Transform algorithm. Following notations
in the Transform algorithm, 〈a, Ci[/(Ai, Bi)]〉 has been removed and replaced
by 〈a, Ci[/(Af , Bi)]〉. Consider a parse tree τ in G where Ai is not useless.
Then there is two sibling nodes defining subtrees τ1 and τ2 labelled by Ai and
/(Ai, Bi) in τ . Because we have added assignments that put the basic category
Af in every category where Ai occurs in a result position, we can do the same
derivation tree as τ1 and label it by Af . Every time /(Ai, Bi) occurs in a
category, a new assignment with /(Af , Bi) is introduced, therefore we can do
the same derivation tree as τ1 and label it by /(Af , Bi). Using these properties,
we are able to prove that a word w is reduced in a category C in G′ if and only
if it is reduced in category Φ(C) in the initial grammar Gi and both derivation
trees are identical up to Φ. Hence structural languages FL(Gi) and FL(Gf) are
identical.

4 Learnability of GType from Typed Examples

We have already mention in the introduction the motivation of learning from
Typed Examples. The previous section proved that the class GType has good
properties relatively to the entire class G as it allows to produce every possible
Structure Language generated by a CCG. But the initial motivation for intro-
ducing this class was that of learnability. We now justify the interest of GType

8

Algorithm 1 G to GType.

Input : a CCG Gi

1: Φ = IdCatB is the identity on CatB.
2: G′ = Gi

3: while There exists Γ in G′, a maximal type-indistinguishable set w.r.t Φ, Gi

do
4: (G′,Φ) = Transform(G′,Gi,Φ,Γ)
5: end while

Output : G′

Algorithm 2 Transform.

Input : Two grammars G and Gi, a mapping Φ and Γ a type-indistinguishable
set w.r.t Φ, Gi.
{With Γ we assume as indicated in Def. 2 a ∈ Σ, two contexts C, C ′ and
A, B, A′, B′ ∈ CatB(Gi), and ∀i ∈ {1, . . . , n}, Ai, Bi, A

′
i, B

′
i ∈ CatB(G), and

2 × n contexts Ci, C
′
i.}

1: G′ = G −
⋃

i{〈a, Ci[/(Ai, Bi)]〉, 〈a, C ′
i [\(A

′
i, B

′
i)]〉};

2: Let Af and Ab be two basic categories not in B(G);
3: G′ = G′ ∪

⋃

i{〈a, Ci[/(Af , Bi)]〉, 〈a, C ′
i [\(Ab, B

′
i)]〉};

4: Remaining = G′; {Remaining is the set of assignments that remains to be pro-
cessed}

5: while Remaining 6= ∅ do

6: {Result position}
7: Pick and remove 〈b, D[W]〉 from Remaining;
8: if W = f(W ′, Ai) for some i ∈ {1, . . . , n} and f ∈ {\, /} then

9: Add 〈b, D[f(W ′, Af)]〉 to G′ and to Remaining;
10: end if

11: if W = f(W ′, A′

i) for some i ∈ {1, . . . , n} and f ∈ {\, /} then

12: Add 〈b, D[f(W ′, Ab)]〉 to G′ and to Remaining;
13: end if

14: if D[W] = Ai then

15: Add 〈b, Af 〉 to G′ and to Remaining;
16: end if

17: if D[W] = A′

i then

18: Add 〈b, Ab〉 to G′ and to Remaining;
19: end if

20: {Any position }
21: if W = /(Ai, Bi) then

22: Add 〈b, D[/(Af , Bi)]〉 to G′ and to Remaining;
23: end if

24: if W = \(A′

i, B
′

i) then

25: Add 〈b, D[\(Ab, B
′

i)]〉 to G′ and to Remaining;
26: end if

27: end while

28: Φ′(Af) = A, Φ′(Ab) = A′ and Φ′(X) = Φ(X) for any X 6∈ {Af , Ab}.
Output : G′ and Φ′.

9

in terms of formal learning theory, especially from the learning from Typed Ex-
amples point of view and argue for its plausibility to model natural language
learning. We also provide a discovery procedure adapted to the class GType

having Typed Examples as input and providing CCGs as output.

4.1 Grammar Systems and Learnability

For any CCG G, a Canonical Typed Example for G is a sequence of couples
〈word, type〉 where the first items of the couples build a sentence of G and the
second items are the types corresponding with the categories assigned to each
word and allowing the syntactic analysis in G. We define the Canonical Typed
Language of G:

TL(G) = {〈u1, τ1〉...〈un, τn〉|∀i ∈ {1, ..., n}∃ci so that 〈ui, ci〉 ∈ G, τi = h(ci)
and c1...cn →∗ S}.

To deal with questions of learnability, Kanazawa [Kan96, Kan98] introduces
the notion of grammar system. This allows a reformulation of the classical
Gold’s model of identification in the limit from positive examples [Gol67]. We
recall this notion here and its connexion with the domain of learnability theory.

A grammar system is a triple 〈Ω, Λ, L〉 where Ω is the hypothesis space (in
our context, Ω will be a set of formal grammars), the sample space Λ is a
recursive subset of A∗, for some fixed alphabet A (elements of Λ are sentences
and subsets of Λ are languages) and L is a naming function that maps elements
of Ω into languages i.e. L : Ω → pow(Λ). The universal membership problem,
i.e. the question of whether s ∈ L(G) holds between s ∈ Λ and G ∈ Ω, is
supposed computable.

Let 〈Ω, Λ, L〉 be a grammar system and φ :
⋃

k≥1
Λk → Ω be a computable

function. We say that φ converges to G ∈ Ω on a sequence 〈si〉i∈N of elements
of Λ if Gi = φ(〈s0, ..., si〉) is defined and equal to G for all but finitely many
i ∈ N - or equivalently if there exists n0 ∈ N such that for all i ≥ n0, Gi is
defined and equal to G.

Such a function φ is said to learn G ⊆ Ω if for every language L in L(G) =
{L(G)|G ∈ G} and for every infinite sequence 〈si〉i∈N that enumerates the ele-
ments of L (i.e. so that {si|i ∈ N} = L), there exists some G in G such that
L(G) = L and φ converges to G on 〈si〉i∈N.

Kanazawa has proved that ∀k ≥ 1,Gk is learnable both in the grammar
system 〈G, ΣF , FL〉 (i.e from Structural Examples) and in the grammar system
〈G, Σ∗, L〉 (i.e. from string examples).

In the formal learning model of Gold, learnability results for CCGs become
trivial when typed examples are given in input. Indeed, there are a bounded
number of compatible grammars with any finite presentation as soon as all ele-
ments of the lexicon have been presented. Membership is decidable and therefore
any simple enumerative algorithm of compatible grammars can be easily trans-
formed into a learner. But this is not satisfactory and more interesting remarks
can be done for GType grammars. Indeed, we notice that to learn GType in the
grammar system 〈G, (Σ×Types(B))∗, TL〉, it is enough to be able to learn G1 in
the grammar system 〈G, (Σ×Types(B))∗, L〉. As a matter of fact, grammars G
in GType are such that for all pairs 〈u, τ〉 ∈ Σ×Types(B) belonging to a member
of TL(G), there exists only one c so that 〈u, c〉 ∈ G and h(c) = τ and are thus
one to one distinct. On the vocabulary Σ×Types(B), these grammars are thus
rigid.

10

This suggests a learning algorithm which would be an adaptation of the one
that learns G1 from strings. Unfortunately, this strategy would not be efficient,
since learning G1 from strings is NP-hard [Flo02]. Another possible solution
is to notice the finite relation that connects Typed Examples and Structural
Examples (from a given Typed Example, there is a finite number of compatible
Structural Examples). But the combinatorial explosion between them is still
exponential. Furthermore, none of these strategies takes advantage of the func-
tional nature of types and of their closeness with categories. In the following,
we propose a learning algorithm adapted to Typed Examples inputs.

4.2 A learning algorithm from types

This algorithm is described in full details in [?]. We simply introduce here its
key idea. Types can combine following rewriting rules similar with the ones
defined for the categories of a CCG. For every type Y and X in Types(B) we
have:

- Type Forward TF: (Y, X) Y → X ;

- Type Backward TB: Y (Y, X) → X .

Lemma 1 For any CCG G, we have the following property for any categories
X and Y in CatB(G) :

• if FA applies between /(Y, X) and Y to give X then TF applies between
h(/(Y, X)) = (h(Y), h(X)) and h(Y) to give h(X);

• if BA applies between Y and \(Y, X) to give X then TB applies between
h(Y) and h(\(Y, X)) = (h(Y), h(X)) to give h(X).

The main syntactic difference between categories of a Categorial Grammar
and their types in Types(B) related by h is that the direction of a functor-
argument application in categories is indicated by the operator used (/ or \),
whereas this direction is lost in types. The functor-argument application of
types is commutative, whereas it is not for categories. When input data are
Typed Examples, what remains to be learned is thus the direction of every
implicit operators (/ or \) in types.

We assume that every sentence given as input is syntactically correct and
thus (with lemma 1) that the associated sequence of types can be reduced using
TF and TB to the axiom S (Fig. 2).

As the whole learning process is the search for introducing operators in
type expressions to get categories, we introduce distinct variables into types
expressions to receive the operator values. Let X be a countable set of variables
denoted by x1, . . . , xn, . . . Possible final values for these variables are \ or /.
Let a substitution σ be a mapping from X to {/, \}.

We define VarType(B), the set of Variable Canonical Types as the smallest
set such that B ⊂ VarType(B) and for any U ∈ VarType(B), V ∈ VarType(B)
and xi ∈ X ∪{/, \} we have xi(U, V) ∈ VarType(B). Any substitution σ can be
naturally extended to elements of VarType(B) in the following way: for every
X in CatB ∪ {/, \}, σ(X) = X and for any U ∈ VarType(B), V ∈ VarType(B),
σ(xi(U, V)) = σ(xi)(σ(U), σ(V)). Two elements U and U ′ in VarType(B) are
unifiable if there exists a substitution σ such that σ(U) = σ(U ′). Each reduction

11

a b c
(X, ((T, S), S)) X (T, S)

S

((T, S), S)

(X, ((T, S), S))
a

X
b

(T, S)
c

TF

TF

Figure 2: Example of reduction for types using TF and TB.

via TF or TB allows to identify the value of a variable (the one of the type at a
functor position) and implies some identities, up to some substitution, between
others. Hence, type reductions allow to identify substitutions and a parse leads
to a set of substitutions. In Figure 3 the unifiable subterms are underlined for
each reduction and there exists a substitution σ such that σ(x1) = / for the
first reduction and σ(x4) = σ(x2), σ(x3) = \ for the second reduction.

S

x3(x2(T, S), S)

x1(X, x3(x2(T, S), S)) X x4(T, S)

TF
σ(x3) = /

TF
σ(x1) = /

Figure 3: A parse tree underling identity up to a substitution between sub-types
and identification of variable values

Note that there could be more than one parse for a given input. The outcome
of the parser is thus a set of parses. Similarly, the output of learning process for
a single input is a set of sets of substitutions, each of which defines a grammar.

From the algorithm described, we can derive an incremental process. In-
deed, the parse algorithm outputs a set of substitutions that can be applied
to the next sentence given in input. The fact that that the target grammar(s)
is(are) in GType allows to associate the same variables to a given type associ-
ated with a given word and thus renders the process incremental. For an input
sample S of Typed Example, our algorithm parses types and computes a set of
grammars G1, . . . , Gn in GType consistent with S. However, it is not shown that
every output grammar Gi is minimal with respect with string language inclusion
among the set of grammars in GType consistent with S. Indeed, we have not
proved that there is no G ∈ GType such that L(G) (L(Gi) and TL(G) equals
TL(Gi) when restricted to S. Even though this algorithm could be followed
by an inclusion test to select minimal grammars among G1, . . . , Gn, this is not
satisfactory from a complexity point of view. Worth, we do not know whether

12

inclusion is decidable for typed languages. Hence, there is no guarantee that no
over-generalization occurs.

The way proposed by Kanazawa to learn k-valued (and rigid) categorial
grammars from strings implies to build all possible structural examples for in-
put sentences and then to use his learning algorithm from structural examples.
There is therefore a combinatorial explosion because the number of all structural
examples compatible with a sentence of m words is exponential in m.

For our algorithm, the situation is slightly different. A parse in a context
free grammar in Chomsky Normal Form can be computed in polynomial time
in the size of the input. This complexity result is stated for a given context free
grammar. The type combination rules TF and TB instantiated by types in the
input sequence are in Chomsky Normal Form, so, at first view our algorithm
acts like a simple parse algorithm. But, in our setting, we do not have a context
free grammar but a ”set of possible ones” defined by schemes of rules TF and
TB. This changes a lot the complexity issues as illustrated by the following
example:

Let us consider the typed example associated with a string anban where a
has type e and b has a type with 2n arguments of type e:

〈a, e〉n〈b, (e, (e, ...(e, t)))〉〈a, e〉n.
One can parse such a string in a context free grammar in polynomial time

with respect to the size of the input sequence. But there exist
(

2n
n

)

different
context free grammars compatible with this input. As a matter of fact the
type associated with b expects 2n arguments among which n are on its right
and n are on its left. Since our algorithm builds all possible grammars, it will
run in exponential time with respect to n. Nonetheless, note that this n does
not depend on the number of words of the input. It is related to the lexicon
and to the size of types associated with words. If for instance b occurs m
times in a sentence, the algorithm will run in O(m3 ∗ 2n) and not in O(2km).
Moreover, for practical situations several heuristics and remarks could be done
in this framework. For instance, choosing only one grammar among the set of
consistent ones could circumvent the problem detailed in the example above.
Also, for natural language grammars, the size of types and categories is not
so large and therefore the combinatorial explosion due to the size of types is
not dramatic. Finally, the way of presenting examples to the learner could
have important consequences from the complexity point of view. An idea is to
consider helpful presentations — e.g. presentations that avoid a large number
of new words in a unique sentence.

5 Conclusion

Learning a Categorial Grammar means associating categories with words. Cat-
egories are built from basic categories and operators. Learning categories from
strings of words seems impossible in reasonable time. So, richer input data
need to be provided. The approach developed so far by Buskowsky & Penn and
Kanazawa consisted in providing Structural Examples, i.e. giving the nature of
the operators / and \ and letting the basic categories to be learnt. Structural
Examples give information about the global syntactic analysis of a sentence. But
one of the most interesting property of Categorial Grammars is their lexicalized
nature. This property is lost in the notion of Structural Example.

13

In contrast, our approach consists in providing types, i.e. indications about
the categories assigned to each word, but where the operators / and \ are
deleted. Types are lexicalized structural information and thus seem more rel-
evant to learn lexicalized grammars than structural information given at the
sentence level. Moreover, we have seen that types can also be considered as
lexical semantic information and are thus arguably learned by children before
the grammar of their mother tongue.

The main contribution of this paper is the definition of a precise subclass
of G which is both learnable under conditions and has good properties from a
language-theoretic point of view, as the members of this class allow to generate
every possible language and every possible Structure Language that a CCG can
generate. In this sense, GType is representative of G and grammars in this class
can be considered as CCGs of a special normal form.

Of course, the learnability of grammars in this class is guaranteed only if
unambiguous types are provided, which is a strong condition. But this result
can be compared to other results of the same kind in grammatical inference. For
example, Sakakibara proved that every context-free language could be generated
by a reversible context-free grammar and that the set of reversible context-free
grammars is learnable from skeletons, i.e. from syntactic analysis trees where
non-terminal symbols are deleted. This result is interesting but limited because
transforming a plain context-free grammar into a reversible context-free gram-
mar recognizing the same string language does not preserve the corresponding
set of skeletons. On the contrary, our transformation is structure-preserving,
which is a crucial condition if one considers that structures are the basis for
semantics.

Acknowledgements

This research was partially supported by: “CPER 2000-2006, Contrat de Plan
état - région Nord/Pas-de-Calais: axe TACT, projet TIC”; fonds européens
FEDER “TIC - Fouille Intelligente de données - Traitement Intelligent des Con-
naissance” OBJ 2-phasing out - 2001/3 - 4.1 - n 3; ARC INRIA Gracq et Maison
des Sciences de l’Homme -Institut International Erasme.

References

[Adr92] P. W. Adriaans. Language Learning from a Categorial Perspective.
PhD thesis, University of Amsterdam, Amsterdam, The Netherlands,
1992.

[BHGS60] Y. Bar Hillel, C. Gaifman, and E. Shamir. On categorial and phrase
structure grammars. Bulletin of the Research Council of Israel, 9F,
1960.

[BM02] J. Besombes and J.Y. Marion. Apprentissage des langages réguliers
d’arbres et applications. In CAP’2002, pages 55–70, 2002.

[BP90] W. Buszkowski and G. Penn. Categorial grammars determined from
linguistic data by unification. Studia Logica, 49:431–454, 1990.

14

[BR01] R. Bonato and C. Rétoré. Learning rigid Lambek grammars and
minimalist grammars from structured sentences. In Proceedings of
LLL01, pages 23–34, 2001.

[FlN02] A. Foret and Y. le Nir. On limit points for some variants of rigid
lambek grammars. In M. Van Zaanen P. Adriaans, H. Fernau, editor,
Grammatical Inference: Algorithms and Applications, volume 2484
of Lecture Notes in Artificial Intelligence, pages 106–119. Springer
Verlag, 2002.

[Flo01] C. Costa Florêncio. Consistent identification in the limit of any of
the classes k-valued is NP-hard. In Logical Aspects of Computational
Linguistics, volume 2099 of Lecture Notes in Artificial Intelligence,
pages 125–134. Springer Verlag, 2001.

[Flo02] C. Costa Florêncio. Consistent identification in the limit of rigid
grammars from strings is np-hard. In M. Van Zaanen P. Adriaans,
H. Fernau, editor, Grammatical Inference: Algorithms and Applica-
tions, volume 2484 of Lecture Notes in Artificial Intelligence, pages
49–62. Springer Verlag, 2002.

[Gol67] E.M. Gold. Language identification in the limit. Inform. Control,
10:447–474, 1967.

[Jan97] T. M. V. Janssen. Compositionality. In J. V. Benthem and A. ter
Meulen, editors, Handbook of Logic and Language, pages 417–473.
MIT Press, 1997.

[Kan96] M. Kanazawa. Identification in the limit of categorial grammars.
Journal of Logic, Language and Information, 5(2):115–155, 1996.

[Kan98] M. Kanazawa. Learnable Classes of Categorial Grammars. The Eu-
ropean Association for Logic, Language and Information. CLSI Pub-
lications, 1998.

[Par90] B. Partee. Mathematical methods in Linguistics. Number 30 in Lin-
guistics and Philosophy. Kluwer, 1990.

[Tel99] I. Tellier. Towards a semantic-based theory of language learning. In
proceedings of the 12th Amsterdam Colloquium, pages 217–222, 1999.

15

