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Abstract. This paper is about the evaluation of the results of cluster-
ing algorithms, and the comparison of such algorithms. We propose a
new method based on the enrichment of a set of independent labeled
datasets by the results of clustering, and the use of a supervised method
to evaluate the interest of adding such new information to the datasets.
We thus adapt the cascade generalization [1] paradigm in the case where
we combine an unsupervised and a supervised learner. We also consider
the case where independent supervised learnings are performed on the
different groups of data objects created by the clustering [2].
We then conduct experiments using different supervised algorithms to
compare various clustering algorithms. And we thus show that our pro-
posed method exhibits a coherent behavior, pointing out, for example,
that the algorithms based on the use of complex probabilistic models
outperform algorithms based on the use of simpler models.

1 Introduction

In both supervised and unsupervised learning, the evaluation of the results of
a given method, as well as the comparison of various methods, is an important
issue. But if cross-validation is a widely accepted method to evaluate supervised
learning algorithms, the problem of evaluating unsupervised learning algorithms
remains an open issue. The main problem is that the evaluation of clustering re-
sults is subjective by nature. Indeed, there are often many different and relevant
ways of grouping together some given data objects.

In practice, four main techniques are used to measure the quality of clustering
algorithms. But each of these techniques has its own limitations.

1. Use artificial datasets where the desired grouping is known. But the given
algorithms are thus evaluated only on the corresponding generated distribu-
tion, and results on artificial data can not be generalized to real data.

2. Use labeled datasets and check if the clustering algorithm retrieves the initial
classes. But the classes of a supervised problem are not necessarily the classes
that have to be found by a clustering algorithm because other groupings can
also be meaningful.

3. Work with an expert who evaluates the meaning of the clustering in a partic-
ular field. However, if it is possible for an expert to tell if a given clustering



has some meaning, it is much harder to quantify its interest, or to tell if a
given result is better than another one. Besides, the relevance of the method
can not be generalized to various types of data.

4. Or use some internal criterion, like the intra-cluster inertia and/or the inter-
clusters separation. But such pre-defined criteria are also subjective by na-
ture because they use some pre-defined notion of what is a good clustering.
For example, inter-clusters separation is not always the best criterion to use :
clusters that overlap may sometimes be more relevant.

The main risk in evaluating a clustering method is to consider it as a goal in
itself. In fact, what we want to evaluate is how well a given clustering method
is able to capture new meaningful and useful information, that is some new
knowledge interesting to use for some purpose. We also expect the method to be
able to capture such interesting information on various types of problems.

So the main idea of our approach is to consider the clustering as a pre-
processing step for another task that we are able to evaluate : supervised learning
for instance. Thus the new evaluation method we propose in this paper consists in
comparing the results of a supervised algorithm when it is (or not) provided with
information coming from a clustering algorithm. If the results of the supervised
learning algorithm are improved when some extra-knowledge coming from a
clustering process is added, then we conjecture that it means that the clustering
process managed to capture some new meaningful and useful information.

This method thus allows us to objectively evaluate the interest of the infor-
mation captured by a given clustering algorithm. Moreover, the decrease of the
error rate of the supervised algorithm when it is helped with the information
coming from the clustering algorithm also allows us to quantify this interest. Our
evaluation method thus depends on the chosen task, but it allows us to evaluate
the contribution of the clustering in the achievement of this objective and real
task. Besides, such a bias is less important than when a direct mapping between
the clusters and the classes is evaluated.

So our method lies in the framework of classifier combination, in our case
the combination of an unsupervised and a supervised method. Many ways of
combining classifiers by votes can be found in [3], the two mostly used methods
being bagging [4] and boosting [5]. Some theoretical generalization of these tech-
niques have also been studied, leading to arcing classifiers [6], ensemble methods

[7] and leveraging methods [8].
We focus here on techniques that use different learners in a sequential way. In

such methods, the output of a learner is an enrichment of the example descrip-
tion, that is then used by the next learner. In that field, stacked generalization

[9] is a very general framework in which different treatments are stacked : each
treatment modifies the example description, and this new dataset is used by the
next level. Cascade generalization [1] is a special case of stacked generalization.
At each level, a classifier is applied on each example x providing probabilities
p(c|x) that x belongs to class c. These probabilities are then added to the ex-
ample description and used by the next level classifier. Cascade generalization
allows to combine several classifiers but in practice, only two learners are used.



Finally, we also consider the case where we combine an unsupervised and a
supervised learner as is done in [2]. In that case, many clusterings are run with
different input parameters, leading to different partitions of the set of data ob-
jects. For each partition, many independent supervised learnings are executed on
the different created groups of data objects and the global error rate is computed.
Finally, the partition that leads to the lower error rate is kept.

Based on this principle of sequentially combining an unsupervised and a
supervised learner, and then computing the decrease of the error rate of the
supervised learner when it is helped by the unsupervised learner, the new eval-
uation method of clustering algorithms we propose is called cascade evaluation.
We first describe this new method in section 2. Then section 3 presents some
experiments conducted with this new method. Finally, section 4 concludes the
paper and suggests topics for future research.

2 Cascade evaluation methodology

Being given an initial dataset with classes information, the general steps of our
proposed methodology are as follows :

1. learning 1 :

– perform a supervised learning on the initial dataset;

2. learning 2 :

– perform a clustering on the dataset without using the classes information;
– enrich the dataset from the clustering results;
– and perform a supervised learning on the enriched dataset;

3. compare the results of both learned classifiers.

As we already stated, we consider two different ways of enriching datasets
from the results of a given clustering. The first one consists in creating new
attributes that represent the information captured by the clustering process,
and then adding these new attributes to the initial dataset before running the
supervised learning on the enriched dataset. The second way is to consider the
new sub-datasets created by the clustering and to run many supervised learnings
independently on each sub-dataset.

Concerning the new attributes created from the clustering results in the case
of the first combination method, different types of information can be added.

1. As many clustering algorithms provide as output a partition of the initial
dataset, we can use the membership of the data objects to the clusters to
create new attributes. This information would be represented by a new cate-
gorical attribute, each data object being associated with an identifier of the
cluster it belongs to.

2. We can also associate to each data object a set of attributes that represent
the center of the cluster it belongs to. We would thus double the number of
attributes in the dataset.



3. Recently, many subspace clustering algorithms [10] emerged that are able to
associate to each dimension of each cluster a weight specifying its relevance
in determining the membership of the data objects to the cluster. So in
such cases, we could add to each data object one new continuous attribute
per initial dimension corresponding to the weight, on that dimension, of the
cluster it belongs to. Such new attribute would thus allow to differentiate
data objects for which a given dimension is relevant from those for which it
is not relevant (according to the subspace clustering results).

Besides, as most clustering algorithms need some parameters to tune, we
can run these algorithms many times with different input parameter values and
enrich the dataset for each clustering results. For example, many clustering meth-
ods need as input the number of clusters to be found. In such cases, we could run
them many times, varying this parameter from 2 to 10 for example. The super-
vised algorithm used afterwards would then be able to choose which attribute(s)
to use among them.

In the case of the second combination method proposed, we first generate
many partitions with different input parameters. We then compute the cross-
validation error of independent supervised learners executed on the different
groups of data objects created by the clustering. And finally, we select the par-
tition that led to the lowest error rate.

To evaluate the improvement in the results of the supervised learning algo-
rithm with or without the new information coming from the clustering process,
we test both methods on various independent datasets. On each dataset, we
perform five 2-fold cross-validations, as proposed in [11]. For each 2-fold cross-
validation, we compute the balanced error rates of both methods. And we then
use four measures to compare them :

– nb wins : the number of wins of each method;

– sign wins : the number of significant wins, using the 5×2cv F-test [12] to
check if the results are significantly different;

– wilcoxon: the wilcoxon signed rank test, that indicates if a method is signifi-
cantly better than another one on a set of independent problems (if its value
is higher than 1.96);

– and av perf : the mean balanced error rate.

3 Experiments

We present in this section the results of the comparisons of various clustering
algorithms :

– Rand, an algorithm that generates random partitions, being given the num-
ber of expected clusters (used as a reference);

– K-means, the well-known full-space clustering algorithm based on the evo-
lution of K centroids that represent the K clusters to be found;



– LAC [13], a subspace clustering algorithm based on K-means that associates
with each centroid a vector of weights on each dimension, inversely propor-
tional to the dispersion of the members of the clusters on the dimension;

– SSC [14], that is based on the use of a probabilistic model and the EM algo-
rithm [15] under the assumption that the data follow independent gaussian
distributions on each dimension;

– and SuSE [16], an adaptation of SSC that performs hard feature selection

during the learning process, by selecting for each cluster a subset of the
dimensions on which the standard deviation is minimized.

So the algorithms compared here use different models with different complex-
ity levels. K-means uses only one centroid to represent a cluster. LAC adds to
each centroid a vector of weights on each dimension. SSC defines a membership
probability of each data object to each cluster, in addition to use a gaussian
model. And SuSE also considers a subset of relevant dimensions associated to
each cluster. All these algorithms need as input parameter the number K of
clusters to be found. So as we discussed earlier, we will run them many times
with K varying from 2 to 10.

In order to check if the results depend on the supervised algorithm used, we
conduct these experiments with various supervised learning algorithms :

– C4.5 [17], the well-known supervised method based on the iterative construc-
tion of a decision tree;

– C5 [18] boosted 10 times, that uses the boosting of decision trees, in or-
der to observe if the information added by clustering algorithms also help
supervised methods that already combine many classifiers;

– DLG [19], a supervised method that uses least general generalizations in-
stead of decision trees, so that many attributes are considered at a time to
construct decision surfaces;

– and multi-class Support Vector Machines (SVM) [20], that construct large
margin classifiers, in order to check if the information added by clustering
algorithms also help supervised methods that use linear combinations of the
initial features.

Finally, the datasets used are those of the UCI Machine Learning Repository
[21] that contain only numerical attributes.

Table 1 presents the balanced error rates of C4.5 run on the initial dataset,
and then run on datasets enriched by the results of the corresponding cluster-
ing algorithms. Each measure corresponds to an average over five 2-fold cross-
validations. At each time, all the methods are run on the same training set and
evaluated on the same test set.

From this table, we can observe that most of the time, the results of C4.5
are improved when some information coming from real clustering algorithms
are added, whereas adding information from a random clustering degrades the
results. Besides, we can note that the results of SSC and SuSE are often bet-
ter than those of K-means and LAC. Then table 2 presents a summary of the
comparison between C4.5 and C4.5 enriched by the clustering algorithms.



C4.5 C4.5 C4.5 C4.5 C4.5 C4.5
alone + Rand + K-means + LAC + SSC + SuSE

ecoli 48.5 48.3 42.8 40.3 42 43.1
glass 32.6 40.8 35.7 37 40.4 34.9
image 4.8 6 4.8 4.6 4.6 4.6
iono 14.1 15.8 14.2 13.1 9.8 11.2
iris 7.3 7.9 6.7 3.7 5.1 4.7

pima 31 35 32.1 32.1 30.8 30
sonar 31 35.2 30 28.8 28.8 27.2
vowel 29.5 38.5 25 26.4 24.1 22.2
wdbc 5.9 6.8 4.6 3.9 5.1 3.1
wine 8.7 8.8 10.4 9.6 2.7 3.6

Table 1. Balanced error rates (in %) of C4.5 enriched by clustering algorithms. The
bold values correspond to the minimum error rates obtained on each dataset.

C4.5 C4.5 C4.5 C4.5 C4.5 C4.5
alone + Rand + K-means + LAC + SSC + SuSE

nb wins - 1/9 5/4 7/3 9/1 9/1
sign wins - 0/1 0/0 1/0 2/0 3/0
wilcoxon - -2.67 -0.05 1.31 1.83 2.56
av perf 21.3 24.3 20.6 20 19.3 18.5

Table 2. Comparison of C4.5 alone with C4.5 enriched by clustering algorithms.

SuSE is the only clustering algorithm that significantly helps C4.5 improve its
results, according to the wilcoxon signed rank test. It is significantly better on 3
datasets according to the 5×2cv F-test. But as SuSE, SSC improves the results of
C4.5 nine times over ten, contrary to K-means and LAC. All algorithms improve
the results of C4.5 on average, except the random clustering. And when C4.5 is
combined with clustering algorithms based on more complex models, then the
error rate is lower and the improvements are more significant than when it is
combined with clustering algorithms based on simpler models.

Such experiments were also conducted using different supervised algorithms,
namely C5 boosted, DLG and SVM, and using the second method for combining
unsupervised and supervised algorithms. It is then very interesting to note that,
in spite of the use of different supervised and combination methods, the clustering
algorithms that best help supervised learners to minimize the cross-validation
error rate on the different datasets remain mostly the same. In particular, SSC
and SuSE still outperform K-means and LAC in many cases. Moreover, the order
in which the clustering methods are ranked remains the same no matter which
supervised and combination methods are used.

Finally, as a comparison, we computed the F-measure and the Entropy be-
tween the clusters obtained by the various clustering methods and the initial
classes of the various problems in order to measure the mapping between them.
We thus first observed that the two measures do not agree on which clustering
method leads to the best mapping between the clusters and the classes on each
dataset. Then we noted that there is no direct relation between the methods that
optimize these values and the methods that better help the supervised learners



to improve their results. Besides, such measures do not provide objective infor-
mation about the interest of the clustering methods, contrary to our proposed
evaluation method that shows if the results are significantly better with the help
of the given clustering methods.

4 Conclusion

We have presented in this paper a new objective and quantitative evaluation
method of clustering algorithms that consists in comparing the results of a su-
pervised algorithm when it is (or not) provided with information coming from a
clustering algorithm. We have considered different supervised algorithms to be
used in our evaluation method. We have also considered two different ways of
combining unsupervised and supervised learning algorithms.

The experiments pointed out that the order in which the clustering methods
are ranked remains the same no matter which supervised algorithm and which
combination method are used. So it shows the robustness of our proposed evalu-
ation method. The experiments also pointed out that clustering methods based
on the use of more complex models outperform methods based on the use of sim-
pler models. This result is not surprising, but rather exhibits coherent results of
our new evaluation method.

Although it was not the aim of our investigations, we have also shown that
the results of supervised learning algorithms are improved when they use some
extra-knowledge coming from non random clustering algorithms. We conjecture
supervised learners can benefit from the information added by clustering meth-
ods because these new information are of very different nature. In particular,
clustering algorithms can help supervised learners to specialize their treatments
according to different specific areas in the input space. They can also help su-
pervised learners fit more complex decision surfaces. It thus seems interesting to
continue our investigations in the more general framework of classifier combina-
tion when one learner is unsupervised.

Our experiments seem to show that using the clustering to partition the ob-
ject space, and then executing independent supervised learnings on each created
group of data objects gives better results than enriching the datasets with new
attributes and then executing a supervised learning on the enriched dataset, since
the improvements are more important when the second method for combining
unsupervised and supervised algorithms is used. But this may be a consequence
of the method we have used to create new attributes, that significantly increases
the size of the dataset. It would thus be interesting to examine this point in
detail in future research.

Finally, in future works, it would also be interesting to find other tasks as
objective as supervised learning, and for which clustering would be an inter-
esting pre-processing, in order to conduct other experiments with our proposed
evaluation method in such another framework. One possible way would be for
example to compute the reduction in the execution time of various requests on
OLAP databases that use (or not) a clustering algorithm to create their index.
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