
Chapter 1

A Learnable Class of CCGs from Typed Examples

DANIELA DUDAU-SOFRONIE, ISABELLE TELLIER, MARC TOMMASI

1.1 Introduction

Categorial Grammars are well known lexicalized formalisms, often used to model natural languages.
Their main interest is their expressivity and the fact that they allow good connections with formal se-
mantics in Montague’s tradition. The simplest instance of this large family is known as AB-Categorial
Grammars, or Classical Categorial Grammars (CCG in the following). Although too rudimentary to
model subtle linguistic phenomena, this family is interesting to study because some formal learnabil-
ity results (in Gold’s model) have recently been proved for large subclasses of CCGs (Kanazawa,
1998). But these results do not provide tractable learning algorithms, as most of the problems to be
solved are NP-hard (Florêncio, 2001; Florêncio, 2002). The only favorable case is when rigid CCGs
are to be learned from Structural Examples. But the class of rigid grammars has poor expressive
power with respect to natural language. Moreover, learning algorithms must have access to Structural
Examples which corresponds to derivation trees of sentences and it seems to us that this requirement
is not natural.

We define a new subclass of CCGs with good properties from a language-theoretic point of view.
Our main result is that for every CCG, another CCG producing the same structure language as (i.e.
strongly equivalent with) the first one and belonging to this new subclass can be built. This new
subclass is then proved learnable from Typed Examples. Typed Examples are sentences enriched
with lexicalized information which can be interpreted as coming from semantics, and are thus more
“naturally available” than Structural Examples.

The availability of the Typed Examples can be argued firstly from a theoretical point of view,
exploiting the compositionality and secondly by the efforts that are done to build up a natural language
resource (corpus) from texts enriched with semantic information. As a matter of fact, the connection
of Categorial Grammars with semantics relies on a formal statement of the well known Principle of
Compositionality that states : “the meaning of a compound expression is a function of the meaning
of its parts and of the syntactic rules by which they are combined” (Partee, 1990). If the “parts”
are assimilated with words and the “compound expressions” with phrases, this formulation implies
that words have individual meanings and the semantics of a phrase (and thus of a sentence) only
depends of the meaning of its words and of its syntactic structure. We believe that this Principle
is still under-exploited in formal models of grammatical inference. This paper presents a new way
of considering learning Categorial Grammars from semantic knowledge. We make the hypothesis
that semantic types, in the usual sense, are general information making a distinction between facts,

1

Proceedings of Formal Grammar 2003
G. Jäger, P. Monachesi, G. Penn & S. Wintner (editors).
Chapter 1, Copyright c©2003, Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi
.

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi2

entities and properties satisfied by entities. Most knowledge representation formalisms use this notion,
so types can be supposed to be directly extracted from the environment. Types can also be considered
as lexicalized structural information.

For practical reasons we need corpora of typed texts. Such corpora are not available and they have
to be built. As semantic types are lexicalized, simpler resources like lexical taggers are of great help.
A tagger is able to recognize proper nouns, common nouns and other lexical items whose lexical tag
is easily transformable in a lexical type (for verbs, for example some post-treatment needs to be done,
as well as for conjunctions, etc.). We are working to produce a clean version of a typed corpus in
French of almost 100000 words that will be used for experiments.

This paper is organized in five sections. The second section introduces the preliminary notions:
CCGs, canonical semantic types and the definition of the new introduced sub-class of CCGs . The
third section presents the main result of strong equivalence and the fourth section is about the learn-
ability from typed examples. The fifth section concludes.

1.2 A New Subclass of Classical Categorial Grammars

1.2.1 Classical Categorial Grammars

Let B be a countably infinite set of basic categories containing a distinguished category S ∈ B, called
the axiom. We note CatB the term algebra built over the two binary symbols /, \ and the set B:
CatB is the smallest set such that B ⊂ CatB and for any A ∈ CatB and B ∈ CatB we have:
/(A,B) ∈ CatB and \(A,B) ∈ CatB.

Let Σ be a fixed alphabet called vocabulary. A categorial grammar over Σ is any finite relation
between Σ and CatB, i.e. G ⊂ Σ × CatB and G is finite. For a symbol a ∈ Σ and a category
A ∈ CatB if 〈a,A〉 ∈ G, we say that the category A is assigned to a.

In the general framework of categorial grammars, the language L(G) of a grammar G is the set of
finite concatenations of elements of the vocabulary for which there exists an assignment of categories
that can be reduced to the axiom S. For Classical Categorial Grammars (or CCGs), the admitted
reduction rules for any categories A and B in CatB are1:

• forward application FA : /(A,B).A → B;

• backward application BA : A.\(A,B) → B

We denote by G the set of every CCG and for any integer k ≥ 1, Gk is the set of k-valued CCGs,
i.e. the set of CCGs assigning at most k different categories to each member of its vocabulary.

As usual in term algebras, a context is a category with exactly one occurrence of a distinguished
constant (not in B). We denote C[] a context and C[A] is the category obtained by replacing the
distinguished constant by the category A. Forward and backward rules justify that for any category
X = C[/(A,B)] (or X = C[\(A,B)]) we say that A occurs in X at an argument position and B
occurs in X at a result position.

Any mapping Φ defined from B to CatB can be extended to contexts and elements of CatB
in the following way: for every A ∈ CatB and B ∈ CatB, Φ(\(A,B)) = \(Φ(A),Φ(B)) and
Φ(/(A,B)) = /(Φ(A),Φ(B)). For any CCG G, we can also define Φ(G) = {〈a,Φ(A)〉 | 〈a,A〉 ∈
G}.

1These rules justify the fractional notations of the category-building operators / and \ usually used in the literature.
Categories, often written B/A (resp. A\B), can be considered as functors expecting as argument the category A and
providing as result the category B. In this paper, we do not use this notation because of some constructions.

3\ Formal Grammar 2003

We denote by B(G) the (finite) set of basic categories that occur in G and Cat B(G) ⊂ CatB is
the set of categories that occur in G.

1.2.2 Canonical Types

For any countable set of basic categories B, we define the set of Canonical Types Types(B) as the
smallest set such that B ⊂ Types(B) and for any U ∈ Types(B) and V ∈ Types(B) we have (U, V) ∈
Types(B). The type (U, V) is to be read as a functor taking as argument the type U and providing as
result the type V . Canonical Types can thus be seen as non oriented categories, i.e. categories where
both operators / and \ are erased. We call the Canonical Typing Function h the unique function from
CatB to Types(B) recursively defined by: (1) h|B = IdB where IdB denotes the identity function on
the set B; (2) for any A ∈ CatB and B ∈ CatB we have: h(/(A,B)) = h(\(A,B)) = (h(A), h(B)).
The Canonical Typing Function simply transforms categories into the corresponding Canonical Types
by deleting the operators. h can also be naturally extended to contexts of categories.

1.2.3 The Class GType

Definition 1. For any vocabulary Σ and any set of basic categories B, we note GType the set of CCGs
G on Σ satisfying the property:

∀〈a,A〉 ∈ G, 〈a,A′〉 ∈ G h(A) = h(A′) ⇒ A = A′. (1.1)

In other words, in the CCGs of GType , the types corresponding with the categories of a single
member of the vocabulary are all distinct. Different categories assigned to the same symbol of the
vocabulary can be distinguished looking at their type. We can compare the class GType with the
classes Gk of k-valued CCGs. Interestingly, the two notions do not coincide.

Example 1. Let Σ = {a, b} and let us consider a CCG grammar G0 recognizing the language a∗ba∗.
G0 is defined by the assignments {〈b, S〉, 〈a, /(S, S)〉, 〈a, \(S, S)〉}. It is worth noting that G0 be-
longs to the class G2 of 2-valued CCGs and therefore belongs to any Gk, k ≥ 2 but is not in GType .

Let (Xi)i≥0 be a sequence of categories defined by X0 = A, X1 = /(A,S) and Xi = /(A,Xi−1)
for i > 1. Let us consider the grammar Gk defined by: Gk = {〈a,Xi〉|0 ≤ i ≤ k}. For k ≥ 1, the
language recognized by Gk is L(Gk) = {ai | 2 ≤ i ≤ k + 1}. For every k ≥ 1, Gk is in GType and
Gk is (k + 1)-valued but not k-valued.

Proposition 1. G1 ⊂ GType and ∀k > 1, GType ∩ Gk 6= ∅, Gk 6⊆ GType and GType 6⊆ Gk.

Proof. The fact that G1 ⊂ GType is obvious and other properties are easily proved using the grammars
given in Example 1.

Therefore, the situation is the one displayed in Figure 1.1.
The set of languages generated (or recognized) by CCGs is the set of ε-free context-free languages,

where ε is the empty word (Gaifman’s theorem in Hillel et al. (1960)). Now that we have defined a
subclass of G, it is natural to wonder if its members allow the generation of the same set of languages
or only a subset of it.

Proposition 2. For every fixed sets Σ and B and every ε-free context-free language L ⊂ Σ∗ there
exists a CCG G ∈ GType so that L(G) = L.

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi4

G1

G2

×G0

×G1 ×G2 · · ·
GType

×Gk · · ·

Gk
G

Figure 1.1: Comparisons between classes of k-valued categorial grammars and the GType class.

Proof. It has long been recognized that Gaifman’s proof is equivalent with the existence of the strong
Greibach normal form for ε-free context-free languages. That is, for every ε-free context-free lan-
guage L ⊂ Σ∗ there exists a phrase structure grammar G′ = 〈Σ, NT, P, S〉 (where Σ is the set of
terminal symbols, NT the set of nonterminal symbols, P the set of production rules and S ∈ NT
the axiom) in strong Greibach normal form satisfying L(G′) = L. This normal form specifies that
every production rule in P is of the form X −→ a or X −→ aX1 or X −→ aX1X2 with X , X1

and X2 elements of NT and a element of Σ. To build a CCG G that is strongly equivalent with
G′, proceed as follows: (1) define a bijection f between NT and a part of B satisfying f(S) = S;
(2) for every rule of the form X −→ a in P , let 〈a, f(X)〉 ∈ G; (3) for every rule of the form
X −→ aX1 in P , let 〈a, /(f(X1), f(X))〉 ∈ G; (4) for every rule of the form X −→ aX1X2 in P ,
let 〈a, /(f(X1), /(f(X2), f(X)))〉 ∈ G. We have L(G) = L(G′) = L. Because f is a bijection and,
by construction, types are pairwise distinct in G, it is trivial to check that G ∈ GType .

Though constructive, this proof is not satisfying, as the CCG obtained produces syntactic analysis
trees of a very peculiar form, where only the rule FA is used. The next section will take into account
the structures of the analysis trees produced by CCGs and provide a much more interesting (because
structure-preserving) result of the same kind.

1.3 Structure Languages of GType

A functor-argument structure over an alphabet Σ is a binary-branching tree whose leaf nodes are
labeled by elements of Σ and whose internal nodes are labeled either by BA or FA. The set of
functor-argument structures over Σ is denoted ΣF . Let G be a CCG. A Structural Example for G is
an element of ΣF obtained from the parse tree of a sentence w in L(G) by deleting categories. The
Structure Language of G, denoted by FL(G), is the set of Structural Examples of G.

The notion of Structural Example is of crucial importance as it is the basis of every learning result
about CCGs (Buszkowski and Penn, 1990; Kanazawa, 1998). Furthermore, it allows the connection
between syntax and semantics (Tellier, 1999). In the domain of CCGs, two grammars can be said
strongly equivalent if they share the same Structure Language.

Example 2. Let us consider the grammar G0 of Example 1. The sentence aba has two parses in
this grammar and therefore there are two Structural Examples for G and aba: FA(a,BA(b, a)) and
BA(FA(a, b), a).

5\ Formal Grammar 2003

1.3.1 The Main Result

Theorem 1. For any vocabulary Σ and any set of basic categories B, for every CCG G ∈ G, there
exists a CCG G′ ∈ GType so that FL(G) = FL(G′).

The theorem states that the class GType has the same expressive power in a strong sense as the
entire class G of Classical Categorial Grammar. That is to say that the restriction imposed by Eq. (1.1)
has no incidence on the expressive power of the grammars in GType .

The proof of this theorem is constructive, having as support the two algorithms respectively
named: algorithm 1 G to Gtype and algorithm 2 Transform. We construct a finite chain of gram-
mars G0, G1, . . . Gm ∈ G such that G0 = G, Gm = G′ and ∀k < m, FL(Gk) = FL(Gk+1) every
time performing some transformations over some pairs of categories that contradict Eq. (1.1). To
transform assignments that do not fulfill Eq. (1.1), we need new basic categories and we must also
introduce new assignments. Therefore, the counterpart of this result is that the grammar G ′ can be
much larger w.r.t. to number of assignments than the grammar G. We illustrate the construction by a
small example.

Example 3.

Let G0 =















〈a, /(B,S)〉, 〈a, \(B,S)〉, (1)
〈b, /(A,B)〉, 〈b, \(A,B)〉, (2)
〈e, /(/(B,S), S)〉,
〈d, /(B,S)〉, 〈c, A〉















For this grammar G0 we have 2 pairs of assignments (denoted by (1) and (2)) that contradict
Eq. (1.1). We begin by applying a transformation on the first pair: we introduce two basic categories
Bf , Bb ∈ B in order to replace occurrences of B in the argument position of the two categories.
The two basic categories Bf , Bb are new categories for G0, that is to say that they do not occur
in any assignment of G0. In order to memorize which categories have been introduced and their
corresponding category in the initial grammar we define a mapping Φ that maps Bf and Bb to B.

But this replacement has two consequences. First, if a sequence w ∈ Σ∗ is reduced by G0 into B
then wa aw are in L(G0). Therefore, to preserve the set of correct sentences, for every category in the
grammar where B occurs at a result position, we add new assignments where these occurrences are
replaced respectively by Bf and Bb. Second, if a sequence w ∈ Σ∗ is reduced by G0 into /(B,S),
then ew is also in L(G0). Again, to preserve the set of correct sentences, for every assignment 〈l, C〉
in G0 where /(B,S) occurs in C , we need to add a new assignment 〈l, C〉′ where /(B,S) has been
replaced by /(Bf , S) (the same stands for \(B,S)). This leads to the grammar:

G1 =































〈a, /(Bf , S)〉, 〈a, \(Bb, S)〉,
〈b, /(A,B)〉, 〈b, \(A,B)〉, (2a)
〈b, /(A,Bf)〉, 〈b, \(A,Bf)〉, (2b)
〈b, /(A,Bb)〉, 〈b, \(A,Bb)〉, (2c)
〈e, /(/(B,S), S)〉, 〈e, /(/(Bf , S), S)〉
〈d, /(B,S)〉, 〈d, /(Bf , S)〉, 〈c, A〉































Now, the replacement process repeats with the grammar G1. In G1 there are no more assignments
for the symbol a that contradicts Eq. (1.1), but the transformation has introduced four assignments
for the symbol b that also contradicts Eq. (1.1). Fortunately, pairs of assignments (2a), (2b) and (2c)
can be processed simultaneously, i.e. only two new basic categories Af and Ab are necessary. This
is true because the three pairs in G1 have been obtained from the unique pair (2) of G0 and this can
be checked using Φ. This trick is essential in our proof to obtain the termination of the replacement
process.

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi6

G2 =































〈a, /(Bf , S)〉, 〈a, \(Bb, S)〉,
〈b, /(Af , B)〉, 〈b, \(Ab, B)〉,
〈b, /(Af , Bf)〉, 〈b, \(Ab, Bf)〉,
〈b, /(Af , Bb)〉, 〈b, \(Ab, Bb)〉,
〈e, /(/(B,S), S)〉, 〈e, /(/(Bf , S), S)〉
〈d, /(B,S)〉, 〈d, /(Bf , S)〉, 〈c, A〉, 〈c, Af 〉, 〈c, Ab〉































and we obtain that G2 is in GType .

We now enlighten the properties satisfied by pairs of assignments that must be processed simulta-
neously. In the algorithm we will apply a transformation step for sets that are type-indistinguishable
w.r.t Φ, G and maximal in size.

Definition 2. Let G and G′ be two CCGs and let Φ be a mapping from B(G′) into CatB(G) such that
Φ(G′) = G. Let Γ be a set of pairs of assignments {(α1, β1), . . . , (αn, βn)} such that αi, βi ∈ G′ for
every 1 ≤ i ≤ n. We say that Γ is type-indistinguishable w.r.t Φ, G if
there exists:

a ∈ Σ, two contexts C,C ′ and A,B,A′, B′ ∈ CatB(G), and
∀i ∈ {1, . . . , n}, Ai, Bi, A

′
i, B

′
i ∈ CatB(G′), and 2 × n contexts Ci, C

′
i

such that
h(C) = h(C ′), h(A) = h(A′), h(B) = h(B ′), and
〈a,C[/(A,B)]〉 ∈ G and 〈a,C[\(A′, B′)]〉 ∈ G

∀i ∈ {1, . . . , n}, αi = 〈a,Ci[/(Ai, Bi)]〉,
βi = 〈a,C ′

i[\(A
′
i, B

′
i)]〉

h(Ci) = h(C ′
i),

h(Ai) = h(A′
i),

h(Bi) = h(B′
i)

and
Φ(Ci) = C, Φ(C ′

i) = C ′,
Φ(Ai) = A, Φ(A′

i) = A′,
Φ(Bi) = B, Φ(B′

i) = B′.

Lemma 1. Let G0, . . . , Gm be the sequence of grammars built by the algorithm 1 G to GType, where
G0 = Gi and Gm = Gf and nk the number of disjoint sets Γ maximal in size in Gk that are type-
indistinguishable set w.r.t Φ, Gi. If at step k we transform Gk in Gk+1 by applying the algorithm
Transform then nk+1 = nk − 1.

Proof. In fact, we have to prove that the Transform algorithm 2 doesn’t introduce new sets Γ but only
new assignments such that, if they contradict Eq. (1.1), then they increase the size of some already
existent type-indistinguishable set w.r.t Φ, Gi. We do that by verifying at each step of the algorithm
the changes. The step (1) eliminates all the assignments of the set Γ (suppressing it), so the number
nk+1 of sets type-indistinguishable w.r.t.Φ′, Gi for Gk+1 will decrease with one compared to nk. All
other steps will only allow the introduction of some new assignments as follows:

• at step (3) the assignments introduced cannot be in a type-indistinguishable set because for each
i, each pair of types are not equal anymore as Af and Ab are new categories just introduced and
there will be no pairs in Gk+1 as to form a new type-indistinguishable set.

• steps (6) and (9) are similar. In fact here, if there exist in Gk two assignments 〈b,D[/(W ′, Ai)]〉
and 〈b,D[\(W ′, Ai)]〉 that are part of some type-indistinguishable set w.r.t.Φ, Gi then, by the
step (6) we’ll add two new assignments in this set with Ai replaced by Af ; if not, we’ll add
some new assignments that are not part of any set type-indistinguishable. The same we induce
for the step (9).

7\ Formal Grammar 2003

Algorithm 1 G to GType.
Input : a CCG Gi

1: Φ = IdCatB is the identity on CatB .
2: G′ = Gi

3: while There exists Γ in G′, a maximal type-indistinguishable set w.r.t Φ, Gi do
4: (G′,Φ) = Transform(G′,Gi,Φ,Γ)
5: end while

Output : G′

Algorithm 2 Transform.
Input : Two grammars G and Gi, a mapping Φ and Γ a type-indistinguishable set w.r.t Φ, Gi.

{With Γ we assume as indicated in Def. 2 a ∈ Σ, two contexts C,C ′ and A,B,A′, B′ ∈
CatB(Gi), and ∀i ∈ {1, . . . , n}, Ai, Bi, A

′
i, B

′
i ∈ CatB(G), and 2 × n contexts Ci, C

′
i.}

1: G′ = G −
⋃

i{〈a,Ci[/(Ai, Bi)]〉, 〈a,C ′
i [\(A

′
i, B

′
i)]〉};

2: Let Af and Ab be two basic categories not in B(G);
3: G′ = G′ ∪

⋃

i{〈a,Ci[/(Af , Bi)]〉, 〈a,C ′
i [\(Ab, B

′
i)]〉};

4: REM = G′; {REM is the set of assignments that remain to be processed}
5: while REM 6= ∅ do
6: {Result position}
7: Pick and remove 〈b, D[W]〉 from REM;
8: if W = f(W ′, Ai) for some i ∈ {1, . . . , n} and f ∈ {\, /} then
9: Add 〈b, D[f(W ′, Af)]〉 to G′ and to REM;

10: end if
11: if W = f(W ′, A′

i) for some i ∈ {1, . . . , n} and f ∈ {\, /} then
12: Add 〈b, D[f(W ′, Ab)]〉 to G′ and to REM;
13: end if
14: if D[W] = Ai then
15: Add 〈b, Af 〉 to G′ and to REM;
16: end if
17: if D[W] = A′

i then
18: Add 〈b, Ab〉 to G′ and to REM;
19: end if
20: {Any position }
21: if W = /(Ai, Bi) then
22: Add 〈b, D[/(Af , Bi)]〉 to G′ and to REM;
23: end if
24: if W = \(A′

i, B
′

i) then
25: Add 〈b, D[\(Ab, B

′

i)]〉 to G′ and to REM;
26: end if
27: end while
28: Φ′(Af) = A, Φ′(Ab) = A′ and Φ′(X) = Φ(X) for any X 6∈ {Af , Ab}.
Output : G′ and Φ′.

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi8

• for the steps (13) and (16) the assignments are not part of any set type-indistinguishable and
don’t create a new such set.

• for the steps (19) and (22), if 〈b,D[/(Ai, Bi)]〉 ∈ G and 〈b,D[\(A′
i, B

′
i)]〉 ∈ G belong to

some set Γ′ type-indistinguishable for Gk , then the new added assignments don’t belong to
Γ′ because the types associated to the new introduced categories are different. If /(Ai, Bi) is
contained in an expression 〈b,D[/(/(Ai, Bi), Y]〉 and respectively 〈b,D[\(/(Ai, Bi), Y)]〉 that
already belong to a type-indistinguishable set, then the new assignments added belong also to
this type-indistinguishable set. Idem for \(A′

i, B
′
i).

Corollary 1. If nk = 0 then Gk = Gf ∈ GType .

Lemma 2. Let us consider the transformation algorithm 2 with the input Φ, G,Gi, Γ and the output
G′ and Φ′. If w ∈ Σ+ such that w has a partial parse tree t in the grammar G and t has as root
the category D ∈ CatB(G), then the following is true: ∀D′ ∈ CatB(G′) such that Φ′(D′) = D, ∃t′

parse tree in G′, t′ having a structure2 identical to t, such that w has the partial parse t′ in G′ and t′

has the root D′.

Proof. For the proof, we proceed by induction on the size |w| of w ∈ Σ+, |w| representing the number
of symbols in the word w.

If |w| = 1 then the partial parse tree t has a single node (root) D. If D doesn’t contain any of Ai

and A′
i, ∀i then D isn’t affected by the transformation Φ′ and t′ is t q.e.d. If D contains Ai or A′

i then
∀D′ with the propriety in the hypothesis there exists a partial parse tree t′ with a single node, in fact
the old partial parse tree t that has now the node (root) D ′ q.e.d.

If |w| > 1 we suppose the propriety true for all |w| < k and we prove it for |w| = k.

The hypothesis is true for all |w| < k implies that for a w1 ∈ Σ+, |w1| < k that has a partial
parse tree t1 in G, with the root D1 we have the following propriety: ∀D ′

1 such that Φ′(D′
1) = D1

there exists t′1, partial parse tree in G′, having the same structure as t1 and rooted in D′
1. The same

thing we can induce for a w2, |w2| < k. If in G we apply a rule on D1 and D2 to obtain D, where
w = w1.w2 (by concatenation) (|w| = k) has a partial parse t, with the root D, then we prove that ∀D ′

such that Φ′(D′) = D it exists a partial parse tree t′ in G′ with the root D′ and where D′ is obtained
by applying the same rule on D′

1 and D′
2. This last fact expresses that t′ will have the same structure

as t, knowing by hypothesis that the partial parse trees t1 and t2 in G have the same structure as t′1
and t′2 in G′. We distinguish here all the possible cases:

1. D1 and D2 don’t contain Ai and A′
i, ∀i;

2Here, structure means functor-argument structure

9\ Formal Grammar 2003

2. D1 = /(Ai, Y) and D2 = Ai or D1 = /(A′
i, Y), D2 = A′

i for some i (when FA was applied)
or D1 = Ai, D2 = \(Ai, Y) or D1 = A′

i, D2 = \(A′
i, Y) for some i (when BA was applied),

where Y doesn’t contain Ai and A′
i;

3. D1 = /(Z,Ai), D2 = Z or D1 = /(Z,A′
i), D2 = Z (for FA) or D1 = Z ,D2 = \(Z,Ai) or

D1 = Z , D2 = \(Z,A′
i) (for BA), where Z doesn’t contain Ai and A′

i;

4. D1 = /(Z, Y), D2 = Z (for FA) or D1 = Z , D2 = \(Z, Y) (for BA) where Y doesn’t contain
Ai and A′

i, ∀i but Z does;

5. D1 = /(Z, Y), D2 = Z (for FA) or D1 = Z , D2 = \(Z, Y) (for BA) where Z doesn’t contain
Ai and A′

i, ∀i but Y does;

6. D1 = /(Z, Y), D2 = Z (for FA) or D1 = Z , D2 = \(Z, Y) (for BA), where both Y and Z
contain Ai and A′

i.

In the case (1) the conclusion is evident. In all the other cases we convey to treat only the first
variant, because all the other are similar. We only treat here the cases (2) and (6). In the case (2)
D1 = /(Ai, Y), D2 = Ai and Y doesn’t contain occurrences of Ai or A′

i, ∀i. If D1 = /(Ai, Y)
belong to the set Γ that was solved, then D ′

1 = /(Af , Y), where Φ′(Af) = Ai, because Y doesn’t
contain Ai and A′

i. Because D′
2 received besides Ai the category Af (by the step (13) of the algorithm

2) we can apply over D′
1 and D′

2 the same rule as over D1 and D2 to obtain D′ and t′, the partial
parse tree obtained, has the same structure as t, q.e.d. If D1 = /(Ai, Y) doesn’t belong to Γ we add
the category /(Af , Y) for D1 = /(Ai, Y) if Y = Bi (by the step (19) of the algorithm 2), or we add
nothing if Y 6= Bi and at the same time we add for D2 = Ai the category Af , where Φ′(Af) = Ai

(by the step (13) of the same algorithm). So, D ′
1 ∈ {/(Ai, Y), /(Af , Y)} or D′

1 = {/(Ai, Y)} and
D′

2 ∈ {Ai, Af} and D′ = Y because there is always a manner to combine D ′
1 and D′

2 by applying
the same rule as for D1 and D2. q.e.d.

In the case (6) D1 = /(Z, Y) and D2 = Z , where Z and Y contain both Ai or A′
i, for some i and

this means that the transformation Φ′ affects both Z and Y . D′
1 ∈ {/(Z ′, Y ′)|Φ′(Y ′) = Y,Φ′(Z ′) =

Z} and D′
2 ∈ {Z ′′|Φ′(Z ′′) = Z}. It is evident that we can apply the same rule as for D1 and D2 for

every D′
1 and D′

2 ({Z ′|Φ′(Z ′) = Z} = {Z ′′|Φ′(Z ′′) = Z}, the modifications over the same category
relative to the same transformation are identical) and we obtain for every result D ′ ∈ {Y ′|Φ′(Y ′) =
Y } a partial parse tree t′, rooted with D′, with a structure identical to t and with Φ′(D′) = D
q.e.d.

Sketch of proof of Theorem 1 We need to prove three things: given as input an initial grammar Gi ∈ G
the algorithm terminates, it ultimately outputs a final grammar Gf ∈ GType and FL(Gi) = FL(Gf).

The algorithm iteratively builds a sequence of grammars G0, . . . , Gm, where G0 = Gi and Gm =
Gf . Let nk be the number of disjoint sets Γ maximal in size in Gk that are type-indistinguishable
w.r.t Φ, Gi. n0 can be easily calculated w.r.t. the initial grammar. Termination proof relies on the
fact that nk decreases at each step of the iteration (see lemma 1). The Transform algorithm only in-
troduces new assignments such that, if they contradict Eq. (1.1), then they increase the size of some
type-indistinguishable sets w.r.t Φ, Gi. That is to say that no such new sets are introduced by the trans-
formation algorithm. Moreover, when Transform applies, it suppresses such a type-indistinguishable
set from the input grammar.

To prove that Gf is in GType , we use the fact that if nk = 0 for some grammar Gk in the sequence
above, then Gk is in GType .

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi10

For the last point, we first prove that FL(Gi) ⊇ FL(Gf) using the fact that Φ(Gf) = Gi. Indeed,
the equality is invariant with the Transform algorithm and trivially true at the beginning. Then, using
properties of substitutions in CCGs, to which our mappings can be assimilated,(see Buszkowski and
Penn (1990)), we obtain the inclusion. The proof for the reverse inclusion is more technical and
relies on case analysis. We develop the proof ideas in one case in this sketch of proof (see lemma
2), other cases being similar. Since some assignments have been removed we must check that the
same derivations are still possible using new assignments. Consider that G ′ is obtained from G by the
Transform algorithm. Following notations in the Transform algorithm, 〈a,Ci[/(Ai, Bi)]〉 has been
removed and replaced by 〈a,Ci[/(Af , Bi)]〉. Consider a parse tree τ in G where Ai is not useless.
Then there is two sibling nodes defining subtrees τ1 and τ2 labelled by Ai and /(Ai, Bi) in τ . Because
we have added assignments that put the basic category Af in every category where Ai occurs in a result
position, we can do the same derivation tree as τ1 and label it by Af . Every time /(Ai, Bi) occurs in
a category, a new assignment with /(Af , Bi) is introduced, therefore we can do the same derivation
tree as τ1 and label it by /(Af , Bi). Using these properties, we are able to prove that a word w is
reduced in a category C in G′ if and only if it is reduced in category Φ(C) in the initial grammar Gi

and both derivation trees are identical up to Φ. Hence structural languages FL(Gi) and FL(Gf) are
identical.

1.4 Learnability of GType from Typed Examples

The previous section proved that the class GType has good properties relatively to the entire class G as it
allows to produce every possible Structure Language generated by a CCG. But the initial motivation
for introducing this class was that of learnability. We now justify the interest of GType in terms of
formal learning theory and argue for its plausibility to model natural language learning.

1.4.1 Grammar Systems and Learnability

For any CCG G, a Canonical Typed Example for G is a sequence of couples 〈word, type〉 where the
first items of the couples build a sentence of G and the second items are the types corresponding with
the categories assigned to each word and allowing the syntactic analysis in G. We define TL : G →
pow((Σ × Types(B))∗) the function that maps every CCG G with the set TL(G) of the Canonical
Typed Examples it can generate, also called the Canonical Typed Language of G:

TL(G) = {〈u1, τ1〉...〈un, τn〉|∀i ∈ {1, ..., n}∃ci so that 〈ui, ci〉 ∈ G, τi = h(ci) and c1...cn →∗

S}.
To deal with questions of learnability, Kanazawa 1998 introduces the notion of grammar system.

This allows a reformulation of the classical Gold’s model of identification in the limit from positive
examples (Gold, 1967). We recall this notion here.

A grammar system is a triple 〈Ω,Λ, L〉 where Ω is the hypothesis space (in our context, Ω will be
a set of formal grammars), the sample space Λ is a recursive subset of A∗, for some fixed alphabet A
(elements of Λ are sentences and subsets of Λ are languages) and L is a naming function that maps
elements of Ω into languages i.e. L : Ω → pow(Λ). The universal membership problem, i.e. the
question of whether s ∈ L(G) holds between s ∈ Λ and G ∈ Ω, is supposed computable.

Let 〈Ω,Λ, L〉 be a grammar system and φ :
⋃

k≥1
Λk → Ω be a computable function. We say

that φ converges to G ∈ Ω on a sequence 〈si〉i∈N of elements of Λ if Gi = φ(〈s0, ..., si〉) is defined
and equal to G for all but finitely many i ∈ N - or equivalently if there exists n0 ∈ N such that for

11\ Formal Grammar 2003

all i ≥ n0, Gi is defined and equal to G. Such a function φ is said to learn G ⊆ Ω and G is said
learnable if for every language L in L(G) = {L(G)|G ∈ G} and for every infinite sequence 〈si〉i∈N

that enumerates the elements of L (i.e. so that {si|i ∈ N} = L), there exists some G in G such that
L(G) = L and φ converges to G on 〈si〉i∈N.

Kanazawa has proved that ∀k ≥ 1,Gk is learnable both in the grammar system 〈G,ΣF , FL〉 (i.e
from Structural Examples) and in the grammar system 〈G,Σ∗, L〉 (i.e. from string examples).

In the formal learning model of Gold, learnability results for CCGs become trivial when typed ex-
amples are given in input. Indeed, there are a bounded number of compatible grammars with any finite
presentation as soon as all elements of the lexicon have been presented. Membership is decidable and
therefore any simple enumerative algorithm of compatible grammars can be easily transformed into
a learner. But this is not satisfactory and more interesting remarks can be done for GType grammars.
Indeed, we notice that to learn GType in the grammar system 〈G, (Σ × Types(B))∗, TL〉, it is enough
to be able to learn G1 in the grammar system 〈G, (Σ×Types(B))∗, L〉. As a matter of fact, grammars
G in GType are such that for all pairs 〈u, τ〉 ∈ Σ×Types(B) belonging to a member of TL(G), there
exists only one c so that 〈u, c〉 ∈ G and h(c) = τ and are thus one to one distinct. On the vocabulary
Σ × Types(B), these grammars are thus rigid.

This suggests a learning algorithm which would be an adaptation of the one that learns G1 from
strings. Unfortunately, this strategy would not be efficient, since learning G1 from strings is NP-hard
(Florêncio, 2002).

Another candidate is the learning strategy proposed in Dudau-Sofronie, Tellier, and Tommasi
(2001), taking advantage of the functional nature of types and of their closeness with categories.
The only remaining problem is that we still do not know if the inclusion of Typed Languages is
decidable for CCGs. The answer to that open problem can have a great influence on the computational
complexity of the strategy.

1.4.2 Semantic Interpretation of Types

Learning subclasses of CCGs from text (i.e. strings of words) is intractable. More input data need
to be provided to help the learning process. The strategy investigated so far consisted in providing
indications about the analysis structure underlying a given string, under the form of a Structural Ex-
ample. On the contrary, we focus here on providing additional lexical information. The argument
of learnability used in the last proof also applies for any kind of lexical item associated with a word
(i.e. a member of the vocabulary) and given as input provided that two categories assigned to a same
word in a grammar always give rise to two different items. This property defines the class of CCGs
learnable from non-ambiguous lexical information (in the sense of ambiguity used here). A special
case of lexical information, especially for natural languages, is lexical semantics. Furthermore, the
types used here are inspired by those used in Montague’s typed lambda calculus to represent natural
language semantics. This strategy is then both more “natural to justify” and hopefully more efficient
than the one making use of Structural Examples.

1.5 Conclusion

The main contribution of this paper is the definition of a precise subclass of G which is both learnable
from typed examples and has good properties from a language-theoretic point of view, as it has the
same expressive power than G in a strong sense. So, GType is representative of G and grammars in this
class can be considered as CCGs of a special normal form. The learnability of GType is guaranteed

A Learnable Class of CCGs from Typed Examples: Daniela Dudau-Sofronie, Isabelle Tellier, Marc Tommasi12

because unambiguous types are provided, which is a strong condition. But this result can be com-
pared for example, with Sakakibara’s 1992 result which states that every context-free language can
be generated by a reversible context-free grammar and that the set of reversible context-free gram-
mars is learnable from skeletons, i.e. from syntactic analysis trees where non-terminal symbols are
deleted. This result is interesting but limited because transforming a plain context-free grammar into
a reversible context-free grammar recognizing the same string language does not preserve the cor-
responding set of skeletons. On the contrary, our transformation is structure-preserving, which is a
crucial condition in a natural language context.

Bibliography

Buszkowski, W. and G. Penn (1990). Categorial grammars determined from linguistic data by unifi-
cation. Studia Logica, 49:431–454.

Dudau-Sofronie, D., I. Tellier, and M. Tommasi (2001). Learning categorial grammars from semantic
types. In 13th Amsterdam Colloquium, pp. 79–84.

Florêncio, C. C. (2002). Consistent identification in the limit of rigid grammars from strings is np-
hard. In M. V. Z. P. Adriaans, H. Fernau, ed., Grammatical Inference: Algorithms and Applications,
volume 2484 of Lecture Notes in Artificial Intelligence, pp. 49–62. Springer Verlag.

Florêncio, C. C. (2001). Consistent identification in the limit of any of the classes k-valued is NP-
hard. In Logical Aspects of Computational Linguistics, volume 2099 of Lecture Notes in Artificial
Intelligence, pp. 125–134. Springer Verlag.

Gold, E. (1967). Language identification in the limit. Inform. Control, 10:447–474.

Hillel, Y. B., C. Gaifman, and E. Shamir (1960). On categorial and phrase structure grammars. Bulletin
of the Research Council of Israel, 9F.

Kanazawa, M. (1998). Learnable Classes of Categorial Grammars. The European Association for
Logic, Language and Information. CLSI Publications.

Partee, B. (1990). Mathematical methods in Linguistics. Number 30 in Linguistics and Philosophy.
Kluwer.

Sakakibara, Y. (1992). Efficient learning of context-free grammars from positive structural examples.
Information and Computation, 97(1):23–60.

Tellier, I. (1999). Towards a semantic-based theory of language learning. In 12th Amsterdam Collo-
quium, pp. 217–222.

