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Abstract. This paper investigates the learnability of Pregroup Gram-
mars, a context-free grammar formalism recently defined in the field
of computational linguistics. In a first theoretical approach, we provide
learnability and non-learnability results in the sense of Gold for sub-
classes of Pregroup Grammars. In a second more practical approach,
we propose an acquisition algorithm from a special kind of input called
Feature-tagged Examples, that is based on sets of constraints.
Key-words. Learning from positive examples, Pregroup grammars, Com-
putational linguistics, Categorial Grammars, Context-Free grammars.

1 Introduction

Pregroup Grammars [1] (PGs in short) is a context-free grammar formalism
used in the field of computational linguistics. This recently-defined formalism for
syntax allies expressivity (in this respect it is close to Lambek Grammars) and
computational efficiency. Subtle linguistic phenomena have already been treated
in this framework [2, 3]. PGs share many features with Categorial Grammars of
which they are inheritors, especially their lexicalized nature.

Since the seminal works of Kanazawa[4], a lot of learnability results in Gold’s
model [5] have been obtained for various classes of Categorial Grammars and
various input data. But the learnability of PGs has yet received very little at-
tention except a negative result in [6]. In the first part of this paper, we prove
several results of learnability or of non-learnability for classes of PGs. But these
results are mainly theoretical and are not associated with learning algorithms.

In the second part of the paper, we define an acquisition algorithm to specify
a set of PGs compatible with input data. The input data considered, called
Feature-tagged Examples, are richer than strings but chosen to be language-
independent (inspired by [7–9]). The originality of the process is that it allows
to reconsider the learning problem as a constraints resolution problem.
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2-phasing out - 2001/3 - 4.1 - n 3. And by “ACI masse de données ACIMDD”



2 Pregroup Grammars

2.1 Background

Definition 1 (Pregroup). A pregroup is a structure (P,≤, ·, l, r, 1) such that
(P,≤, ·, 1) is a partially ordered monoid4 and l, r are two unary operations on
P that satisfy: ∀a ∈ P : ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara. The following
equations follow from this definition: ∀a, b ∈ P , we have arl = a = alr , 1r =
1 = 1l , (a · b)r = br · ar , (a · b)l = bl · al. Iterated adjoints5 are defined for

i∈Z : a(0) =a , for i ≤ 0 : a(i−1) =
(
a(i)

)l
, for i ≥ 0 : a(i+1) =

(
a(i)

)r

Definition 2 (Free Pregroup). Let (P,≤) be a partially ordered set of prim-
itive categories, P (Z) = {p(i) | p ∈ P, i ∈ Z} is the set of atomic categories and

Cat(P,≤) =
(
P (Z)

)∗
= {p

(i1)
1 · · · p

(in)
n | 1 ≤ k ≤ n, pk ∈ P, ik ∈ Z} is the set

of categories. For X, Y ∈ Cat(P,≤), X ≤ Y iff this relation is deducible in the
system in Fig. 1 where p, q ∈ P , n, k ∈ Z and X, Y, Z ∈ Cat(P,≤). This construc-
tion, proposed by Buskowski, defines a pregroup that extends ≤ on P to Cat(P,≤).

X ≤ X (Id)
XY ≤Z

(AL)
Xp(n)p(n+1)Y ≤Z

Xp(k)Y≤Z
(INDL)

Xq(k)Y ≤Z

X≤Y Y ≤Z
(Cut)

X ≤ Z

X≤Y Z
(AR)

X≤Y p(n+1)p(n)Z

X≤Y p(k)Z
(INDR)

X≤Y q(k)Z

q ≤ p if k is even or p ≤ q if k is odd

Fig. 1. System for Pregroup Grammars

Cut elimination. Every derivable inequality has a cut-free derivation.

Simple free pregroup. A simple free pregroup is a free pregroup where the
order on primitive categories is equality.

Definition 3 (Pregroup Grammars). (P,≤) is a finite partially ordered set.
A free pregroup grammar based on (P,≤) is a lexicalized6 grammar G = (Σ, I, s)
such that s ∈ P ; G assigns a category X to a string v1 · · · vn of Σ∗ iff for
1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the free pregroup based on
(P,≤). The language L(G) is the set of strings in Σ∗ that are assigned s by G.

Rigid and k-valued Grammars. Grammars that assign at most k categories
to each symbol in the alphabet are called k-valued grammars; 1-valued grammars
are also called rigid grammars.

Width. We define the width of a category C = pu1

1 . . . pun

n as wd(C) = n (the
number of atomic categories).

4 A monoid is a structure < M, ·, 1 >, such that · is associative and has a neutral
element 1 (∀x ∈ M : 1 · x = x · 1 = x). A partially ordered monoid is a monoid
(M, ·, 1) with a partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c·a ≤ c·b and a·c ≤ b·c.

5 We use this notation in technical parts
6 A lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a finite

set of categories to each c ∈ Σ, s is a category associated to correct sentences.



Example 1. Our first example is taken from [10] with the basic categories: π2 =
second person, s1 = statement in present tense, p1 = present participle, p2 = past
participle, o = object. The sentence “You have been seeing her” gets category s1

(s1 ≤ s), with successive reductions on π2π
r
2 ≤ 1, pl

2p2 ≤ 1, pl
1p1 ≤ 1, olo ≤ 1:

You have been seeing her
π2 (πr

2 s1 pl
2) (p2 pl

1) (p1 ol) o

2.2 Parsing

Pregroup languages are context-free languages and their parsing is polynomial.
We present in this section a parsing algorithm working directly on lists of words.
For that, we first extend the notion of inference to lists of categories, so as to
reflect the separations between the words of the initial string. The relations noted
Γ `R ∆ where R consists in one or several rules are defined on lists of categories
(p, q are atomic, X, Y range over categories and Γ, ∆ over lists of categories):
M (merge): Γ, X, Y, ∆ `M Γ, XY, ∆.
I (internal): Γ, Xp(n)q(n+1)Y, ∆ `I Γ, XY, ∆, if q ≤ p and n is even or if

p ≤ q and n is odd.
E (external): Γ, Xp(n), q(n+1)Y, ∆ `E Γ, X, Y, ∆, if q ≤ p and n is even or if

p ≤ q and n is odd.
`∗R is the reflexive-transitive closure of `R. This system is equivalent with the
deduction system when the final right element is a primitive category. As a
consequence, parsing can be done using `∗MIE .

Lemma 1. For X ∈ Cat(P,≤) and p ∈ P , X ≤ p iff ∃q ∈ P such that X `∗MIE q
and q ≤ p.

Corollary 1. G = (Σ, I, s) generates a string v1 · · · vn iff for 1 ≤ i ≤ N ,
∃Xi ∈ I(vi) and ∃p ∈ P such that X1, · · · , Xn `∗MIE p and p ≤ s.

All `∗I can be performed before `∗M and `∗E as the next lemma shows.

Lemma 2. (easy) Γ1 `∗MIE Γ2 iff ∃∆ such that Γ1 `∗I ∆ and ∆ `∗ME Γ2

The external reductions corresponding to the same couple and a merge reduction
can be joined together such that, at each step, the number of categories decreases.

E+ (external+merge): For k ∈ N,

Γ, Xp
(n1)
1 · · · p

(nk)
k , q

(nk+1)
k · · · q

(n1+1)
1 Y, ∆ `E+ Γ, XY, ∆, if qi ≤ pi and ni is

even or if pi ≤ qi and ni is odd, for 1 ≤ i ≤ k.

Lemma 3. For a list of categories Γ and p ∈ P , Γ `∗ME p iff Γ `∗E+ p.

To define a polynomial algorithm, we finally constraint the application of `∗E+

such that the width of the resulting category is never greater than the maximal
width of the two initial categories: one category plays the role of an argument
and the other plays the role of a functor even if the application is partial. The
rule is thus called Functional. In fact, there is a small difference between left
and right functional reductions (see the two different conditions wd(X) ≤ k
or wd(Y ) < k) to avoid some redundancies. The last condition wd(Y ) = 0 is
necessary when ∆ is empty and k = 0 to mimic a (degenerated) merge reduction.



F (functional): For k ∈ N,

Γ, Xp
(n1)
1 · · · p

(nk)
k , q

(nk+1)
k · · · q

(n1+1)
1 Y, ∆ `F Γ, XY, ∆, if qi ≤ pi and ni is

even or if pi ≤ qi and ni is odd, for 1 ≤ i ≤ k and if wd(X) ≤ k or
wd(Y ) < k or wd(Y ) = 0.

Lemma 4. For a list of categories Γ and p ∈ P , Γ `∗E+ p iff Γ `∗F p.

Proof. The proof is based on the fact that for any planar graph where the ver-
tice are put on a line and where the edges are only on one side of this line, there
always exists at least one vertex that is connected only to one of its neighbours
or to both of them but not to any other vertex. This vertex is then associated
to its neighbour if it is connected to only one neighbour. If it is connected to its
two neighbours, we choose the one that interacts the most with the vertex.

The parsing of a string with n words consists in the following steps:
1. Search for the categories associated to the n words through the lexicon.
2. Add the categories deduced with `∗I .
3. Compute recursively the possible categories associated to a contiguous seg-

ment of words of the string with `F .
The third step uses a function that takes the positions of the first and last words
in the segment as parameters. The result is a set of categories with a bounded
width (i.e. by the maximum width of the categories in the lexicon).

Property 1 For a given grammar, this algorithm is polynomial (wrt. the num-
ber of words of input strings).

Example 2. Parsing of “whom have you seen ?”. The categories are as follows in
the lexicon (q′ ≤ s):

whom have you seen
q′ollql qpl

2π
l
2 π2 p2o

l

...whom ...have ...you ...seen

seen... {p2o
l}

you... {π2} ∅
have... {qpl

2π
l
2} {qp

l
2} {qo

l}
whom... {q′ollql} ∅ ∅ {q′}

The cell of line i (numbered from the bottom) and column j contains the category
computed for the fragment starting at the ith word and ending at the jth word.

3 Learning

3.1 Background

We now recall some useful definitions and known properties on learning in
the limit [5]. Let G be a class of grammars, that we wish to learn from positive
examples. Formally, let L(G) denote the language associated with a grammar G,



and let V be a given alphabet, a learning algorithm is a function φ from finite sets
of words in V ∗ to G, such that ∀G∈G, ∀(ei)i∈N such that L(G)=(ei)i∈N ∃G′∈G
and ∃n0∈N such that ∀n > n0 φ({e1, . . . , en}) = G′∈G and L(G′) = L(G).

Limit Points. A class CL of languages has a limit point iff there exists an infinite
sequence < Ln >n∈N of languages in CL and a language L ∈ CL such that :
L0 ( L1 . . . ( Ln ( . . . and L =

⋃

n∈N Ln (L is a limit point of CL).
If the languages of the grammars in a class G have a limit point then the class
G is unlearnable in Gold’s model.

Elasticity. A class CL of languages has infinite elasticity iff there exists (ei)i∈N

a sequence of sentences and (Li)i∈N a sequence of languages in CL such that :
∀i ∈ N : ei 6∈ Li and {e1, . . . , ei} ⊆ Li+1. It has finite elasticity in the
opposite case. If CL has finite elasticity then the corresponding class of grammars
is learnable in Gold’s model.

3.2 Non-learnability from strings – a review

The class of rigid (also k-valued for any k) PGs has been shown not learnable
from strings in [11] using [12]. So, no learning algorithm is possible. This has
also been shown for subclasses of rigid PGs as summarized below (from [6]).

Pregroups of order n and of order n+1/2. A PG on (P,≤) is of order n ∈ N

when its primitive categories are in {a(i)|a ∈ P , −n ≤ i ≤ n} ; it is of order
n+1/2, n ∈ N when its primitive categories are in {a(i)|a ∈ P , −n−1 ≤ i ≤ n}.

Construction of rigid limit points. We have proved [6] that the smallest such
class (except order 0) has a limit point. Let P = {p, q, r, s} and Σ = {a, b, c, d, e}.
We consider grammars on (P, =) :

Gn = (Σ, In, s) G∗ = (Σ, I∗, s)

a 7→ (pl)nql

b 7→ qpql

c 7→ qrl

d 7→ rplrl

e 7→ rpns

a 7→ ql

b 7→ qplql

c 7→ qrl

d 7→ rprl

e 7→ rs

Theorem 1 The language of G∗ is a limit point for the languages of grammars
Gn on (P, =) in the class of languages of rigid simple free PGs of order 1/2 :
for n ≥ 0, L(Gn) = {abkcdke | 0 ≤ k ≤ n} and L(G∗) = {abkcdke | k ≥ 0}.

Corollary 2. The classes CGk
n/2 of k-valued simple free pregroups of order n/2, n ≥

0 are not learnable from strings.

3.3 Learnability for restricted categories

We consider three cases of restricted categories. Case (ii) is used in next section.

(i) Width and order bounds. Here, by the order of a category C = pu1

1 . . . pun

n

we mean its integer order : max{ |ui| / 1 ≤ i ≤ n}.



It is first to be noted that when we bind the width and the order of categories,
as well as the number of categories per word (k-valued), the class is learnable
from strings (since we have a finite number of grammars -up to renaming-).

(ii)Width bounded categories. By normalizing with translations, we get:

Theorem 2 The class of rigid (also k-valued for each k) PGs with categories
of width less than N is learnable from strings for each N .

Proof. Let G denote a rigid PG on Σ and n be the maximum width of G, we can
show that G is equivalent (same language) to a similar PG of order≤ 2n|Σ|. This
PG is a normalized version of G obtained by repeating translations as follows:
consider possible iterations of r; if two consecutive exponents never appear in
any iterated adjoints (a hole), decrease all above exponents; proceed similarly
for iterations of l. Therefore, a bounded width induces a bounded order for rigid
PGs; we then apply the learnability result for a class with a width bound and an
order bound. In the k-valued case, we proceed similarly with an order ≤ 2n|Σ|k.

(iii) Pattern of Category. We infer from known relationships between cate-
gorial formalisms, a case of learnability from strings for PGs. We refer to [13,
14] for definitions and details on formalisms.

From Lambek calculus to pregroup. We have a transformation A→ [A] on
formulas and sequents from L∅ (Lambek calculus allowing empty sequents) to
the simple free pregroup, that translates a valid sequent into a valid inequality7:

[A] = A when A is primitive
[A \ B] = [A]r [B] ; [B / A] = [B][A]l

[A1, . . . , An ` B] = [A1] · · · [An] ≤ [B]
The order of a category o(A) for Categorial Grammars is:

o(A)=0 when A is primitive; o(A \ B)=o(B / A)=max(o(A)+1, o(B))

Lemma 5. [15] If B is primitive and o(Ai) ≤ 1 for 1 ≤ i ≤ n then:
A1, . . . , An `AB B (Classical or AB Categorial Grammars)

iff A1, . . . , An `L∅
B (Lambek)

iff [A1] · · · [An] ≤ B (simple free pregroup )

We infer the following result :

Theorem 3 The class Ck
L of k-valued (simple free) PGs with categories of the

following pattern (P1) : gr
n . . . gr

1pdl
1 . . . dl

m, where n ≥ 0 and m ≥ 0 is learnable
from strings in Gold’s model.

Proof. The class of k-valued AB grammars is learnable from strings [4]. Lemma 5
shows that the class of PGs that are images of k-valued Lambek Grammars of
order 1 (also k-valued AB-grammars with the same language) is also learnable.
And when o(A) ≤ 1, then [A] must be written as: gr

n . . . gr
1pdl

1 . . . dl
m.

Relevance of pattern P1. We have observed that many linguistic exam-
ples follow the pattern P1 or are images of these by some increasing function,

7 The converse is not true :
[(a · b) / c] = abcl = [a · (b / c)] but (a · b) / c 6` a · (b / c)
[(p / ((p / p) / p)) / p] = ppllpllplpl ≤ [p] but (p / ((p / p) / p)) / p 6` p



i.e. a function h such that X ≤ h(X) (for example type-raised introduction
hraise(X) = sslX); moreover if G assigns hi(ti) to ci, where all hi are increas-
ing and all ti have the pattern P1, we consider GP1

assigning ti to ci and get :
L(G) ⊆ L(GP1

) and the class of GP1
is learnable from strings.

3.4 Learning Pregroup Grammars from Feature-Tagged Examples

Previous learnability results lead to non tractable algorithms. But an idea from
Categorial Grammars learning is worth being applied to PGs: the learnability
from Typed Examples. Types are to be understood here in the sense Montague’s
logic gave them. Under some conditions specifying the link between categories
and types, interesting subclasses of AB-Categorial Grammars and of Lambek
Grammars have been proved learnable from Typed Examples, i.e. from sentences
where each word is associated with its semantic type [8, 9].

To adapt this idea to PGs, the first problem is that the link between PGs
and semantics is not clearly stated. So, the notion of semantic types has no
obvious relevance in this context and our first task is to identify what can play
the role of language-independent features in PGs. We call Feature-tagged Exam-
ples the resulting input data. We then define a subclass of PGs learnable from
Feature-tagged Examples in the sense of Gold. Finally, we present an algorithm
whose purpose is to identify every possible PG of this class compatible with a
set of Feature-tagged Examples. An original point is that this set will be spec-
ified by a set of constraints. We provide examples showing that this set can be
exponentially smaller than the set of grammars it specifies.

Specification of Input Data. Let us consider how the various possible word
orders for a basic sentence expressing a statement at the present tense, with a
third person subject S, a transitive verb V and a direct object O would be treated
by various PGs (Figure 2): The common points between every possible analysis

S V O S O V O S V

π3 πr

3s1o
l o π3 o orπr

3s1 o π3 πr

3ors1

O V S V O S V S O

o ors1π
l

3 π3 s1π
l

3o
l o π3 s1o

lπl

3 π3 o

Fig. 2. Pregroup Grammars and possible word orders

are the primitive categories associated with S and O. The category of V is always
a concatenation (in various orders) of the elements of the set {s1, π

u
3 , ov} where

u and v are either r or l: this set simply expresses that V expects a subject and



an object. But the nature of the exponent (r or l or a combination of them) and
their relative positions in the category associated with V are language-specific.

This comparison suggests that multisets of primitive categories play the role
of language-independent features in PGs. For any set (P,≤), we call M(P ) the
set of multisets of elements of P and fP the mapping from Cat(P,≤) to M(P )
that transforms any category into the multiset of its primitive categories.

Definition 4. For any PG G = (Σ, I, s), the Feature-tagged Language of G,
noted FT (G), is defined by: FT (G) = {〈v1, T1〉...〈vn, Tn〉|∀i ∈ {1, ..., n}∃Xi ∈
I(vi) such that X1...Xn ≤ s and Ti = fP (Xi)}

Example 3. Let P = {π3, o, s, s1} with s1 ≤ s, Σ = {he, loves, her} and let
G = (Σ, I, s) with I(he) = {π3}, I(loves) = {πr

3s1o
l}, I(her) = {o}. We

have: 〈he, {π3}〉〈loves, {s1, π3, o}〉〈her, {o}〉 ∈ FT (G). An element of FT (G) is a
Feature-tagged Example. We study how PGs can be learned from such examples.

Definition 5. For any sets Σ and P , we call Gf the set of PGs G = (Σ, I, s)
satisfying: ∀v ∈ Σ, ∀X1, X2 ∈ I(v): fP (X1) = fP (X2) =⇒ X1 = X2

Theorem 4. The class Gf is learnable in Gold’s model from Feature-tagged Ex-
amples (i.e. where, in Gold’s model, FT plays the role of L and V = Σ×M(P)).
Proof. The theorem is a corollary of Theorem 2, where k and N can be computed
from any sequence of Feature-tagged Examples that enumerates FT (G):
- the condition satisfied by a PG for being an element of Gf implies that the
number of distinct multisets associated with the same word in Feature-tagged
Examples is the same as the number of distinct categories associated to it by
function I . So k can be easily obtained.
- the width of a category is exactly the number of elements in the corresponding
multiset, so N can also be easily obtained.

Acquisition Algorithm. Our algorithm takes as input a set of Feature-tagged
Examples for some G ∈ Gf and provides a set of PGs. We conjecture (although
we haven’t proved yet) that the output is exactly, up to basic transformations,
the set of every PGs compatible with the input. The algorithm has two steps:
first variables are introduced, then constraints are deduced on their values.

First Step: Variable Introduction. Although Feature-tagged Examples provide
a lot of information, two things remain to be learned: the nature of the potential
exponents of categories and their relative positions inside a concatenation. We
introduce variables to code both problems. Variables for the exponents take their
value in Z, those for the relative positions take their value in N\{0}.

Example 4. The Feature-tagged Example of Example 3 gives:
he: T1 = {(πu

3 , x11)}
loves: T2 = {(sv

1, x21), (π
v′

3 , x22), (o
v′′

, x23)}
her: T3 = {(ow, x31)}
with u, v, v′, v′′, w ∈ Z. ∀i, j, xij ∈ N\{0} is the position of the jth primitive cat-
egory of the ith word. The following constraints and consequences are available:
{x11} = {1} =⇒ x11 = 1; {x21, x22, x23} = {1, 2, 3}; {x31} = {1} =⇒ x31 = 1



This coding allows to reformulate the learning problem into a variable as-
signment problem. Furthermore, as the Feature-tagged Examples belong to the
same FT (G) for some G in Gf , the same variables are used for every occurrence
of the same couple 〈word, multiset〉 in the set of Feature-tagged Examples.

Second Step: Constraints Deduction. This step consists in deducing con-
straints applying on the variables. Each Example is treated one after the other.
For a given Example, we call Ti the multiset associated with the ith word. Each
initial sentence of n words is then replaced by a sequence of n multisets. Con-
straint deduction takes the form of rules that mimic the rules I and F used for
the parsing of PGs in section 2.2. Constraints coming from the same syntactic
analysis are linked by a conjunction, constraints from distinct alternative syn-
tactic analyses are linked by a disjunction. For each sentence, we thus obtain
a disjunction of conjunctions of basic constraints (that we call data constraint)
where each basic constraint consists in an exponent part and a position part.

Let Tm = {(pu
mi, xmi)1≤i≤k} and Tm′ = {(pu′

m′j , xm′j)1≤j≤k′} be two consecu-

tive sets (at the beginning: m′ = m+1). If ∃(pu
mi0

, xmi0)∈Tm and ∃(pu′

m′j0
, xm′j0)∈

Tm′ such that pmi0 ≤ pm′j0 or pm′j0 ≤ pmi0 then:

– Position constraints:
· ∀i 6= i0, ∀xmi ∈ Tm: xmi0 > xmi

· ∀j 6=j0, ∀xm′j ∈Tm′ : xm′j0 <xm′j

– Exponent constraints:
· (all cases) u′ = u + 1
· IF pm′j0 < pmi0 THEN: u is odd
· IF pmi0 < pm′j0 THEN: u is even

– Next sets:
· Tm ←− Tm − (pu

mi0
, xmi0)

· Tm′ ←− Tm′ − (pu′

m′j0
, xm′j0)

For internal reductions, where m = m′, the Position constraint is replaced
by: ∀i 6= i0, i 6= j0: xmi <xmi0 or xmj0 <xmi

Whenever a set Ti becomes empty, drop it. The process ends when the list
gets reduced to some {(pu, x)} where p ≤ s (the constraint u = 0 is deduced).

If a primitive category satisfying the precondition of the rules has several
occurrences in a multiset, any of them can be chosen (they are interchangeable).
By convention, take the one associated with the position variable of smallest
index. Example 6 (further) illustrates this case. To efficiently implement these
rules, an interesting strategy consists in following the parsing steps of section 2.2.

Example 5. Let us see what this algorithm gives on our basic Example 4 where
the initial sequence of multisets is: T1T2T3:

– (πu
3 , x11) ∈ T1 and (πv′

3 , x22) ∈ T2 satisfy the precondition. The position
constraints obtained are: x22 < x21 and x22 < x23. The exponent constraint
is: v′ = u + 1, and the remaining sets are the following: T1 = ∅, T2 =
{(sv

1, x21), (o
v′′

, x23)}, T3 = {(ow, x31)}



– then (ov′′

, x23) ∈ T2 and (ow, x31) ∈ T3 satisfy the precondition. We deduce:
x23 > x21, w = v′′ + 1 and T2 = {(sv

1, x21)}, T3 = ∅. As s1 ≤ s, we obtain
v = 0 and the algorithm stops.

From the constraints: {x21, x22, x23} = {1, 2, 3}, x22 < x21, x22 < x23 and
x23 > x21 we deduce: x21 = 2, x22 = 1 and x23 = 3. The PGs specified by these
constraints are defined up to a translation on the exponents. If we set u = 0 = w,
then v′ = 1 (or v′ = r) and v′′ = −1 (or v′′ = l): the only remaining PG
associates πr

3s1o
l with “loves”. But, in general, solution PGs are only specified

by a set of constraints. We will see that this set can be exponentially smaller
than the set of classes (up to translations) of PGs it specifies.

In an acquisition process, each example gives rise to a new data constraints
that is conjoined to the previous ones. We get a convergence property as follows:

Property 2 Let G ∈ Gf , and FT (G) = {ei}i∈N, the data constraints DCi ob-
tained from the successive ei converges8: ∃n0 ∈ N ∀n ≥ n0 : DCn+1 = DCn

Proof. At some stage N of the acquisition process, the set of primitive categories
and the widths of the categories assigned to each word become known; after this
N , we have only a finite number of possibilities for data constraints, that must
therefore converge.

Even if our acquisition algorithm finds every possible PG compatible with a
set of Feature-tagged Example, it is not enough to make it a learning algorithm
in the sense of Gold. A remaining problem is to identify a unique PG in the
limit. Inclusion tests between Feature-tagged languages may be necessary for
this purpose, and we do not even know if these tests are computable. They
can nevertheless be performed for Feature-tagged Example of bounded length
(this is Kanazawa’s strategy for learning k-valued AB-Categorial Grammars from
strings) but, of course, make the algorithm intractable in practice.

Why Pregroup Grammars and Constraints are efficient. The main weak-
ness of known learning algorithms for Categorial Grammars is their algorithmic
complexity. The only favourable case is when rigid AB-Grammars are to be
learned from Structural Example but this situation is of limited interest. Our
algorithm can still sometimes lead to combinatorial explosion but seems more
tractable than previous approaches, as shown by the following two examples.

Example 6 (First exponential gain). The first gain comes from the associativity
of categories in PGs. Let a word “b” be associated with a category expecting 2n
arguments of a category associated with a word “a”, n of which are on its right
and the other n on its left. The corresponding Feature-tagged Example is:
a ... a b a ... a
e ... e
︸ ︷︷ ︸

n times

{s, e, ..., e
︸ ︷︷ ︸

2n times

} e ... e
︸ ︷︷ ︸

n times

8 we consider constraints written in a format without repetition



This case is equivalent with the problem of learning AB or Lambek Catego-
rial Grammars from the following Typed Example [7, 9]:
a ... a b a ... a
e ... e
︸ ︷︷ ︸

n times

〈e, 〈e, ...〈e
︸ ︷︷ ︸

2n times

, t〉〉...〉 e ... e
︸ ︷︷ ︸

n times

There are
(
2n
n

)
different Categorial Grammars compatible with this input. This

situation occurs with transitive verbs, whose category is T\(S/T ) or (T\S)/T
(both corresponding to the same type 〈e, 〈e, t〉〉, i.e. the example with n = 1).
The distinct categories assigned to “b”by each solution are deductible from one
another in the Lambek calculus. Lambek Grammars are associative, but at the
rule level, whereas PGs are associative at the category level. The only compatible
PG (up to translations) is the one assigning er...er

︸ ︷︷ ︸

n times

s el...el
︸ ︷︷ ︸

n times

to b.

Example 7 (Second exponential gain). Another exponential gain can be earned
from the reduction of the learning problem to a constraints resolution problem.
In the following example, position variables are shown under for readability:

a b c d
{s, m, n} {m, n, o, p} {o, p, q, r} {q, r}

{x11, x12, x13} {x21, x22, x23, x24} {x31, x32, x33, x34} {x41, x42}
There are several PGs compatible with this input, all of which sharing the same
values for exponent variables, but differing in the way they embed the two reduc-
tions to be applied on each distinct category (one solution -up to translations-
is shown above, the other one is shown under). As each choice is independent,
there are 23 = 8 different PGs compatible with this example but defined by a
conjunction of 3 constraints (the first one is displayed on the right).

smln nrmolp proqlr rrq
a b c d ((x12 < x13) ∧ (x22 < x21)) ∨ ((x13 < x12) ∧ (x21 < x22))

snml mnrpol oprrql qrr

4 Conclusion

Pregroup Grammars appear to be an interesting compromise between simplicity
and expressivity. Their link with semantics is still an open question. As far
as learnability is concerned, very few was known till now. This paper provides
theoretical as well as practical approaches to the problem. Theoretical results
prove that learning PGs is difficult unless limitations are known. The practical
approach shows that the limitations can be weakened when rich input data is
provided. These data take the form of Feature-tagged sentences which, although
very informative, are arguably language-independent. The interest of working
with constraints is that the solution grammars are only implicitly defined by the
output. The combinatorial explosion of solution grammars is then sometimes



delayed to the constraint resolution mechanism, as displayed in the examples.
As many current learning algorithms are unification-based [4, 16], the use of
constraints may also be seen as a natural generalization of such techniques. What
remains to be done is to study further the properties of our algorithm, both from
the point of view of tractability, and from the point of view of formal properties
and to exploit further the good properties of bounded width grammars.
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