
Transforming XML trees for efficient
classification and clustering

Laurent Candillier1,2, Isabelle Tellier1, Fabien Torre1

1 GRAppA - Charles de Gaulle University - Lille 3
http://www.grappa.univ-lille3.fr
candillier@grappa.univ-lille3.fr

2 Pertinence - 32 rue des Jeûneurs -75002 Paris
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Abstract. Most of the existing methods we know to tackle datasets
of XML documents directly work on the trees representing these XML
documents. We investigate in this paper the use of a different kind of
representation for the manipulation of XML documents.
Our idea is to transform the trees into sets of attribute-values, so as to be
able to apply various existing methods of classification and clustering on
such data, and benefit from their strengths. We apply this strategy both
for the classification task and for the clustering task using the structural
description of XML documents alone.
For instance, we show that the use of boosted C5 [1] leads to very good
results in the classification task of XML documents transformed in this
way. The use of SSC [2] in the clustering task benefits from its ability to
provide as output an interpretable representation of the clusters found.
Finally, we also propose an adaptation of SSC for the classification of
XML documents, so that the produced classifier is understandable.

1 Introduction

Most of the existing methods we know to tackle datasets of XML documents
directly work on the trees representing these XML documents. Some methods
are based on the use of metric distances to compare the trees: the edit distance,
minimum number of mutations required to change a tree into another one [3,4],
or the number of paths they share [5–7]. Other methods aim at discovering
frequent subtrees in the data [8, 9].

We investigate in this paper the use of a different kind of representation for
the manipulation of XML documents. We propose to transform the trees into sets
of attribute-values. In [10], the authors used such an idea to take into account the
structure when classifying XML documents. But the representation they chose
for the trees was a simple bag-of-tags. We propose to use richer features: the
set of parent-child relations, the set of “next-sibling” relations, the set of paths
starting from the root and the arity of the nodes.

The use of such representations allows us to apply various existing methods
for classifying or clustering sets of XML documents. And we can thus benefit from
the strengths of these methods. In particular, our experiments exhibit very good



results when applying boosted C5 [1] on sets of XML documents transformed in
this way. The use of SSC [2] for clustering tasks on such transformed datasets
also benefits from its ability to provide as output an interpretable representation
of the clusters found. Moreover, we also propose in this paper an adaptation of
SSC for the classification of XML documents, so that the produced classifier is
understandable.

The remainder of the paper is organized as follows: in section 2, we present
our proposed methodology to transform a tree into a set of attribute-values,
and how such new dataset can be used for classification tasks; in section 3, we
describe the adaptation of the SSC algorithm for XML datasets; the results
of our experiments, conducted on the datasets provided by the XML mining
challenge at INEX [11] on the structure only tasks, are then reported in section 4;
finally, section 5 concludes the paper and suggests topics for future research.

2 Tree transformation

There are many possible ways to transform a tree into a set of attribute-values.
The first basic possibility is to transform the tree into the set of labels present at
its nodes. An XML document would thus be transformed into a simple bag-of-

tags. If the different sets of documents to be identified use different sets of tags,
this representation would be sufficient to distinguish them. However, by doing
that, we do not take into account the structure of the XML trees. To go further,
we propose to construct the following attributes from a set of available trees:

– the set of parent-child relations (whose domain is the set of pairs of tags
labelling the nodes);

– the set of next-sibling relations (whose domain is the set of pairs of tags
labelling the nodes);

– the set of distinct paths (including sub-paths), starting from the root (whose
domain is the set of finite sequences of tags labelling the nodes).

So, we create as many new attributes as distinct features are encountered
in the training set. For each of them, their value for a given document is the
number of their occurences in this document. Finally, we also define as many
new attributes as there are absolute distinct node positions represented in the
trees. The identifier of such a node position can be coded, for example, by a
sequence of integers: the root is coded 0, its first child is coded 0.0, its second
child 0.1, etc. For every identifier of a node position, the value of the attribute for
a document is the arity of the node, that is the number of its child nodes in the
document (whose domain is an integer). So the new introduced attributes all take
their value into the set of natural numbers. As an intuition, such representation
should allow to distinguish, for example:

– two sets of documents that use different tags, or in which the number of
some given tags are different;



– one set of documents in which a given relation (parent-child or next-sibling)
between some given tags is allowed, from another set that does not allow
such a relation;

– or a set of documents in which the number of children of a given node position
is different from the one in another set of documents.

Such representation could lead to a high number of generated attributes.
So the algorithms used to tackle such new datasets should be able to handle
many attributes, and to perform feature selection during their learning process.
In a classification task, C5 [1] is for example well suited. In a clustering task, a
subspace clustering algorithm, that is a clustering algorithm able to characterize
every distinct cluster on a limited number of dimensions (eventually distinct for
each cluster) could be useful. We describe such a method in the next section.

3 Algorithm SSC

SSC [2] is a subspace clustering algorithm based on the use of a probabilistic
model under the assumption that the clusters follow independent distributions
on each dimension. It uses the well-known EM algorithm [12]. SSC has been
shown to be effective, and it is able to provide as output an interpretable rep-
resentation of the clusters found, as a set of rules, and a way to visualize them
effectively. Moreover, a new step of hard feature selection has been added to keep
only the best attributes for each cluster, and thus be less sensitive to irrelevant
dimensions, and faster.

In the next subsections, we first formalize the different steps of the method.
We then present an adaptation for facing datasets of XML documents, and an-
other adaptation for supervised classification. One of the interests of this method
is that it provides an output which can be represented by a hierarchy of tests.

3.1 Formalization of the method

Let us first introduce some notations. We denote by N the number of data points−→
Xi of the input dataset D, and by M the number of dimensions on which they
are defined. We only present here the case where the dimensions are numerical,
but the adaptation for datasets containing also categorical dimensions can be
found in [2].

The basis of our model is the classical mixture of probability distributions
θ = (θ1, ..., θK) where each θk is the vector of parameters associated with the kth

cluster to be found, denoted by Ck (we set to K the total number of clusters). In
our model, we suppose that the data follow gaussian distributions. So the model
has the following parameters θk for each cluster Ck : πk denotes its weight, µkd

its mean and σkd its standard deviation on dimension d. We then use the EM

algorithm [12] to find the model parameters that best fit the data.
The E-step consists in computing the membership probability of each data

point
−→
Xi to each cluster Ck with parameters θk. In our case, dimensions are



supposed to be independent. So the membership probability of a data point to
a cluster is the product of membership probabilities on each dimension:
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Then the M-step consists in updating the model parameters according to the
new class probabilities as follows:
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These two steps iterate until a stopping criterion is reached. Usually, it stops
when the log-likelihood of the model to the data, LL(θ|D) =

∑

i log P (
−→
Xi|θ),

increases less than a small positive constant δ from one iteration to another.
But in order to cope with the problem of slow convergence with the classical
EM algorithm, it has been shown in [2] that adding the following k-means like

stopping criterion is effective: stop whenever the membership of each data point
to their most probable cluster does not change from one iteration to another. To
do this, we introduce a new view on each cluster Ck, corresponding to the set of
data points belonging to it:

Sk = {−→Xi|ArgmaxK
j=1P (

−→
Xi|θj) = k}

The set of all Sk thus define a partition on the dataset.
And finally, to cope with the problem of sensitivity to the choice of the initial

solution, we run the algorithm many times with random initial solutions and keep
the model that optimizes the log-likelihood of the model to the data LL(θ|D).

Moreover, a new step of hard feature selection has been added to keep only
the best attributes for each cluster. This is done by using a user parameter,
denoted by nb ds, that specifies how many attributes to keep for each cluster.
Thus, for each cluster, the attributes of highest weights are kept, and the others
are ignored. These weights Wkd are computed as the ratio between local and
global standard deviations:

Wkd = 1 − σ2
kd

σ2
d

, with σ2
d =

1

N

∑

i

(Xid − µkd)
2

To make the results as comprehensible as possible, we now introduce a third
view on each cluster, corresponding to its description as a rule defined with as
few dimensions as possible.



Although we have already selected a subset of dimensions relevant for each
cluster, it is still possible to prune some and simplify the clusters representation
while keeping the same partition of the data. See figure 1 as an example. In
this case, the cluster on the right is dense on both dimensions X and Y . So its
true description subspace is X × Y . However, we do not need to consider Y to
distinguish it from the other clusters: defining it by high values on X is sufficient.
The same reasoning holds for the cluster on the top and the dimension Y .
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Fig. 1. Example of minimal description.

To do this dimension pruning, we first create the rule Rk associated with the
current cluster Ck. We now only consider the set of dimensions considered as
relevant according to the previous selection, and associate with the rule Rk the
smallest interval containing all the coordinates of the data points belonging to
Sk. We then compute the support of the rule (the set of data points comprised
in the rule). This step is necessary since it is possible that some data points
belong to the rule but not to the cluster. And then, for all relevant dimensions d

presented in ascending order of their weights Wkd, we delete the dimension from
the rule if the deletion does not modify its support.

3.2 Adaptation for clustering XML documents

For ease of interpretation, and to speed up the algorithm for clustering XML
documents based on their structure, we propose to adapt SSC so that the dataset
is recursively cut into two parts according to a given set of attributes associated
with the trees. The output of our clustering method is then a hierarchy in which
each node represents a test on various attributes.

Before giving more details on our procedure, let us introduce some notations.
A denotes the set of possible attributes associated with the XML documents. As
presented in the previous section, A can be partitioned into groups of attributes
of increasing complexity:

– we call A1 the set of tags,
– A2 is the set of parent-child relations,
– A3 is the set of next-sibling relations,
– A4 is the set of node positions,
– and A5 is the set of paths starting from the root.



A is thus composed of SA = 5 classes of attributes. Finally, we denote by
Cut(Ck, Ai) the partitionning into two parts of the dataset that is made of the
documents included in the cluster Ck, and transformed with the given set of
attributes Ai.

The main steps of our new clustering method are presented by algorithm 1.
It consists in choosing at each step the cut of highest interest, among all the
possible cuts of the current clusters Ck for k ∈ [1..K] on the possible sets of
attributes Ai ∈ A, until the desired number of clusters is reached. The interest of
partitionning the elements of the cluster Ck with the attributes of Ai is computed
as the ratio between the log-likelihood of a partition with two clusters and the log-

likelihood of a partition with only one cluster, weighted by the number of data
points in Ck, to prefer the divisions of clusters containing many data points.
The output of the procedure is a hierarchy in which each node corresponds to a
membership test to a rule, created as presented in the previous subsection, and
defined with as few attributes as possible.

Algorithm 1 SSC for XML

Input: the dataset D of XML documents and the desired number of clusters nb clus

- set K, the current number of clusters of the partition, to 1
- initialize the unique cluster C1 with all the documents of the dataset D

- create a new empty hierarchy H

while K 6= nb clus do

for all k ∈ [1..K] do

for all i ∈ [1..SA] do

- compute the interest of Cut(Ck, Ai)
end for

end for

- select and perform the cut of highest interest
- compute the associated rule and add it to the hierarchy H

end while

Output: the hierarchy H, with nb clus − 1 tests

3.3 Adaptation for understandable classification

In order to benefit from the ability of the previously presented method to provide
understandable results, we now propose to adapt it for supervised classification.
The new method has two main steps: a first step that is clustering like but uses
the classes, and a second step that is completely guided by the classes.

The first step is described by algorithm 2 and consists in a clustering phase
that allows to mix various classes in one cluster but does not allow a class to be
splitted into different clusters. At this step, we prefer that a cutting rule is defined
on the tags attributes better than on any other set of attributes, because they
are simpler attributes. In the same way, we prefer to use attributes representing
relations between tags (parent-child or next-sibling) than paths information. So



more generally, we prefer using Ai than Aj if i < j. That’s why we perform a cut
each time it is possible, rather than comparing the interest on various possible
cuts, as is done for clustering. The same reasoning will also holds in the next
step.

Algorithm 2 Step 1

Input: the dataset D of XML documents
- initialize the unique cluster C1 with all the documents of the dataset D

- create a new empty hierarchy H

- set CUT = 1
while CUT = 1 do

- set CUT = 0
for all k ∈ [1..K] do

- set CUTk = 0 and i = 1
while CUTk = 0 and i <= SA do

if in Cut(Ck, Ai), no class is splitted into different parts then

- perform the partitionning
- compute the associated rules and update the hierarchy
- set CUTk = 1 and CUT = 1

else

- i = i + 1
end if

end while

end for

end while

Output: the hierarchy H, and the current partition

The second step of our method is described by algorithm 3. It takes as input
the output of the previous step and consists in separating the classes that are still
embedded in the same clusters. It is itself composed of two main steps: the first
one tries to distinguish the classes using rules, in order to be as understandable
as possible, while the second one uses probabilistic models that are richer models,
able to fit more complex decision surfaces.

1. If a rule found is able to discriminate one class from the others, then this
rule is used as the next test in the hierarchy. As has been motivated earlier,
a split is performed as soon as possible.

2. Then, if no rule has been found that is able to discriminate one class from the
others in one given cluster, we test the error rates obtained in cross-validation
with probabilistic models generated on each possible sets of attributes, and
select the one that leads to the lowest error rate as the next test in the
hierarchy.

So in the final hierarchy, the tests on the nodes can be of two different
natures: they can correspond to membership tests to rules, or to probability
tests on probabilistic models. Each of these tests are perfomed on only one set
of attributes at a time.



Algorithm 3 Step 2

Input: the hierarchy H and the partition from the first step
for all k ∈ [1..K] do

while Ck contains different classes do

for all i ∈ [1..SA] do

for all class ∈ Ck do

if a rule is able to distinguish the class from the others then

- perform the partitionning and update the hierarchy
end if

end for

end for

if no split has been done then

for all i ∈ [1..SA] do

- compute the classification error rate in cross-validation of the probabilistic
model generated on the attributes Ai

end for

- choose the model that leads to the lowest error rate and update the hierarchy
end if

end while

end for

Output: the hierarchy H

4 Experiments

Our experiments were conducted on the datasets provided by the XML min-
ing challenge at INEX on the structure only tasks. The classification method
presented in section 2 was applied on all datasets: inex-s, m-db-s-0, m-db-s-1, m-

db-s-2 and m-db-s-3. The results are presented in the first subsection. The other
two methods presented in section 3 were only applied on the m-db-s-0 dataset,
due to the lack of time. Their results are presented in the second subsection.

4.1 Boosted C5 on the transformed datasets

Table 1 presents the number of new attributes generated by transforming the
XML trees into attribute-values for each dataset. We can thus observe that our
method creates many new attributes. In particular, the number of attributes
representing the paths in the trees is very high.

We applied the algorithm C5 [1] boosted 10 times on these datasets. However,
as the number of attributes was too high for C5 on the m-db-s-2 and m-db-s-3

datasets, we did not use the attributes representing the paths in the trees for
these datasets. The error rates obtained in 10-fold cross-validations on all the
datasets are provided in table 2, and show that our proposed methodology has
reasonable error rates.

Table 3 then reports the micro-recall and macro-recall computed on the test
datasets using this method. Datasets m-db-s are all based on the same initial
dataset but each succesive dataset contains more noise than the previous one.
The results of our method thus shows that it is robust to the presence of noise.



number number of number of number of number
dataset of parent-child next-sibling node of total

tags relations relations positions paths

inex-s 150 1038 827 2475 3674 8164

m-db-s-0 197 2172 419 6575 320 9683

m-db-s-1 197 6477 5617 9159 16772 38222

m-db-s-2 196 8953 7455 9183 25628 51415

m-db-s-3 199 10639 9557 8537 37576 66508

Table 1. Number of attributes generated for each dataset.

dataset error rate

inex-s 0.011

m-db-s-0 0.026

m-db-s-1 0.038

m-db-s-2 0.062

m-db-s-3 0.062

Table 2. Error rates of boosted C5 on the datasets transformed into attribute-values.

dataset micro-recall macro-recall

inex-s 0.941 0.958

m-db-s-0 0.968 0.960

m-db-s-1 0.966 0.956

m-db-s-2 0.942 0.932

m-db-s-3 0.947 0.935

Table 3. Micro-recall and macro-recall of boosted C5 on the test datasets transformed
into attribute-values.



4.2 Adaptations of SSC

For reasons of time, the algorithms adapted from SSC were only experimented on
the m-db-s-0 dataset. The parameter nb ds defined in section 3, and representing
the number of most relevant dimensions to be selected for each cluster, was set
to 10.

Our clustering method managed to identify correctly the classes number 1 to
5. It mixed classes number 7 and 9 together, and the remaining classes were also
mixed together. This clustering thus leads to a micro purity of 0.78, a macro

purity of 0.75, a micro entropy of 0.18, a macro entropy of 0.21, and a mutual

information of 1.87 on test data.
The hierarchy formed is presented by figure 2. R4, R10, R6, and R7 are

conjunctions of 10 tests:

– R4 is defined on the attributes representing the next-sibling relations,
– R10 concerns the number of children according to the node positions,
– R6 is defined on the attributes representing the tags,
– and R7 concerns the number of children according to the node positions.

Finally, R11 tests whether the number of paths (BE-AL-AT) is lower or equal
to 1, and if there is no path (BE-AL-AT-AR).

The adaptation of our method for supervised learning leads to very interest-
ing results. The hierarchy obtained is presented by figure 3. We can thus observe
that the given hierarchy is very understandable.

– S2, S3, S4 and S5 represent the probabilities on models based on next-sibling
relations, respectively concerning classes 2, 3, 4 and 5.

– P6 and P11 represent the probabilities on models based on the paths of the
trees, concerning classes 6 and 11.

– And Nb(0.0.0) indicates the number of children of the first grand-child of
the root.

Thus, for example, the membership to class 1 only depends on the presence
of the tag named movie. And in the same way, the membership to class 8 only
depends on the absence of the tags movie, CL, BJ, AJ, and the presence of the
parent-child relation between tags AT and AQ. The error rate of this tree on the
train dataset is 0.03. It misclassified very few documents, except those of classes
6 and 11 that were mixed.

The results of this method on test data were also very reasonable, leading to
a micro-recall of 0.906 and a micro-recall of 0.924.

5 Conclusion

We have shown in this paper that transforming XML document trees into sets of
attribute-values can lead to very promising results, provided that these attributes
are considered as sets of increasing complexity. This representation allows us to



Tag(title) = 0 & Tag(BD) ≤ 2

Parent(AW − BC) = 1
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Fig. 2. Tree obtained when clustering dataset m-db-s-0.



Tag(movie) = 1

1 Tag(CL) = 1

S2 > S3

2 3

Tag(BG) = 1

S4 > S5

4 5

Tag(AJ) = 1

Tag(BA) = 0

7 9

Parent(AT − AQ) = 0

8 Nb(0.0.0) = 0

10 P6 > P11

6 11

Fig. 3. Tree obtained for classifying dataset m-db-s-0.



benefit from the strengths of existing methods. We have also presented a new
original method able to provide an interpretable classifier as an output.

We conjecture it is now possible to go further in the way we transform the
trees. For instance, it is possible to consider as new attributes some forks of the
trees, of some given height and width, or to identify in which part of the trees
the tags or relations between tags are present. But, as has been shown in the
experiments part of the paper, we already constructed a lot of new attributes
with our method. And by using such attributes, we already obtain very good
results.

To take into account such possible differences between trees, a special care
should now be taken to find a compromise between the number of new created
attributes and the information they carry. This point should be studied in further
researchs.
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