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Abstract. Subspace clustering is an extension of traditional clustering

that seeks to find clusters in different subspaces within a dataset. This
is a particularly important challenge with high dimensional data where
the curse of dimensionality occurs. It has also the benefit of providing
smaller descriptions of the clusters found.
Existing methods only consider numerical databases and do not propose
any method for clusters visualization. Besides, they require some input
parameters difficult to set for the user. The aim of this paper is to propose
a new subspace clustering algorithm, able to tackle databases that may
contain continuous as well as discrete attributes, requiring as few user
parameters as possible, and producing an interpretable output.
We present a method based on the use of the well-known EM algorithm

on a probabilistic model designed under some specific hypotheses, allow-
ing us to present the result as a set of rules, each one defined with as few
relevant dimensions as possible. Experiments, conducted on artificial as
well as real databases, show that our algorithm gives robust results, in
terms of classification and interpretability of the output.

1 Introduction

Clustering is a powerful exploration tool capable of uncovering previously un-
known patterns in data [3]. Subspace clustering is an extension of traditional clus-

tering, based on the observation that different clusters (groups of data points)
may exist in different subspaces within a dataset. This point is particularly
important with high dimensional data where the curse of dimensionality can
degrad the quality of the results. Subspace clustering is also more general than
feature selection in that each subspace is local to each cluster, instead of global
to everyone. It also helps to get smaller descriptions of the clusters found since
clusters are defined on fewer dimensions than the original number of dimensions.

Existing methods only consider numerical databases and do not propose any
method for clusters visualization. Besides, they require some input parameters
difficult to set for the user. The aim of this paper is to propose a new subspace

clustering algorithm, able to tackle databases that may contain continuous as
well as discrete attributes, requiring as few user parameters as possible, and
producing an interpretable output. We present a method based on the use of a
probabilistic model and the well-known EM algorithm [14]. We add in our model



the assumption that the clusters follow independent distributions on each dimen-
sion. This allows us to present the result as a set of rules since dimensions are
characterized independently from one another. We then use an original tech-
nique to keep as few relevant dimensions as possible to describe each of these
rules representing the clusters.

The rest of the paper is organized as follows: in section 2, we present existing
subspace clustering methods and discuss their performances; we then describe
our proposed algorithm called SSC in section 3; the results of our experiments,
conducted on artificial as well as real databases, are then reported in section 4;
finally, section 5 concludes the paper and suggests topics for future research.

2 Subspace Clustering

The subspace clustering problem has been recently introduced in [2]. Many other
methods emerged then, among which two families can be distinguished according
to their subspace search method:

1. bottom-up subspace search methods [2,6,8,9] that seek to find clusters in sub-
spaces of increasing dimensionality, and produce as output a set of clusters
that can overlap,

2. and top-down subspace search methods [1,7,12,13,15] that use k-means like

methods with original techniques of local feature selection, and produce as
output a partition of the dataset.

In [10], the authors have studied and compared these methods. They point
out that every method requires input parameters difficult to set for the user, and
that influence the results (density threshold, mean number of relevant dimensions
of the clusters, minimal distance between clusters, etc.). Moreover, although a
proposition was made to integrate discrete attributes in bottom-up approaches,
all experiments were conducted on numerical databases only. Finally, let us note
that no proposition was made for producing an interpretable output. This is
however crucial because although dimensionality of clusters is reduced in the
subspaces specific to them, it can still be too high so that a human user can
easily understand it. Yet we will see that in many cases, it is possible to ignore
some of these dimensions although keeping the same partition of the data.

The next section presents a new subspace clustering algorithm called SSC .
It is top-down like and provides as output a set of clusters represented as rules
that may overlap.

3 Algorithm SSC

Let us first denote by N the number of data points of the input database and
M the number of dimensions on which they are defined. These dimensions can
be continuous as well as discrete. We suppose values on continuous dimensions
are normalized (so that all values belong to the same interval), and denote by
Categoriesd the set of all possible categories on the discrete dimension d, and
Frequencesd the frequences of all these categories within the dataset.



3.1 Probabilistic model

One aim of this paper is to propose a probabilistic model that enables to pro-
duce an interpretable output. The basis of our model is the classical mixture of
probability distributions θ = (θ1, ..., θK) where each θk is the vector of param-
eters associated with the kth cluster to be found, denoted by Ck (we set to K
the total number of clusters). In order to produce an interpretable output, the
use of rules (hyper-rectangles in subspaces of the original description space) is
well suited because rules are easily understandable by humans. To integrate this
constraint into the probabilistic model, we propose to add the hypothesis that
data values follow independent distributions on each dimension. Thus, the new
model is less expressive than the classical one that takes into account the possi-
ble correlations between dimensions. But it is adapted to the presentation of the
partition as a set of rules because each dimension of each cluster is characterized
independently from one another. Besides, the algorithm is thus faster than with
the classical model because the new model needs less parameters (O(M) instead
of O(M2)) and operations on matrices are avoided.

In our model, we suppose data follow gaussian distributions on continuous
dimensions and multinomial distributions on discrete dimensions. So the model
has the following parameters θk for each cluster Ck: πk denotes its weight, µkd its
mean and σkd its standard deviation on continuous dimensions d, and Freqskd

the frequences of each category on discrete dimensions d.

3.2 Maximum Likelihood Estimation

Given a set D of N data points
−→
Xi, Maximum Likelihood Estimation is used

to estimate the model parameters that best fit the data. To do this, the EM

algorithm is an effective two-step process that seeks to optimize the log-likelihood

of the model θ according to the dataset D, LL(θ|D) =
∑

i log P (
−→
Xi|θ):

1. E-step (Expectation): find the class probability of each data point according
to the current model parameters.

2. M-step (Maximization): update the model parameters according to the new
class probabilities.

These two steps iterate until a stopping criterion is reached. Classicaly, it stops
when LL(θ|D) increases less than a small positive constant δ from one iteration
to another.

The E-step consists of computing the membership probability of each data
point

−→
Xi to each cluster Ck with parameters θk. In our case, dimensions are

assumed to be independent. So the membership probability of a data point to a
cluster is the product of membership probabilities on each dimension. Besides,
to avoid that a probability equal to zero on one dimension cancels the global
probability, we use a very small positive constant ε.

P (
−→
Xi|θk) =

M
∏

d=1

max(P (Xid|θkd), ε)



P (Xid|θkd) =
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Then the M-step consists of updating the model parameters according to the
new class probabilities as follows:

πk =
1

N

∑

i

P (θk|
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Xi)

µkd =

∑

i
Xid×P (θk|−→Xi)

∑

i
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√
∑
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P (θk|−→Xi)

Freqskd(cat) =

∑

{i|Xid=cat} P (θk|
−→
Xi)

∑

i P (θk|
−→
Xi)

∀ cat ∈ Categoriesd

It is well known that with the classical stopping criterion, convergence can
be slow with EM. In order to make our algorithm faster, we propose to add
the following k-means like stopping criterion: stop whenever the membership of
each data point to their most probable cluster does not change. To do this, we
introduce a new view on each cluster Ck, corresponding to the set Sk, of size
Nk, of data points belonging to it: Sk = {

−→
Xi|ArgmaxK

j=1P (
−→
Xi|θj) = k}.

It is also well known that the EM algorithm results are very sensitive to the
choice of the initial solution. So we run the algorithm many times with random
initial solutions and finally keep the model optimizing the log-likelihood LL(θ|D).

At this stage, our algorithm needs one information from the user: the num-
ber of clusters to be found. This last parameter of the system can be found
automatically with the widely used BIC criterion [14]:

BIC = −2 × LL(θ|D) + mM log N

with mM the number of independent parameters of the model. BIC criterion
must be minimized to optimize the likelihood of the model to the data. So,
starting from K = 2, the algorithm with fixed K is run and BIC is computed.
Then K is incremented, and iterations stop when BIC increases.

3.3 Output presentation

To make the results as comprehensible as possible, we now introduce a third
view on each cluster corresponding to its description as a rule defined with as
few dimensions as possible.



Relevant dimensions detection In order to select the relevant dimensions
of the clusters, we compare on each dimension the likelihood of our model with
that of a uniform model. Thus, if the likelihood of the uniform model is greater
than the one of our model on one dimension, this dimension is considered to be
irrelevant for the cluster. Let us first define the likelihood of a model θ′ on a
cluster Ck and a dimension d:

LL(θ′|Ck, d) =
∑

−→
Xi∈Sk

log P (Xid|θ
′)

In the case of a uniform model θUc
on continuous dimensions, as we suppose

the database is normalized, we set P (Xid|θUc
) = 1, and so LL(θUc

|Ck, d) = 0.
Thus, a continuous dimension d is considered to be relevant for a cluster Ck if

LL(θkd|Ck, d) > 0

In the case of discrete dimensions, let θUd
be the uniform distribution. Then

we set P (Xid|θUd
) = 1/|Categoriesd|. So LL(θUd

|Ck , d) = −Nk×log |Categoriesd|.
For our model on discrete dimensions,

LL(θkd|Ck , d) =
∑

−→
Xi∈Sk

log Frekskd(Xid)

As LL(θkd|Ck , d) is always greater than LL(θUd
|Ck , d) and both are negative,

we need to introduce a constant 0 < α < 1 and set that d is relevant for the
cluster if

LL(θkd|Ck, d) > α × LL(θUd
|Ck, d)

Dimension pruning Although we have already selected a subset of dimensions
relevant for each cluster, it is still possible to prune some and simplify the clusters
representation while keeping the same partition of the data.
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Fig. 1. Example of minimal description.

See figure 1 as an example. In that case, the cluster on the right is dense on
both dimensions X and Y . So its true description subspace is X × Y . However,



we do not need to consider Y to distinguish it from the other clusters: define it
by high values on X is sufficient. The same reasoning holds for the cluster on
the top.

To do this dimension pruning, we first create the rule Rk associated with
the current cluster Ck . We now only consider the set of dimensions considered
as relevant according to the previous selection. On continuous dimensions, we
associate with the rule the smallest interval containing all the coordinates of the
data points belonging to Sk. For discrete dimensions, we chose to associate with
the rule the most probable category.

We then associate a weight Wkd with each dimension d of the rule Rk. For
continuous dimensions, it is the ratio between local and global standard deviation
according to µkd. And for discrete dimensions, it is the relative frequence of the
most probable category.

Wkd =















1 −
σ2

kd

σ2

d

, with σ2
d =

∑

i
(Xid−µkd)2

N
if d continuous

Freqskd(cat)−Frequencesd(cat)
1−Frequencesd(cat) if d discrete

with cat = Argmax{c∈Categoriesd}Freqskd(c)

We then compute the support of the rule (the set of data points comprised
in the rule). This step is necessary since it is possible that some data points
belong to the rule but not to the cluster. And finally, for all relevant dimensions
presented in ascending order of their weights, delete the dimension from the rule
if the deletion does not modify its support.

4 Experiments

Experiments were conducted on artificial as well as real databases. The first ones
are used to observe the robustness of our algorithm faced with different types
of databases. In order to compare our method with existing ones, we conducted
these experiments on numerical-only databases. Then real databases are used to
show the effectiveness of the method on real-life data (that may contain discrete
attributes).

4.1 Artificial databases

Artificial databases are generated according to the following parameters: N the
number of data points in the database, M the number of (continuous) dimen-
sions on which they are defined, K the number of clusters, MC the mean dimen-
sionality of the subspaces on which the clusters are defined, SDm and SDM the
minimum and maximum standard deviation of the coordinates of the data points
belonging to a same cluster, from its centroid and on its specific dimensions.

K random data points are chosen on the M -dimensional description space
and used as seeds of the K clusters (C1, ..., CK) to be generated. Let us denote

them by (
−→
O1, ...,

−→
OK). With each cluster is associated a subset of the N data



points and a subset (of size close to MC) of the M dimensions that will define
its specific subspace. Then the coordinates of the data points belonging to a
cluster Ck are generated according to a normal distribution with mean Okd and
standard deviation sdkd ∈ [SDm..SDM ] on its specific dimensions d. They are
generated uniformly between 0 and 100 on the other dimensions.

Our method is top-down like. Among the most recent ones, LAC [7] is an
effective method that, as ours, only needs one user parameter: the number of
clusters to be found (if we do not use BIC). So we propose to compare our
method with LAC and provide to both algorithms the number of clusters to be
found. LAC is based on k-means and associates with each centroid a vector of
weights on each dimension. At each step and for each cluster, these weights on
each dimension are updated according to the dispersion of the data points of the
cluster on the dimension (the greater the dispersion, the less the weight).

Figure 2 shows the result of LAC and SSC on an artificial database. On
this example, we can observe a classical limitation of k-means like methods
over EM like methods: the first ones do not accept that data points belong to
multiple clusters whereas the second ones give to each data point a membership
probability to each cluster. Thus, contrary to EM like methods, k-means like

methods are not able to capture concepts like the one appearing in figure 2 (one
cluster is defined on one dimension and takes random values on another, and
conversely for the other one) because of the intersection between clusters.
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Fig. 2. LAC versus SSC.

Experiments conducted on artificial databases with different generation pa-
rameters pointed out the robustness of our method. In particular, we observe
that it is resistant to noise (see figure 3(a)). Accuracy of the partition is measured
by the average purity of the clusters (the purity of a cluster is the maximum
percentage of data points belonging to the same initial concept). With 20% of
noise in the database, the average purity of the clusters is 90 for SSC while only
76 for LAC.



Our method is also robust to missing values. When summing over all data
values on one dimension, the only thing to do is to ignore the missing values.

Concerning the execution time of our algorithm, experiments pointed out
that the acceleration heuristic we proposed in section 3.2 is effective: for results
of the same quality, the computing times of SSC with the heuristic are nearer
to that of LAC (k-means like methods are well known for their efficiency) than
to that of SSC without the heuristic (see figure 3(b)).

 0

 20

 40

 60

 80

 100

 0  5  10  15  20

M
ea

n 
pu

rit
y 

of
 th

e 
cl

us
te

rs

Noise percentage in the database

LAC
SSC

(a) Resistance to noise varying be-
tween 0 and 20%.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  500  1000  1500  2000

M
ea

n 
ex

ec
ut

io
n 

tim
e 

(in
 s

ec
on

ds
)

N : total number of data points in the database

LAC
SSC with heuristic

SSC without heuristic

(b) Execution time according to
200 < N < 2000.

Fig. 3. Artificial tests with N = 600, M = 30, K = 5, MC = 3, SDm = 2, SDM = 5.

Let us finally note that the results of our method are still robust even if data
were generated by uniform distributions inside given intervals on the specific
dimensions of the clusters, instead of normal distributions.

4.2 Real databases

Experiments were also conducted on real databases. Among them, the Automo-

bile database coming from UCI repository [4] contains the description of 205 cars
defined by a mix of 16 continuous and 10 discrete attributes. On this database,
the three clusters found by SSC are characterized with a mean of only four
dimensions. It thus points out that our method is effective in reducing the di-
mensionality, and thus giving an interpretable description of the clusters found.

Besides, this reduced description also allows us to compute with few cost a
weight associated with each couple of relevant dimensions corresponding to the
visualization power of this couple (remind Wki is the weight, for the cluster Ck,
of the dimension i):

Vij =

K
∑

k=1

max(Wki, Wkj)



The graphical visualizations corresponding to the two more visual couples of
dimensions in the case of the Automobile database are provided figure 4. It thus
visually shows that the price of cars increases a lot when their length exceeds
170 (figure 4(a)), that the cars with rear-wheel drive (rwd) have an average
higher curb-weight than cars with front-wheel drive and 4-wheel drive (figure
4(b)), and that the majority of the most expensive cars are rear-wheel drive

(correspondance between both figures concerning cluster C2).
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Fig. 4. Results of SSC on the Automobile database for K = 3.

5 Conclusion

We have presented in this paper a new subspace clustering method based on the
use of a probabilistic model with the specific assumption that data were following
independent distributions on each dimension. This idea has already been studied
in [11]. But the method described by the authors differs from ours on some points.
First, instead of using a mixture of gaussians on continuous dimensions, they use
a mixture of uniform density M-dimensional hyper-rectangles supplemented with
gaussian “tails”, depending on a parameter σ that decreases during execution.
Thus, their method is not adapted for incremental learning, whereas SSC can
update its model when new data points arise. Moreover, we effectively integrated
the problem of handling discrete dimensions whereas it was just mentioned as
potential improvements in [11]. We have also proposed an original technique of
dimension selection allowing us to provide as output an interpretable and visual
representation of the clusters found.

Besides, we have proposed an original heuristic to speed up our algorithm.
To continue our investigation in that direction, it seems interesting to take into
account the work of [5] that is about the acceleration of the EM algorithm in
the general case. Another way should be to consider only relevant dimensions
during the iteration process.



Finally, we think it can be interesting to adapt our method for supervised
or semi-supervised learning. And it should also be interesting to study the effec-
tiveness of our method in a feature selection task.
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