Automates temporisés

introduction par un néophyte –

Partie I / II – Mots et automates temporisés

Mercredi 30 octobre 20002 – ÉNS Lyon

Jérôme DURAND-LOSE

jerome.durand-lose@ens-lyon.fr

MC2 LIP - ÉNS Lyon

Plan

- 1. Automates (non temporisés)
 - (a) Mots / langages / Automates finis
 - (b) Extensions non temporisées (mots infinis)
- 2. Mots et langages temporisés
 - (a) Définitions
 - (b) Opérations, propriétés
- 3. Automates temporisés
 - (a) Définitions, exemple
 - (b) Automate des régions
- 4. Quelques complexités
 - (a) Non clos par complémentaire
 - (b) Vacuité est PSPACE-complet
 - (c) Universalité est co- $\mathcal{R}.\mathcal{E}$.-complet

Automates Finis (non temporisés)

1. Mots / langages

2. Automates finis

3. Utilités

Mots, langages et leurs opérations

- Alphabet : ensemble fini Σ (e.g. $\{a,b,c\}$)
 Mot : suite finie de lettre (e.g. aabb)
 Opération : concaténation (e.g. $aabb \cdot dc = aabbdc$)
 (monoïde libre)
- **▶** Langage : ensemble de mots Opérations ensemblistes : CL, $L_1 \cup L_2$, $L_1 \cap L_2$,... Opérations particulières : $L_1 \cdot L_2$, L^* ,...
- Langages rationnels (regular), expression rationnelle...
 Lemme et Théorème de l'étoile

Automates finis

$$\mathcal{A} = (\Sigma, Q, I, F, \Delta)$$

Q: ensemble fini d'états (I: initiaux, F: acceptants)

 Δ : ensemble des transitions

Reconnaissance... $\mathcal{L}(\mathcal{A})$

- Théorème de Kleene
- Constructions pour $\mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$, $\mathcal{L}(\mathcal{A}_1) \cdot \mathcal{L}(\mathcal{A}_2)$, $\mathcal{L}(\mathcal{A})^*$, $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$, . . .
- ullet Déterminisation, minimisation, $\mathcal{CL}(A),\ldots$

Utilités

- Langage
 - Reconnaissance de motif, d'information
 - Compilation, éléments lexicographiques
- Automatisme
 - Modélisation de systèmes
 - Vérification
- Extensions nécessaires
 - Comportement sans fin ?
 - Temporisation ?

ω -langages

- ω -mot : suite infinie de lettres ω -langage : ensemble d' ω -mots
- ω-automate (seule la longueur du parcours change)
 Inf: états infiniment visités par un parcours

Büchi Muller
$$F\subseteq Q \qquad \mathcal{F}\subseteq \mathcal{P}(Q)$$
 Accepté ssi $\inf\cap F\neq\emptyset \qquad \inf\in\mathcal{F}$

Büchi déterministe ⊊ Büchi = Muller (déter. ou non)

• ω -expression régulière : $(< e.r.>) \cdot (< e.r.>)^{\omega}$ (Mc.Nauton) équivalent Muller

Langages sur les ordinaux

Mot / ordinaux :

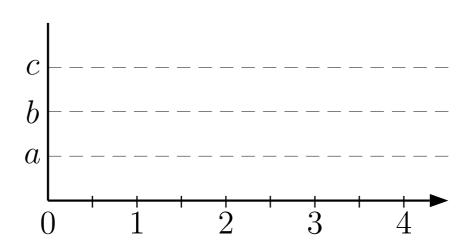
suite infinie de lettres indexée par des ordinaux

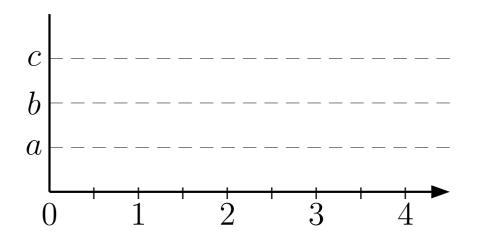
$$0, 1, \ldots \omega, \omega + 1, \ldots 2\omega, 2\omega + 1, \ldots 3\omega \ldots$$

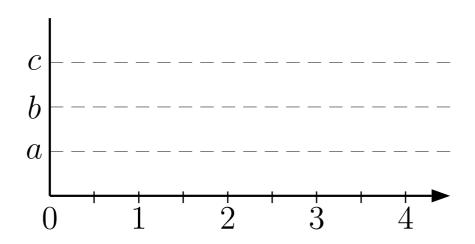
 $\omega^{2}, \omega^{2} + 1, \ldots \omega^{2} + \omega, \omega^{2} + \omega + 1, \ldots \omega^{2} + 2\omega, \omega^{2} + 2\omega + 1, \ldots$
 ω^{3}, \ldots
 $\ldots 7\omega^{6} + 5\omega^{3} \ldots$

- Définition de langages, d'automates, d'é.r...
- Pas mal étudiés au siècle dernier : Büchi, Choueka, Hermmer & Volper, Kleene, Wojciechowski

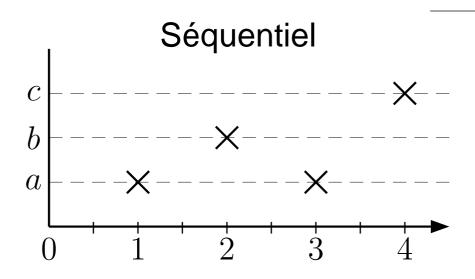
Mot non temporisé : abac

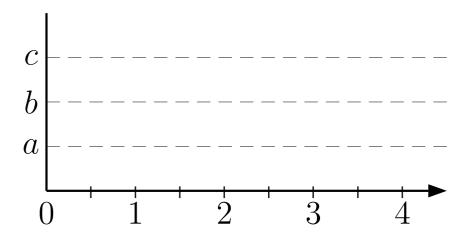


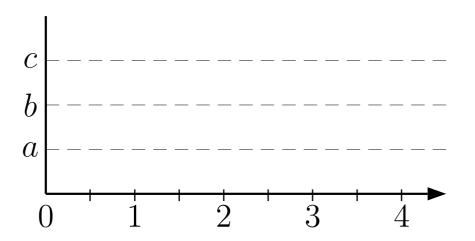




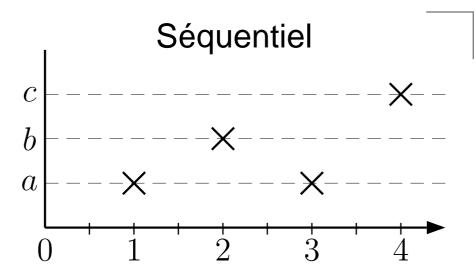
Mot non temporisé : abac

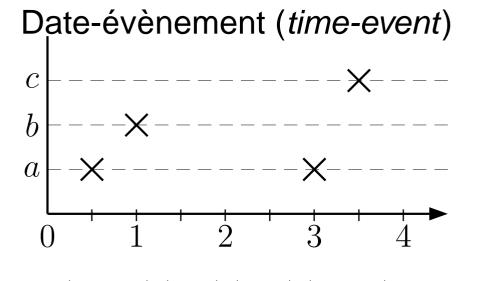


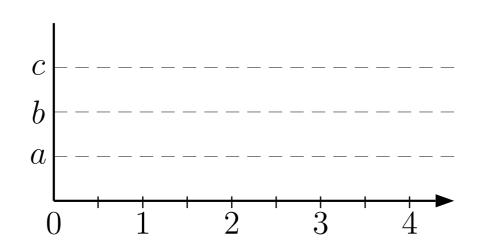




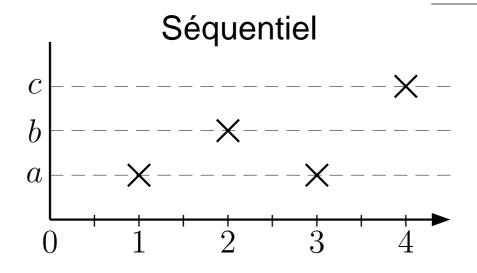
Mot non temporisé : abac

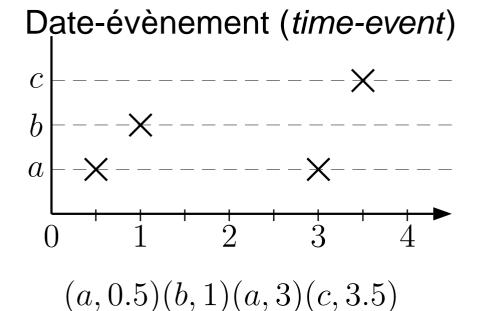




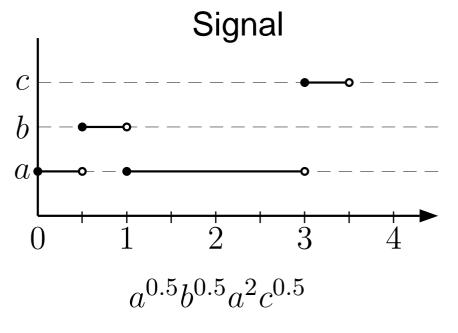


Mot non temporisé : abac

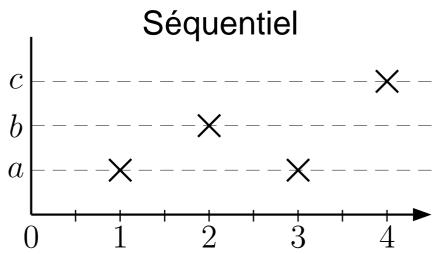


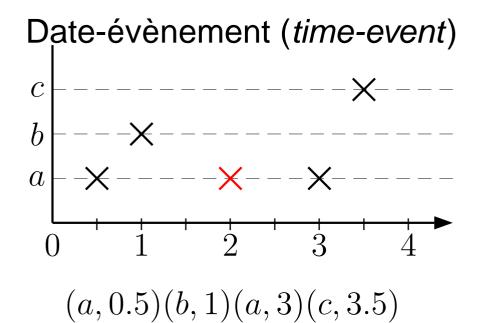


 $a^{0.5}b^{0.5}a^2c^{0.5}$

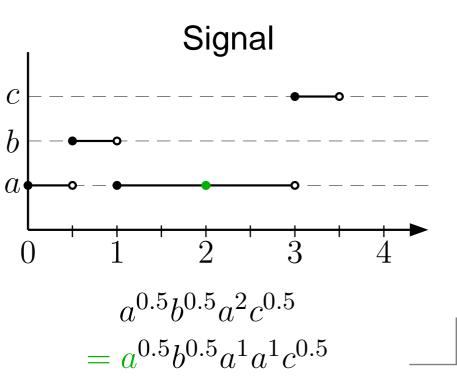


Mot non temporisé : abac

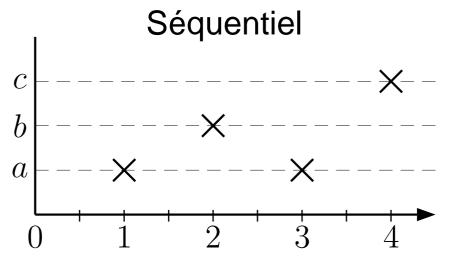


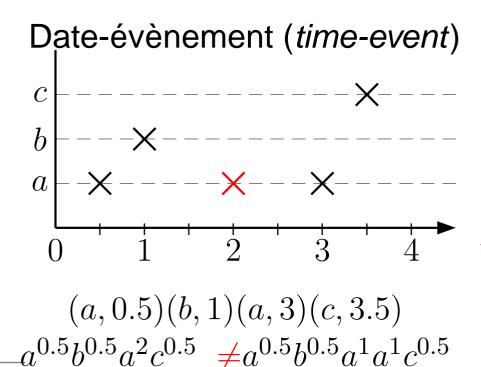


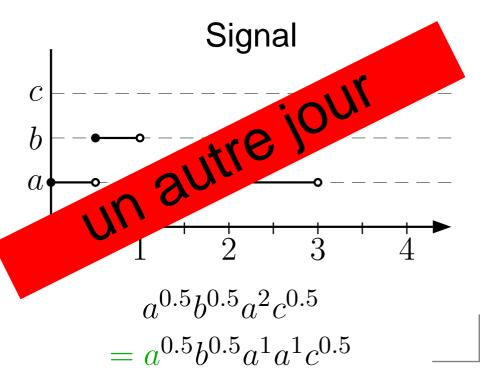
 $-a^{0.5}b^{0.5}a^2c^{0.5} \neq a^{0.5}b^{0.5}a^1a^1c^{0.5}$



Mot non temporisé : abac







Langages temporisés et opérations

- **Durée** d'un mot |(a, 0.5)(b, 1)(a, 3)(c, 3.5)| = 3.5
- Concaténation classique

$$(a,0.5)(b,1)(a,3)(c,3.5) \bullet (a,0.5)(b,1)(a,3)(c,3.5)$$

$$= (a,0.5)(b,1)(a,3)(c,3.5)(a,4)(b,4.5)(a,6.5)(c,7)$$

- **Concaténation superposition** si consécutive / disjointe $(a,0.5)(b,1)(a,3)(c,3.5) \circ (a,0.5)(b,1)(a,3)(c,3.5)$ indéfini $(a,0.5)(b,1)(a,3)(c,3.5) \circ (a,4)(b,4.5)(a,6.5)(c,7)$ = (a,0.5)(b,1)(a,3)(c,3.5)(a,4)(b,4.5)(a,6.5)(c,7)
- Langage temporisé : ensemble de mots temporisés Opérations
 - •, ∘ et deux étoiles de KLEENE : * et ⊛
 - ▶ Filtre sur durée : $\langle L \rangle_I = \{ m \in l \mid |m| \in I \}$ \rightsquigarrow Aspects algébriques [Asarin et al., 2002]

Discret \longleftrightarrow continu

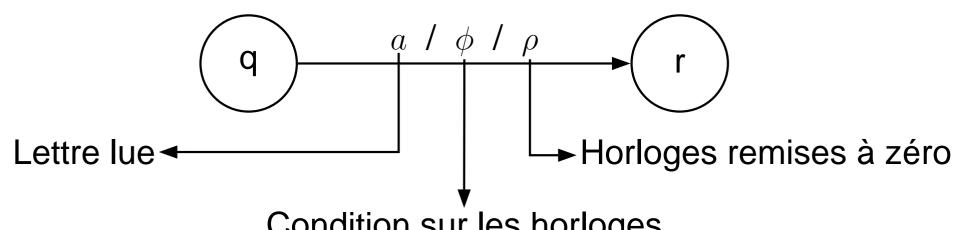
- Successions simultanées $(a,0.5)(a,1)(b,1)(a,1)(a,2)\dots$ on peut l'exclure ou non
- Mots infinis pour comportement sans fin $\sim \omega$ -mots temporisés
- Possibilité d'accumulation(s) (a, 0.9)(a, .99)(b, .999)(a, .9999)(a, .99999)...
- Interdiction des configurations Zénon sinon → mots temporisés sur des ordinaux [Bérard and Picaronny, 2000]

Automate temporisé

$$\mathcal{A} = (\Sigma, Q, I, F, Z, \Delta)$$

Z: ensemble fini d'horloges,

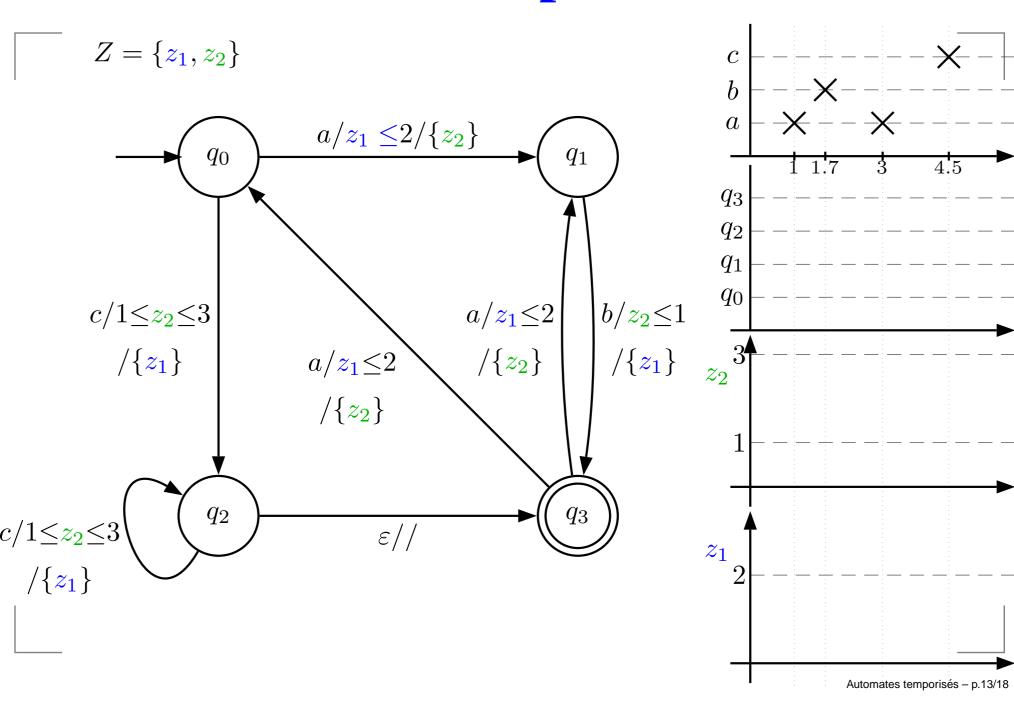
 Δ : ensemble fini de transitions

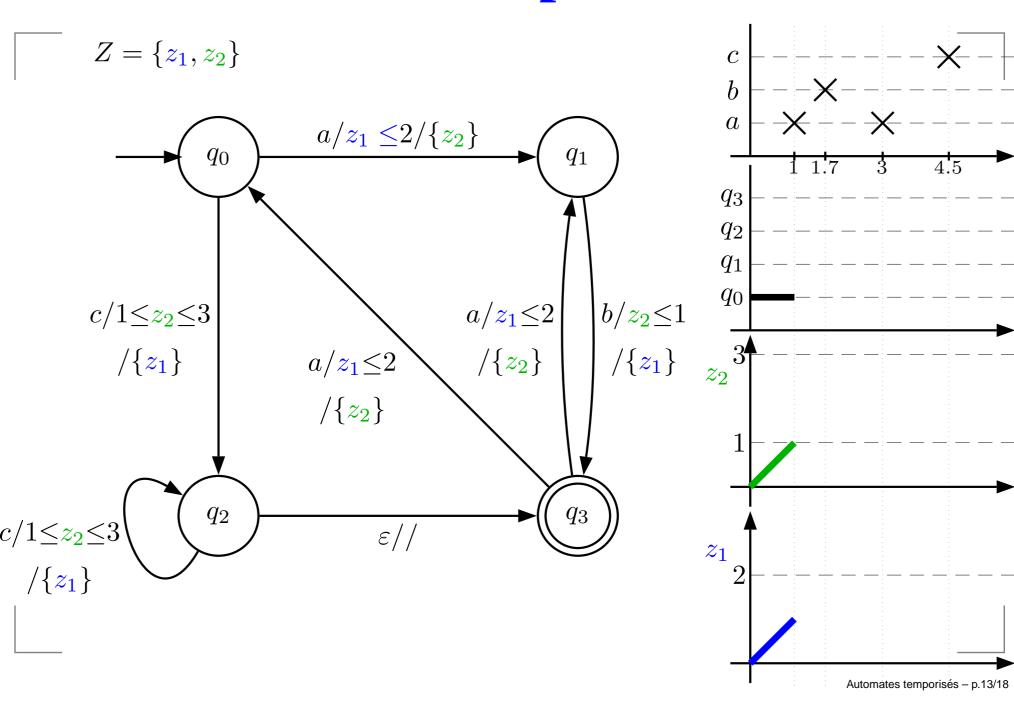


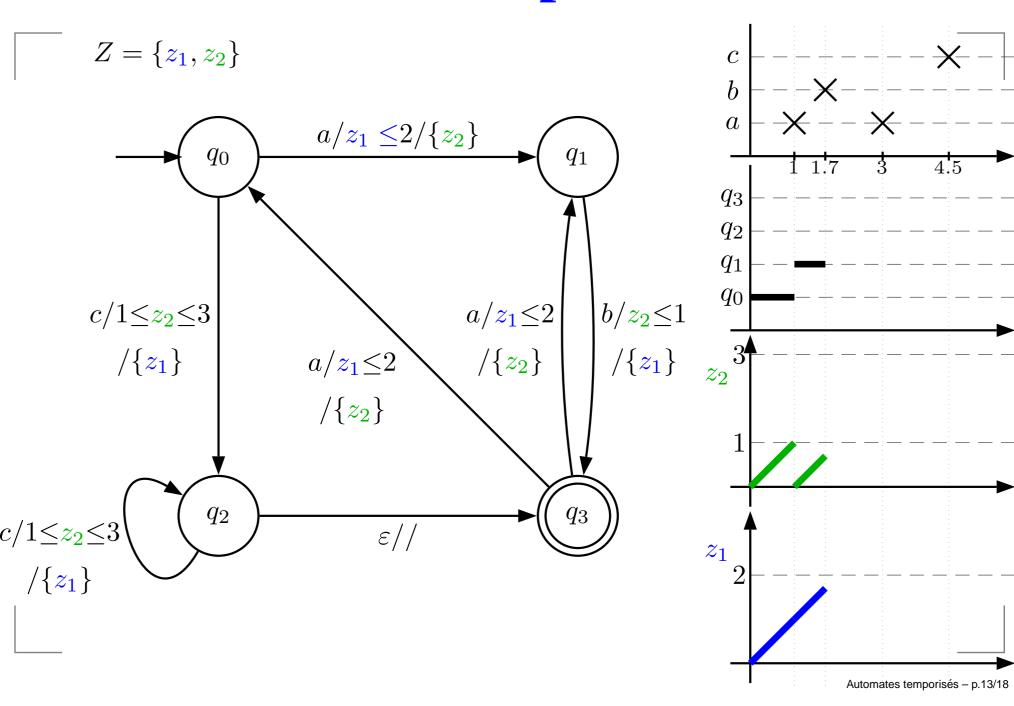
Condition sur les horloges

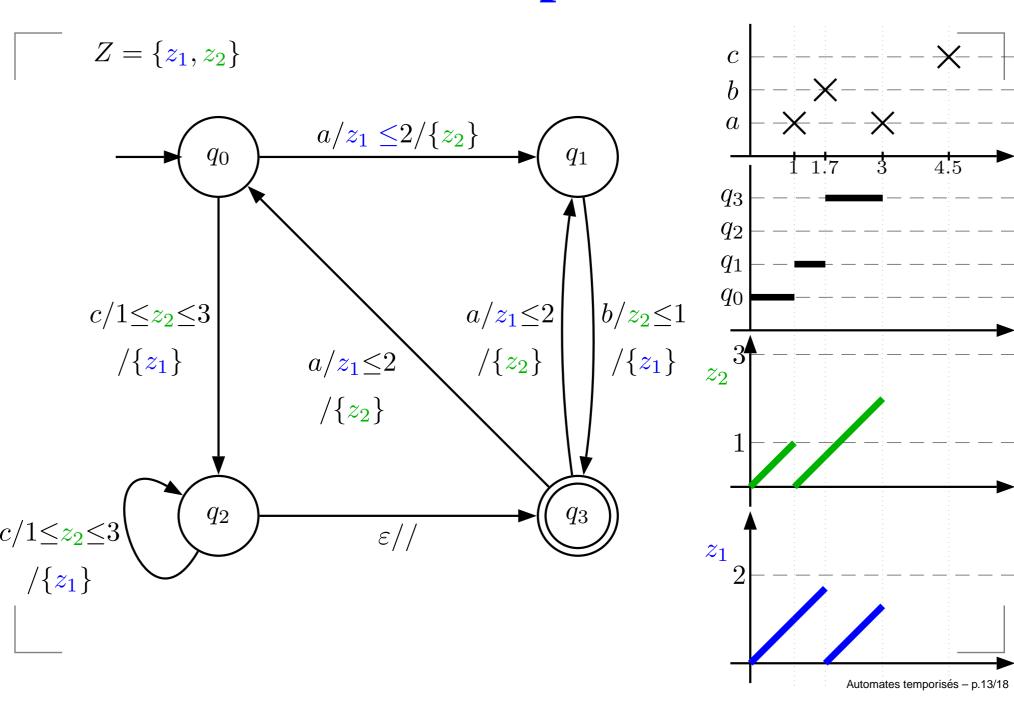
$$z \leq c$$
, $z < c$, $\phi_1 \lor \phi_2$, $\neg \phi$

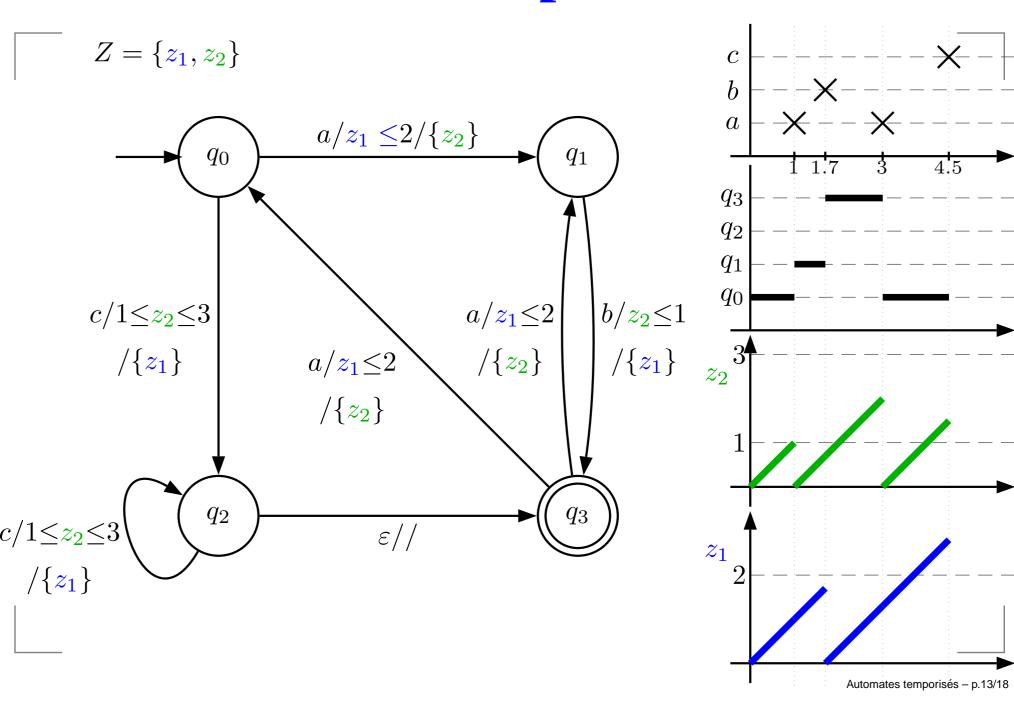
 $c \in \mathbb{R}, \mathbb{Q}, \mathbb{N}$ (clauses plus complexes)

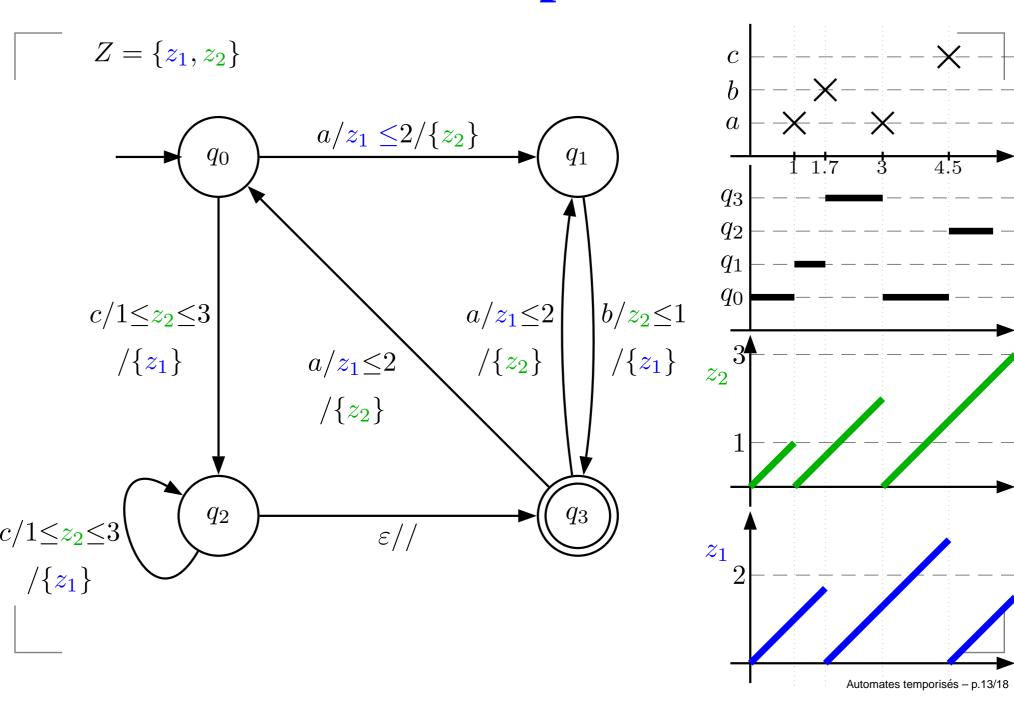


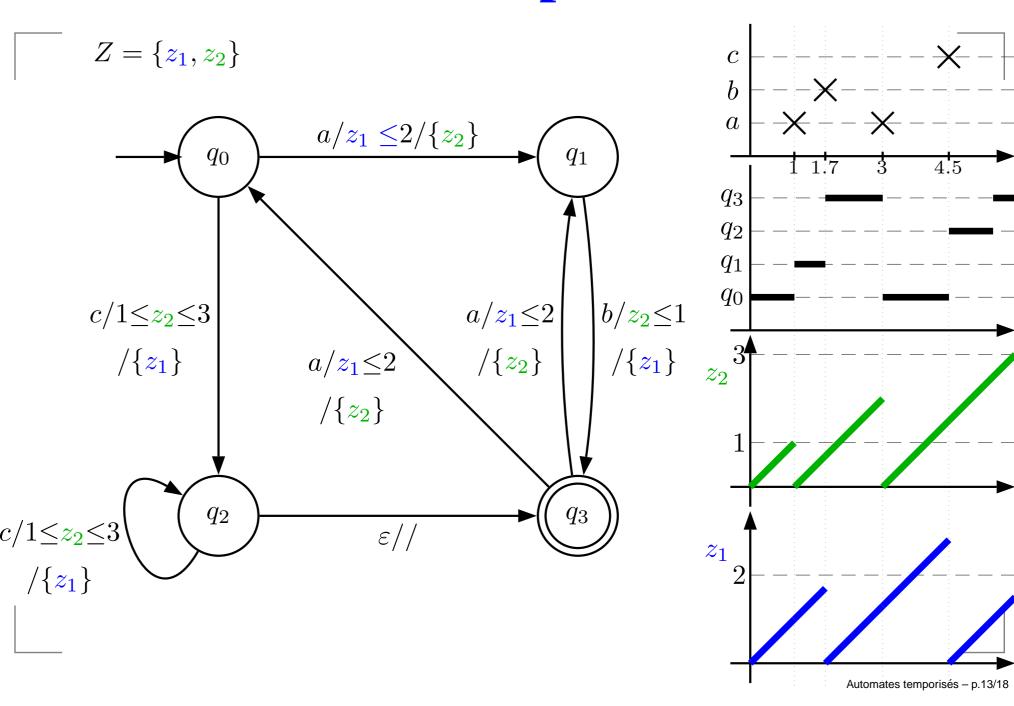












Langage temporisé correspondant?

En oubliant toute la partie temporisation :

$$((ab)^{+}|c^{+})(a((ab)^{+}|c^{+}))^{*}$$

Existe-t-il une temporisation pour chacun de ses mots?

Langage temporisé correspondant?

En oubliant toute la partie temporisation :

$$((ab)^{+}|c^{+})(a((ab)^{+}|c^{+}))^{*}$$

- Existe-t-il une temporisation pour chacun de ses mots ?
 Oui, avec des conditions du type :
- tout a est au plus à 2 unités de temps après le dernier b ou c précéder tout b est au plus à 1 unité de temps après le dernier a précédent tout c est entre 1 et 3 unités de temps après le dernier a précédent
 - Liens avec la logique temporelle

Langage temporisé correspondant?

En oubliant toute la partie temporisation :

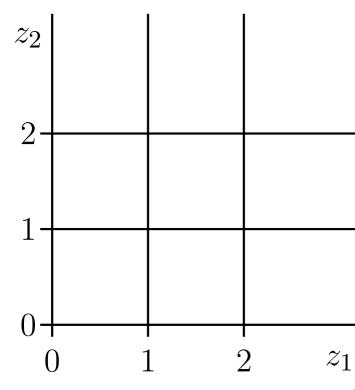
$$((ab)^{+}|c^{+})(a((ab)^{+}|c^{+}))^{*}$$

- Existe-t-il une temporisation pour chacun de ses mots ?
 Oui, avec des conditions du type :
- tout a est au plus à 2 unités de temps après le dernier b ou c précéder tout b est au plus à 1 unité de temps après le dernier a précédent tout c est entre 1 et 3 unités de temps après le dernier a précédent
 - Liens avec la logique temporelle
 - <<Expressions rationnelles>>
 [Asarin et al., 2002] [Bouyer and Petit, 2002]

Clos par...

- Union (facile car non déterministe)
- Intersection (produit habituel d'automate)
- Concaténation (recoller en remettant les horloges à 0)
- Superposition consécutive (recoller sans remise à 0)
- Itérations finies (* et ®)
- Restriction sur la durée (une horloge en plus)
- Complément (?)
- Déterminisation (?)
- Automate minimal (?)

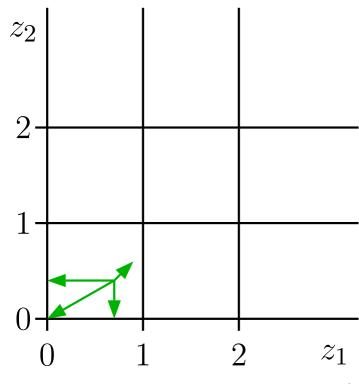
- On suppose les constantes des contraintes dans $\mathbb Q$ En changeant d'échelle elles sont dans $\mathbb N$ (dans [[1,C]])
- Découpage de l'espace des temps en Clock regions Lieux où les contraintes sont constantes
 - Être sur un entier ou entre 2 $\{0\}, (0,1), \{1\}, (1,2), \{2\}, (2,\infty)$



Augmentation exponentielle de la taille des données

nombre de séparations de l'ordre de la plus grande constante... écrite en binaire

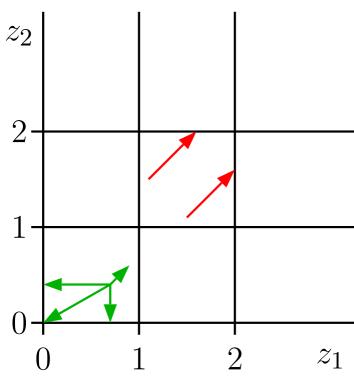
- On suppose les constantes des contraintes dans $\mathbb Q$ En changeant d'échelle elles sont dans $\mathbb N$ (dans [[1,C]])
- Découpage de l'espace des temps en Clock regions Lieux où les contraintes sont constantes
 - Être sur un entier ou entre 2 $\{0\}, (0,1), \{1\}, (1,2), \{2\}, (2,\infty)$
 - Mouvements autorisés :
 - projection(s) (remise(s) à 0)
 - le temps avance suivant $\overline{1}$



Augmentation exponentielle de la taille des données

nombre de séparations de l'ordre de la plus grande constante... écrite en binaire

- On suppose les constantes des contraintes dans $\mathbb Q$ En changeant d'échelle elles sont dans $\mathbb N$ (dans [[1,C]])
- Découpage de l'espace des temps en Clock regions Lieux où les contraintes sont constantes
 - Être sur un entier ou entre 2 $\{0\}, (0,1), \{1\}, (1,2), \{2\}, (2,\infty)$
 - Mouvements autorisés :
 - projection(s) (remise(s) à 0)
 - le temps avance suivant $\overline{1}$
 - Problème suivant 1!

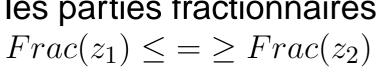


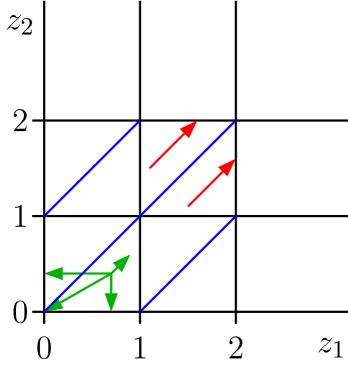
Augmentation exponentielle de la taille des données

nombre de séparations de l'ordre de la plus grande constante... écrite en binaire

- On suppose les constantes des contraintes dans Q En changeant d'échelle elles sont dans \mathbb{N} (dans [[1, C]])
- Découpage de l'espace des temps en Clock regions Lieux où les contraintes sont constantes
 - Être sur un entier ou entre 2 $\{0\}, (0,1), \{1\}, (1,2), \{2\}, (2,\infty)$

- projection(s) (remise(s) à 0)
- le temps avance suivant $\overline{1}$
- Problème suivant 1!
- Pré-ordre total sur les parties fractionnaires





Augmentation exponentielle de la taille des données nombre de séparations de l'ordre de la plus grande constante... écrite en binaire

Region automaton

- Soit R, l'ensemble des régions
- Les régions α et β se succèdent

$$\alpha \preccurlyeq \beta \text{ ssi } \alpha + \lambda \overline{1} \subseteq \beta \text{ avec } \lambda \text{ positif}$$

$$Q' = Q' \times \mathcal{R}$$

$$I' = I = \times \{\overline{0}\}$$

$$F' = F = \times \mathcal{R}$$

$$\begin{array}{c} \bullet & (q,\alpha) \stackrel{a}{\longrightarrow} (r,\beta) \text{ ssi } \left\{ \begin{array}{l} q \stackrel{a/\phi/\rho}{\longrightarrow} r \\ \exists \gamma \in \mathcal{R} \left\{ \begin{array}{l} \phi \text{ vrai sur } \gamma \\ Reset(\gamma,\rho) = \beta \end{array} \right. \end{array} \right.$$

Reconnaît exactement le langage dé-temporisé qui est donc rationnel

Références

- [Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A Theory of timed automata. *Theoretical Computer Science*, 126(2):183–235.
- [Asarin et al., 2002] Asarin, E., Caspi, P., and Maler, O. (2002). Timed regular expressions. *Journal of the ACM*, 49(2):172–206.
- [Bérard and Picaronny, 2000] Bérard, B. and Picaronny, C. (2000). Accepting zeno words: a way towards timed refinements. *Acta Informatica*, 37(1):45–81.
- [Bouyer and Petit, 2002] Bouyer, P. and Petit, A. (2002). A Kleene/Büchi-like theorem for clock languages. *Journal of Automata, Languages and Combinatorics*. To appear.