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Origins
f ® Geometrical mosaic, frieze

o Particle trajectories

# Cellular automata algorithms based on geometrical
constructions

regular movements ~ lines
encouters ~ rules
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M odel
~ ® Simple o

o Minimal
® Deterministic

Meta-signal = state and velocity
Rule = Meta-signals — Meta-signals
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M odél
~ ® Simple

o Minimal
® Deterministic

Meta-signal = state and velocity

Rule = Meta-signals — Meta-signals

Space-time diagram & configuration
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Properties

local

light cone

uniform in space and time
finite number of states
continuous space

continuous time

~ Zeno paradox?
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Computation universal (Turing)

fSimuIate any 2-counter automaton
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Geometrical constructions

-

& Static
» Translations
» Homotecy
# Dynamic
s Freezing
» Translations
s Homotecy

~» Construction with these “operators”
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Freezing the computation

-

Freeze then restore

Following

computation R 4
Following '
computation R 4 R 4
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% peginning =2 beginning

of computation of computation
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Freeze then restore

Freezing the computation
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Contraction toaribbon

Following
computation -V Contraction -~V
%% beginning beginning

of computation of computation
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Contraction to aribbon







Continuous contraction
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Contraction to a square




| solated singularities

fTopological definition of space-time diagrams T

It is not a trace of an execution anymore

Rather an extension

Topological criteria of accumulated values around
singularities
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Non deter minism

T4

o
S
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Infinitely many possibilities
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Non deter minism

S/

Finitely many possibilities
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Second order isolated singularities
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Decidability
| -

Instance
M: rational geometrical machine,
co- finite initial configuration,

Question
Will there be any singularity?

Highly undecidable (X in the arithmetical hierarchy)

Reduction: Accumulation iff there is an initial value for
which the 2 counter automaton does not stop
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Reduction
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Un-isolated singularities
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