La perspective du signal:
 des automates cellulaires aux machines à signaux

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

Journée Graphes et Algorithmes 2008 1^{e} juillet 2008 - LIFO, Orléans
(1) Introduction
(2) Implicit use of signals
(3) Discrete signals
(4) Signal Machines
(5) Conclusion

(1) Introduction

(2) Implicit use of signals

3 Discrete signals

4 Signal Machines
(5) Conclusion

Cellular Automata

1001202020010000202100020021 0123303030322222202232121230 0010032023200220020023002100 0001231230222200002022123000 0000100100022000000200210000 0000012332121012321212300000 0000001003002120030021000000 0000000123101022221230000000 0000000010012022002100000000 0000000001233030123000000000 0000000000100320210000000000 0000000000012312300000000000

$$
\begin{aligned}
& Q=\{0,1,2,3\} \\
& f(x, y, z)=3 x+2 y+z+x y \operatorname{lmage} \text { wit }
\end{aligned}
$$

- Q : finite set of states
- $f: Q^{k} \rightarrow Q$ local function

Dynamical system

Global function, $\mathcal{G}: Q^{\mathbb{Z}} \rightarrow Q^{\mathbb{Z}}$

Orbit and space-time diagram

Value in $Q^{\mathbb{Z} \times \mathbb{N}}$
Image with big pixels

Background and Signals

Background

(2-d) Pattern that may form
a valid space-time diagram by bi-periodic repetition.

Signal

- Pattern that (legally) repeats 1-periodically on a background
- Pattern repeating 1-periodically and separating two backgrounds

Illustration by examples

(1) Introduction

(2) Implicit use of signals

3 Discrete signals
(4) Signal Machines
(5) Conclusion

Understanding the dynamics

(a)

(b)

FIG. 7. Rule 54. (a) Annihilation of the radiating particle. (b) The same as (a) with the mapping defined in Fig. 6.
[Boccara et al., 1991, Fig. 7]

FIG. 7. The four different (out of 14 dossible) interaction products for the $\alpha+\beta$ interaction.
[Hordijk et al., 2001, Fig. 7]

Figure 5. Two collisions of filtrons, and five free filtrons supported by the FPS model; ST diagram applies $q=1$.
[Siwak, 2001, Fig. 5]

Generating prime numbers

[Fischer, 1965, Fig. 2]

Computing by simulating a Turing machine

Figure 4: The $k=4, r=2$ universal cellular automaton of table 4
simulated starting from a random initial state. The symbols 0,1 , u,
and + are represented by $\square \square$
[Lindgren and Nordahl, 1990, Fig. 4]

Firing Squad Synchronization

図 3.5 一斉射繋の問題（連続近似）

G	s_{1}	s_{2}	3_{3}	5.	s，	5 s
		Q	Q	Q	Q	E
$t=0$			Q	Q	Q	E
1	E			Q	Q	E
2	E	1		Q	Q	E
3	E		Q		Q	E
4	E	Q	I_{1}	Q		E
5	E	Q	Q1	Q		＇Ef
6	E	Q				E
7	E	Q			Q	E
8	E		S			E
－ 9			E	E		E
10			E	E		＇Ef
11						E
12						Ea
13	F	F	F	F	F	F

図 3.6 一斉射撃解（ $n=6$ ）
［Goto，1966，Fig．3＋6］

（1）Introduction

（2）Implicit use of signals
（3）Discrete signals
（4）Signal Machines
（5）Conclusion

Firing Squad Synchronization (again)

Notation

[Varshavsky et al., 1970, Fig 1 and 3]

Multiplication

[Mazoyer, 1996, Fig. 1, 3 andx 4]

A whole programming system

[Mazoyer, 1996, Fig. 8 and 19] and [Mazoyer and Terrier, 1999, Fig. 18]

(1) Introduction

(2) Implicit use of signals

3 Discrete signals
(4) Signal Machines
(5) Conclusion

Moving to the continuum

Forget about discreteness

\rightsquigarrow continuous

Vocabulary

- Signal (meta-signal)
- Collision (rule)

New kinds of monsters

Computability and undecidability [Durand-Lose, 2005]

Two-counter simulation

Turing-machine can also
be simulated directly

Undecidable

- total erasing
- finite number of signal
- signal/collision apparition

Scaling down and bounding the duration

Computing inside bounded room

Accumulation forecasting is Σ_{0}^{2}-complete [Durand-Lose, 2006b]

Link with the Black hole model [Durand-Lose, 2006a]

Principe

Two different timelike half-curves such that

- they have a point in common (used to set things and start)
- one is upward-infinite and fully contained in the casual past of a point of the other

Solving recursively enumerable problems

Links with the Blum，Shub and Smale model

Classical BSS model

Variables holds real numbers in exact precision
－input／output
－test $0<x$
－shift（to access other variables）
－compute a polynomial function

Linear BSS［Durand－Lose，2007］

Restriction

－only linear function
－i．e．no inner multiplication

Encoding real numbers

Scale + distance

- Common scale for all variables
- Sign test trivial

Encoding real numbers

Scale + distance

- Common scale for all variables
- Sign test trivial

Encoding real numbers

Scale + distance

- Common scale for all variables
- Sign test trivial

Copy and Addition

External multiplication

Internal multiplication [Durand-Lose, 2008]

Computation

- Pre-treatment to ensure $0<y<1$
- Binary extension of y :

$$
y=\mathrm{y}_{0} \cdot \mathrm{y}_{1} \mathrm{y}_{2} \mathrm{y}_{3} \cdots
$$

- Computation

$$
x y=\sum_{0 \leq i} \mathrm{y}_{i}\left(\frac{x}{2^{i}}\right)
$$

Principe

Computation on the margin the margin is scaling down geometrically

Square rooting is also possible!

(1) Introduction

(2) Implicit use of signals

3 Discrete signals
(4) Signal Machines
(5) Conclusion

- Natural filiation with CA
- Continuous time
- Zeno effect

Links with other models

- Black hole model
- Blum, Shub and Smale model

Future work

- Relate with CA
- Characterize the analog computing power

