Signal Machines: Euclidean dynamical system Introduction and universalities

Florent Becker¹, <u>Jérôme Durand-Lose¹</u> Mohammad-Hadi Foroughmand-Araabi² and Sama Goliaei³

 ¹ Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, france
² Sharif University of Technology, Tehran, Iran
³ University of Tehran, Tehran, Iran

University of South Florida (USF) - May 25th 2017

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality
- Intrinsic Universality
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

2 Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

2D Euclidean Space

- color line segments
- orientation (not going back)

2D Euclidean Space

- color line segments
- orientation (not going back)
- Potential enlargement
- Intersection

2D Euclidean Space

- color line segments
- orientation (not going back)
- Potential enlargement
- Intersection
- Extension

2D Euclidean Space

- color line segments
- orientation (not going back)
- Potential enlargement
- Intersection
- Extension

Rewriting/Collision rule

 $\bullet \ \{b,r\} \longrightarrow \{g\}$

2D Euclidean Space

- color line segments
- orientation (not going back)
- Potential enlargement
- Intersection
- Extension

Rewriting/Collision rule

•
$$\{b, r\} \longrightarrow \{g\}$$

Direction/Slope Imposed by the Color

- (easier)
- origin of the model

Cellular Automata

Cellular Automata

Cellular Automata

Cellular Automata

Cellular Automata: Signal Use

Firing Quad Synchronization [Goto, 1966]

G	· s ₁ .	\$2	83	5.	85	54
*	a	Q	Q	Q	Q	E
1=0	f's'Efs	a	Q	Q	Q	E
1	E	Q2f	a	Q	Q	E
2	Ē	Q1	QI	a	Q	Е
3	Е	Q&	Q	QI	~ ~	E
4	E	Q	Q2	Q	QI	Е
5	E	Q	01	Q	a	f'Ef
6	Е	Q	QS .	a	1.0	Е
7	Е	Q	Q	a Q*)	Q	Е
8	Е	à	T'S'ESI	f's'Esf	0	E
. 9	E	1'2Q	Е	Е	1921	E
10	f'Ef	10	E	E	101	f'Ef
11	E	I'S'ESI	E	E	f's'Esf	Е
12	a'Ea	E	a'Ea	a Ea	E	a'Ea
13	F	F	F	F	F	F
図 3·6 一斉射撃祭 (n=6)						

CA: Signal Design

Generation of Primes [Fischer, 1965]

CA: Signal Analyzing

Signals

- Signal (meta-signal)
- Collision (rule)

Introduction to Signal Machines Definition

- Fractals
- Computing (Turing-) Universality
- 2 Intrinsic Universality
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

3 Conclusion

Μ

Introduction to Signal Machines

Definition

Vocabulary and Example: Find the Middle

М

Collision rules

Introduction to Signal Machines

Definition

Vocabulary and Example: Find the Middle

Meta-signals (s	speed)	
М	(0)	
div	(3)	

М

Collision rules

Introduction to Signal Machines

Definition

Vocabulary and Example: Find the Middle

M (0) div (3) hi (1) lo (3)	Meta-signals	(speed)	
	M div hi Io	(0) (3) (1) (3)	

Collision rules

 $\{ \text{ div, } M \} \!\rightarrow\! \{ \text{ M, hi, lo} \}$

Introduction to Signal Machines

Definition

Vocabulary and Example: Find the Middle

Meta-signals (s	speed)	
М	(0)	
div	(3)	
hi	(1)	
lo	(3)	
back	(-3)	

Collision rules

{ div,	М	$\} \!\rightarrow\! \{$	М,	hi,	lo	}
{ lo,	М	$\} \!\rightarrow\! \{$	bac	k,	М	}

Introduction to Signal Machines

Definition

Vocabulary and Example: Find the Middle

Meta-signals (s	peed)	
М	(0)	
div	(3)	
hi	(1)	
lo	(3)	
back	(-3)	

Collision rules

{ div,	М	$\} \rightarrow \{$	М,	hi,	lo	}
{ lo,	М	$\} \!\rightarrow\! \{$	bac	:k,	М	}
{ hi, ba	ck	$\} \!\rightarrow\! \{$	Μ	}		

Definition

Another Example

Definition

Definition

Definition

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality
- 2 Intrinsic Universality
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

3 Conclusion

Fractals

Examples

Introduction to Signal Machines

Fractals

Cantor of any Hausdorff Dimension [Senot, 2013]

Fractals

Second Order

1 Introduction to Signal Machines

- Definition
- Fractals

• Computing (Turing-) Universality

- Intrinsic Universality
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

3 Conclusion

Introduction to Signal Machines

Adding

(Turing)-Computing

Simulation

(Turing)-Computing

Simulation

Rationnal Machine

- $\bullet \ \mathsf{speeds} \in \mathbb{Q}$
- \bullet initial positions $\in \mathbb{Q}$
- $\bullet \ \Rightarrow \ \text{coordinates of any collision} \ \in \mathbb{Q}$
- exact computation on a computer/TM

Undecidability

- finite number de collisions
- meta-signal appereance
- use of a rule
- disappearing of all signals
- involvement of a signal in any collision
- extension on the side, etc.

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

Concept

- to represent all others
- capability of any/all
- most general (universal)

Examples

- micro-processor, FPGA, JVM
- Java, C, Php
- Turing machine + Church-Turing Thesis → computability theory

For dynamical systems

Intrinsic Universality

Being able to *simulate* any other dynamical system of the its *class*.

Cellular Automata

- regular [Albert and Čulik II, 1987, Mazoyer and Rapaport, 1998, Ollinger, 2001]
- reversible [Durand-Lose, 1997]

Tile Assembly Systems

- possible at T=2 and above [Woods, 2013]
- impossible at T=1 [Meunier et al., 2014]

Concept and Definition

Simulation for Signal Machines

Signal Machine Simulation

 $\mathcal{U}_{\mathcal{S}}$ simulates \mathcal{M} if there is function from the configurations of \mathcal{M} to the ones of $\mathcal{U}_{\mathcal{S}}$ s.t. the space-time issued from the image always mimics the original one.

Signal Machines: Euclidean dynamical system Intrinsic Universality Concent and Definition

Our result [Submitted]

Theorem

For any finite set of real numbers S, there is a signal machine \mathcal{U}_{S} , that can simulate any machine whose speeds belong to S.

Theorem

The set of $\mathcal{U}_{\mathcal{S}}$ where \mathcal{S} ranges over finite sets of real numbers is an intrinsically universal family of signal machines.

Rest of the talk

Let S be any finite set of real numbers, let \mathcal{M} be any signal machine whose speeds belongs to S, \mathcal{U}_S is progressively constructed as simulation is presented.

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

Macro-Signal

- $\bullet\,$ Meta-signal of ${\cal M}$ identified with numbers
- Unary encoding of numbers

Macro-Signal Structure

 $_{i}\mu^{k}$: kth signal, ith speed

Global scheme

When Support Zones Meet (rough vision)

• Start the macro-collision (if applicable)

Global scheme

When Support Zones Meet (rough vision)

• Start the macro-collision (if applicable)

When Support Zones Meet

- provide a delay
- test if macro-collision is appropriate and what macro-signals are involved
- if OK
 - start the macro-collision

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

Shrink and Tes

Signal Machines: Euclidean dynamical system Intrinsic Universality Shelph and Test

Whole Preparation (cropped on both side)

Shrinking Unit

Signal Machines: Euclidean dynamical system Intrinsic Universality Sheink and Text

Shrink

Testing for Other main Signals

Detecting Potential Overlaps

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality

Intrinsic Universality

- Concept and Definition
- Global Scheme
- Shrink and Test
- Macro-Collision

3 Conclusion

Macro-Collisior

Removing Unused Tables and Sending ids to Table

Collision Rules Encoding

One rule after the other

Macro-Collisio

Comparison of id's in the if-part of a Rule

Rule Selection

Macro-Collisior

Generating the Output

Introduction to Signal Machines

- Definition
- Fractals
- Computing (Turing-) Universality
- 2 Intrinsic Universality
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

All Together

Signal Machines

• Rich world

• Theorems are proved

Open problems

- single intrinsically universal signal machine (with amended simulation definition)
- discretization into CA (Tom BESSON's Theses) into Tile Assembly System
- robustness
- complexity (non-det. signal machines), ordinal clocking

References

- Visual introduction (not much) http://www.univ-orleans.fr/lifo/Members/Jerome. Durand-Lose/Recherche/AGC/intro_AGC.html
- Articles by JDL can be accessed at http://www.univ-orleans.fr/lifo/Members/Jerome. Durand-Lose/Recherche/publications.html

Albert, J. and Čulik II, K. (1987). A Simple Universal Cellular Automaton and its One-Way and Totalistic Version. Complex Systems, 1:1-16. Das, R., Crutchfield, J. P., Mitchell, M., and Hanson, J. E. (1995). Evolving globally synchronized cellular automata. In Eshelman, L. J., editor, International Conference on Genetic Algorithms '95, pages 336-343. Morgan Kaufmann. Durand-Lose, J. (1997). Intrinsic Universality of a 1-Dimensional Reversible Cellular Automaton. In STACS 1997, number 1200 in LNCS, pages 439-450. Springer. Fischer, P. C. (1965). Generation of primes by a one-dimensional real-time iterative array. J ACM, 12(3):388-394. Goto, E. (1966). Otomaton ni kansuru pazuru [Puzzles on automata]. In Kitagawa, T., editor, Johokagaku eno michi [The Road to information] science], pages 67-92. Kyoristu Shuppan Publishing Co., Tokyo. Mazoyer, J. and Rapaport, I. (1998). Inducing an Order on Cellular Automata by a Grouping Operation.

In 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS 1998), volume 1373 of LNCS, pages 116–127. Springer.

Meunier, P., Patitz, M. J., Summers, S. M., Theyssier, G., Winslow, A., and Woods, D. (2014). Intrinsic Universality in Tile Self-Assembly Requires Cooperation. In Chekuri, C., editor, 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, pages 752-771. SIAM.
Ollinger, N. (2001). Two-States Bilinear Intrinsically Universal Cellular Automata. In FCT '01, number 2138 in LNCS, pages 369–399. Springer.
Senot, M. (2013). <i>Modèle géométrique de calcul: fractales et barrières de complexité.</i> Thèse de doctorat, Université d'Orléans.
Woods, D. (2013). Intrinsic Universality and the Computational Power of Self-Assembly. In Neary, T. and Cook, M., editors, <i>Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland</i> , volume 128 of <i>EPTCS</i> , pages 16-22.