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Signal Machines (Introduction and Definition)

Cellular Automata: signal use
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Signal Machines (Introduction and Definition)

CA: Conception with signals

Fischer (1965)
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Signal Machines (Introduction and Definition)

CA: Analyzing with Signals

Das et al. (1995)
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(a) Space-time diagram. (b) Filtered space-time diagram.
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Signal Machines (Introduction and Definition)

Signals
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Meta-signals (speed)

M (0)
div.  (3)
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Signal Machines (Introduction and Definition)

Vocabulary and Example: Find the Middle

aw M

Meta-signals (speed)

Collision rules

{div, M } = { M, hi, lo }
{lo, M } = { back, M }
{ hi, back } = { M }
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Signal Machines (Introduction and Definition)

Stack Implantation

R+
Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
: U
R 3 M

R -3

Time

Collision rules
{Add,M} — {M,A, R}
(R,M} = {R, M}
(AR} = (U}

(R.U} = (R,U}
{Rem,M} — {M,E}
{E,U} = {}
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Fractal Generation
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Discrete computation: Turing Machines

Turing-computation

Turing Machine
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Relations to Models of Computation

Discrete computation: Turing Machines

Turing-computation

Also with restrictions Rational machines

o all different speed @ speeds € Q

@ only 2 — 2 rules @ initial positions € Q
(conservative) @ = collision coordinates € Q
@ one-to-one rules °

exact simulation on computer/TM
(reversible) .

Undecidability
Any above and @ finite number de collisions
meta-signal appereance
use of a rule
disappearing of all signals
involvement of a signal in any collision
extension on the side, etc.

e rational (Q)
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Analog Computation: linear Blum, Shub and Smale

Computing with Real Numbers

Encoding
@ a a
X N - - . e . - e
6\%‘1 . 9\?: . 6\?: .
base val -7 -7 -7
a Zero base val Zer® val base
Addition
base val - base val
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Relations to Models of Computation

val

4

4

base val
———

Analog Computation: linear Blum, Shub and Smale

Multiplication by a constant

base

val base

base val
2
B

val

base val
v
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Multiplication by a constant

By V2
val  base val base base val base val| base val
1 2
2 3X V2x
e
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Relations to Models of Computation

Analog Computation: linear Blum, Shub and Smale

Multiplication by a constant

R R CHE 12 CIER
val base

val base base val base val| base val
1 2
2% 3X V2x
e
\\
\
\
\ “ ’ _
S \ . _-
' == \ - ,/ - - 4_’_ = .
,'—— Ap=" y ST ,/‘_
X X X X
1
base val base val | base val| base val base
v
@ Signal speeds are constants of the machine

@ If x <0 then val is meet before base
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Zooming out

v

Finite sequence of real numbers
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Analog Computation: linear Blum, Shub and Smale

Zooming out

F-:
(e
Kol g3~
e
qr---7
QT
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X_2 X_1 X0 X1 X2 X3

Finite sequence of real numbers + Dynamics

finite state automata

sign test

°
°
@ addition, multiplication by constant
@ (set constant value)

°

(enlarge the array)

Like a Turing machine with real numbers on the tape
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Encoding a configuration
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Relations to Models of Computation
Analog Computation: linear Blum, Shub and Smale

Linear Blum, Shub and Smale with shift

Encoding a configuration

/ ’
dp

a C

do d3

L} b B R EY EEE L) ] [} 2 =y

Simulating a signal machine: loop

©@ Compute the minimum time to a collision, §
@ Advance time by § (update all distances)

© Process collision(s)

A
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Intrinsically Universal Family of Signal Machines

Concept and Definition

Intrinsic Universality
Being able to simulate any other dynamical system of the its class.

Cellular Automata

o regular (Albert and Culik 11, 1987; Mazoyer and Rapaport,
1998; Ollinger, 2001)

o reversible (Durand-Lose, 1997)
o freezing [Theyssier et Al]

Tile Assembly Systems

@ possible at T=2 and above (Woods, 2013)
@ impossible at T=1 (Meunier et al., 2014)

24 /58
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Intrinsically Universal Family of Signal Machines

Concept and Definition

Simulation for Signal Machines

Space-Time Diagram Mimicking

o
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= =
= & . 5
1 o
space

Signal Machine Simulation

Us simulates A if there is function from the configurations of A to
the ones of Us s.t. the space-time issued from the image always
mimics the original one.

25 /58



Simulation between signal machines

Intrinsically Universal Family of Signal Machines
Concept and Definition

@ For any finite set of real numbers S, there is a signal machine
Us, that can simulate any machine whose speeds belong to S.

@ The set of Us where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.

Rest of this section

Let S be any finite set of real numbers,
let A be any signal machine whose speeds belongs to S,
Us is progressively constructed as simulation is presented.
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@ Global Scheme
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Global Scheme

@ Unary encoding of numbers

Macro-Signal
@ Meta-signal of A identified with numbers
in?: oth signal, ith speed
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Intrinsically Universal Family of Signal Machines
Global Scheme

Global scheme

When Support Zones Meet

© provide a delay

@ test if macro-collision is appropriate and what macro-signals
are involved

Q if OK

e start the macro-collision )

Hypotheses for macro-collision

@ no other macro-signal nor macro-collision will interfere

@ speed of involved macro-signals ranged [/, ..., i] (included)

o their main” signals intersect at a unique point

N
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Intrinsically Universal Family of Signal Machines

Macro-Collision

@ Intrinsically Universal Family of Signal Machines

@ Macro-Collision
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Intrinsically Universal Family of Signal Machines
Macro-Collision

Removing Unused Tables and Sending ids to Table

=
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Intrinsically Universal Family of Signal Machines

Macro-Collision
Collision Rules Encoding

One rule after the other

bOund

Encoding of {3ul, 7u*, su®} — {op3, 4u' } in the direction i.

iTUle_

boup,

jtule.
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Intrinsically Universal Family of Signal Machines

Macro-Collision

Comparison of id's in the if-part of a Rule

L
speed 6 speed 5 speed 4
id n°3 id n°2 id n°2
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Intrinsically Universal Family of Signal Machines
Macro-Collision

Rule Selection
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Intrinsically Universal Family of Signal Machines
Macro-Collision

Generating the Output
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Good Cases
[} (]
€ £
) )
N Q =
& 3 & &
space
Bad Case
[
E
=
I\ NS
of .5
) )
& &
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Shrinking Unit
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Testing for Other main’ Signals

test-rigb&»fglz S
— test-right]

tesHef
t — K
! test-right;

si+( —5)5’““)

4

41 /58



Simulation between signal machines

Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Checking the right positioning of Other main” Signals
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Detecting Potential Overlaps
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Intrinsically Universal Family of Signal Machines

Preparation (shrink, test and check)

Exact 3-signal collision
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Some examples
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Definition and example

Non-determinism in rule output

Meta-signals

a 0
b -1
c 1

Collision rules
a,b}—{ac}
b}—={b}
vat—>{b}

{
{
{
{

a
C
(o

al \bla
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Definition and example

Non-determinism in rule output

Meta-signals
a 0
b -1
c 1

Collision rules
a,b}—{ac}
b}—={b}
vat—>{b}

(5}
[ [P |

{
{
{
{

a
C
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Definition and example

Non-determinism in rule output

Meta-signals
a 0
b -1
c 1 P
Ny ]
I
1

Collision rules ° C R ? C s E
) , | !
(eysiey! BN
{ca}={b} T
{c a
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Non-determinism (work in progress)
Definition and example

Non-determinism in rule output

Shifted superposition

Meta-signals
a 0
b -1
c 1 P
Ny ]
I
1

Collision rules ° C R ? C s E
) , | !
(eysiey! BN
{ca}={b} T
{c a

al={a} oo om -
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Non-determinism (work in progress)
Definition and example

Non-determinism in rule output

1
1
\b\ :
a : Shifted superposition
1
1
1
1

\ _|L no"collision
N . 4 \)possible

- - I
bS s

Meta-signals

a 0

b -1

C 1 \Q
Collision rules
a,b}—{ac} \
,b}—={b} T . _ k_ 1

at—={b}

{
{
{
{

a
C
(o
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Strategy

© Non-determinism (work in progress)

o Strategy
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u={ KNI

Unbounded signals
Information held:
{(Vav Ua)}a
such that:
vo € {@,a,b,c}
Lﬂa Uey =U

X

X
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Strategy

u={ KNI 1

Unbounded signals

Information held:

{(Vav Ua)}a
such that:
Va E {@73, b’ C}
¥, ta=U

CITITTETIS
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X

X
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Strategy

u={ KNI 1

Unbounded signals

Information held:

{(Vav Ua)}a
such that:
Va E {@73, b’ C}
¥, ta=U

CITITTETIS

RON

X

(e {x})
e )

X
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Strategy

u={ KNI 1

Unbounded signals /

Information held:
{(Vav Ua)}a
such that:
Va e {®7 a’ b7 C}
Lﬂa Uey =U

RON

X
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Non-determinism (work in progress)

Strategy

All possible universes

“:{biﬂx} ] /

Information held:
{(Vav Ua)}a
such that:
Va e {®7 a’ b7 C}
Lﬂa Uey =U

N

X

Al {l )}
---{(e3.{l:3))
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Strategy

u={ KNI

Unbounded signals

Information held:
{(Vav Ua)}a
such that:
Va e {®7 a’ b7 C}
Lﬂa Uey =U
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© Non-determinism (work in progress)

@ Implantation
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Non-determinism (work in progress)
Implantation

Macro-collision

{(Vas ta) },, meets { (v/g, ufg) }/3

Q E = { ((va, V3), U A ué) } 5 U=, N ug

Q@ E={((v,V),unU)eE|lund #0D}

Q E={0,w)]|((20),w)eE}
U{{{r},w)[((n,0),w) € BV ((©,p),w) € B2}
UL (o™ s (i, v) AW) [ (5 v), w) € B2 Ap™ = {p,v} }

Q Out_Speed = { Speed(p) | 3y, (F,w) € E3,u € F}

@ Vs c out,

Outs = { (p,w)|3F,(F,w) € EsAp € F,Speed(p) = s} }

U{(@,w)|3F,(F,w) € E3 AVu € F,Speed(1) # s} }

@ Compatible string encodings )

53 /58



Simulation between signal machines

Non-determinism (work in progress)

Implantation

Displaying the operations
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Implantation

Displaying the operations
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@ Very rich setting )

@ Intrinsically universal family of signal machines

@ Non-deterministic signal machine are not “more powerful”
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What is the complexity?
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How to extract “result”?

What is the complexity?
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conclusion

Very rich setting )

Intrinsically universal family of signal machines

What is the complexity?

Non-deterministic signal machine are not “more powerful”

How to extract “result”?

What is the complexity?

@ Augmented signal machines )
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That's all folks!

Thank you for your attention
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