Drawing numerable linear orderings Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans ÉA 4022
Université d'Orléans, Orléans, FRANCE
Funded by ANR IIFFERENCE (ANR-20-CE40-0002)

Numerable linear orderings $(S, \leqslant s)$
 S is a numerable se

- $\leqslant s$ is a reflexive, anti-symmetric and transitive relation on S
- any two elements of S are related/comparable
- examples:
ω : the ordering of the natural numbers $(0,1,2, \cdots)$
ζ : the ordering of the integers $(\cdots,-2,-1,0,1,2, \cdots)$
- operations
addition: set union and all the elements from a set before the elements from the other
product with lexical order with lexicographical order
- examples:

$$
\omega+\omega \text { is } 0,1,2, \cdots 0^{\prime}, 1^{\prime}, 2^{\prime}, \cdots\left(0^{\prime} \text { is a distinct copy of } 0\right. \text {) }
$$ $\omega \cdot \omega$ is $(0,0),(0,1),(0,2), \cdots(1,0),(1,1),(1,2)$,

$(2,0),(2,1),(2,2), \cdots$

rdinals

- well founded orderings
- examples:
- non-ordinal linear orderings ζ has the infinite decreasing sequence $(\cdots,-2,-1,0)$ $\{a, b\}^{*}$ with lexical order has the infinite decreasing sequence $(\cdots, a a b, a b, b)$
- More on linear orderings \rightsquigarrow Rosenstein [1982]

Decidable

- $s_{0}, s_{1}, s_{2}, \ldots$: an enumeration of the elements of S
- A Turing machine decides the relation

$$
i, j \mapsto s_{i} \leqslant s s_{j}
$$

Graphical representation

- by parallel verticals lines s.t.
one line per element in s
$x \leqslant s y$ then x is on the left of y
here is an empty space between x and $y(x \leq s y)$ iff y is the immediate successor of x iff $\forall z, x \leqslant s z \leqslant s y \quad \rightarrow \quad x=z \vee z=y$

Global scheme

Algorithm

let i, j be two indices s.t. lines are se

- find least k such that:
$k \neq i \wedge k \neq j \wedge s_{i} \leqslant s s_{k} \leqslant s s_{j}$
- if k is found, the interval is split and the algorithm is restarted on i and k on the left and k and j on the right
if no such k exists, the computation vanishes - this is done in finite time

Scaling the computation at each step

Working on \mathbb{Q}

There is a rational signal machine able to generate the representation of any decidable countable linear ordering

- Simulating multi-stack automaton

encoding of $(q, a b, a b a) \quad$ one transition step

 Springer, 2017. doi: 10.1007/978-3-319-58187-3_2.
J. G. Rosenstein. Linear ordering. Academic Press, 1982.

