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In [2], we prove Conj. 1 for any dimension with 2d+1 � 1 bp of width 4r. In this article, we prove Conj. 1for any dimension with the number of permutations proposed by Kari, 2d. Our constructive proof is basedon the constructions made in [2] and the progressive erasing in Kari's proof. The size of the blocks is muchgreater than the neighborhood: (6r; 6r; : : :6r), where r is the greater of the radii of the reversible ca and ofits inverse. But the width of the block is constant: 6r.We give another construction with only d+ 1 bp. There is an important drawback to this: the width ofthe blocks is 3(d + 1)r instead of 6r. Within this construction, the origins of the bp are translated by 3rwhereas before they take all values in f0; 3rgd.All de�nitions and proofs in this article can be read without any previous knowledge of the subject. Thearticle is structured as follows. The de�nitions of Cellular Automata (ca), Block Permutations (bp) andreversibility are given in Section 2. In Section 3, for any reversible ca A, we exhibit 2d bp such that theglobal function of A is a restriction of their composition. This proves the conjecture. In Sect. 4, we give aconstruction with only d+ 1 bp, but with wider blocks.2 De�nitionsLet d be a strictly positive integer. Cellular automata and block permutations de�ne mappings over d-dimensional in�nite arrays over a �nite set of states S. We denote C = SZd the set of con�gurations. Forany x 2Zd, �x is the shift by x: 8c 2 C; 8i 2Zd; �x(c)i = ci+x.The set of integers fi; i + 1; i + 2; : : :jg is denoted [[ i; j ]]. For any con�guration c and any subset E ofZd, cjE is the restriction of c to E.We denote < and � the following orders over Zd: x < y , 8k; xk < yk and x � y , 8k; xk � yk. Wedenote +, mod, div and : the pointwise vectorial addition, modulo, Eulerian division and multiplication overZd. This means that: 8x, y 2Zd, 8k, (x+ y)k = xk+ yk, (xmody)k = xkmodyk, (x div y)k = xk div yk and(x : y)k = xk:yk.2.1 Cellular AutomatonA Cellular Automaton (ca) A is de�ned by (d;S; r; f), where the radius r is a strictly positive naturalnumber, and the local function f maps S(2r+1)d into S. The global function of A, GA, maps con�gurationsinto themselves as follows: 8c 2 C; 8i 2Zd; GA(c)i = f(cji+[[�r; r ]]d ) :The new state of a cell depends only on the states of the cells which are at distance at most r.2.2 Block PermutationA Block Permutation (bp) is de�ned by (d;S; v; o; e) where the size v is an element of Zd such that 1 � v,and o is a coordinate modulo v (i.e., o 2Zd and 0 � o < v). The basic block V is the following subset ofZd:[[ 0; v1 ]]� [[ 0; v2 ]]� � � � � [[ 0; vd ]]. The function e is a permutation of SV . When all the lengths of the blockare equal, we say that it is the width of the bp.The block permutation of origin 0, T 0, is the following mapping over C: for any c 2 C, for any i 2Zd, leta = i div v and b = imodv so that i = a : v + b, then T 0(c)i = e(cja : v+V )b. In other words, the block whichholds i in a regular partition issued from 0 is updated according to e. The same happens to all the blocksof this partition.The Block Permutation of origin o, To is �o � T 0 � ��o. It is the same as before but with the partition isshifted by o.We call Block Permutation Automaton or Reversible Block Cellular Automaton the composition of variousbp with the same size and function e.2.3 ReversibilityBoth Cellular Automata and Block Permutations are synchronous and massively parallel mappings.2



A Cellular Automaton A is reversible if and only if GA is bijective and there is another ca B such thatG�1A = GB. Such an automaton B is called the inverse of A. Reversible ca are denoted r-ca.Amoroso and Patt [1] give an algorithm which decides whether a 1-dimensional cellular automata isreversible or not. Kari [5] proves that the reversibility of ca is undecidable in greater dimensions.By construction, block permutations are reversible. One simply uses the inverse permutation on the samepartition to get the inverse block partition.2.4 SimulationSince ca are iterative, we use the following de�nition.For any two functions f : F ! F and g : G ! G, g simulates f if there exist two encoding functions� : F ! G and � : G! F , space and time inexpensive compared to f and g, and a function ' : N� F ! Nsuch that: 8x 2 F; 8n 2 N, fn(x) = � � g'(n;x) � �(x).This corresponds to the commuting diagram of Fig. 1. The function g can be used instead of f foriterating. 8n 2 N; 0 � n; F� G g'(n;:)fn F �G? 6--Figure 1: g simulates f .Simulation is a transitive relation. A simulation is in linear time � if '(n; :) = �n for all natural n. Ifboth f and g are invertible and g simulates f , by the unicity of predecessors, the function ' can be extendedso that the equality fn = � � g'(n;:) � � still holds for n negative.An automaton simulates another if and only if its global function simulates the global function of theother.3 Construction of the Block Partition RepresentationLet A = (S; d; r; f) be a reversible cellular automaton. We prove that it is the product of 2d block permu-tations. We consider that A�1 is known and that the radius r is large enough for both reversible cellularautomata A and A�1. Let v = 6r be the width of all the bp that we built. We need some more de�nitionsbefore going further on.3.1 NotationsWe use the set f0; 1gd with the order � de�ned as follows: �rst by the number of 1s, and then backward lex-icographically. For example, (0; 0; : : :0) � (1; 0; : : :0) � (0; 1; 0; : : :0) � : : : � (0; 0; : : :0; 1) � (1; 1; 0; : : :0) �(1; 0; 1; 0 : : :0) � : : : � (0; : : :0; 1; 1) � : : : � (1; 1; : : :1). Let succ (�) be the least element greater than � inf0; 1gd. We denote > for succ ((1; 1; 1; : : :1)), it does not belongs to f0; 1gd but is practical for writing. Itshould be noted that if 0s and 1s are permuted, exactly the reverse order is obtained. For any � 2 f0; 1gd,we de�ne the shift &� to be �3r:�, and #1(�) to be the number of 1 in �.The set of symbols of the bp is (SA[f?g)2 where ? is a symbol which does not belong to SA and means`void'. The �rst component is the old state of the cell and the second component its new state. The next3



sets correspond to where the old states are deleted and the new states are added:EO� = Y1�i�d[[ (2+2�i)r; (4+4�i)r�1 ]] ;FO� = [[ 0; (6r�1) ]]d n [���EO� ;EN� = Y1�i�d[[ (1+4�i)r; (5+2�i)r�1 ]] ;FN� = [���EO� :Although it is not written for the sake of writing, the sets are supposed to be completed by all 6r shifts.All EO� (EN� ) are disjoint. Let � be the complement of �. The sets EO� and EN� are equal up to a 3r shift.The set FN> is equals to [[ 0; (6r�1) ]]d because:FN> = [��>EN� = [�2f0;1gdEN�= [�2f0;1gd;�1=0EN� [ [�2f0;1gd;�1=1EN�= [[ r; 7r�1 ]]� [�02f0;1gd�1EN�0: : := [[ r; 7r�1 ]]d :It should not be forgotten that all is done in a (6r)d-periodic space. We prove in the same way that FO> = ;.It follows that the sets EO� (EN� ) form a partition of the whole lattice Zd. Let:F�(c) = �cjFO� ;G(c)jFN� � :This is a mix of old and new states of the con�gurations. It corresponds to the di�erent steps that acon�guration c has to travel to become GA(c) within our construction.Since FO(0;0;:::0) = [[ 0; (6r�1) ]]d and FN(0;0;:::0) = ;, then c � (c;?) = F(0;0;:::0)(c) and G(c) � (?;G(c)) =F>(c). We de�ne the following sets of `double con�gurations':8� 2 f0; 1gd; C� = f F�(c) j c 2 C g :3.2 De�nitions of the Block PartitionsWe construct block permutations which go from F(0;0;:::0)(c) to F>(c). For any � in f0; 1gd, let T� : C� !Csucc(�), such that T�(F�(c)) = Fsucc(�)(c). The local transition is e� and the origin of the partition is 3r �.To prove that this is a function, we must prove that the states added are uniquely de�ned.Lemma 3 For any �, there is a block permutation T� between C� and Csucc(�) such that T�(F�(c)) =Fsucc(�)(c).Proof. We are working in the block Q1�i�d[[ (3�i)r; (6+3�i)r�1 ]]. The added new states are in the cellswhich are in EN� = Y1�i�d[[ (1+4�i)r; (5+2�i)r�1 ]] :To compute the new states, we need the old states of the cells inY1�i�d[[ 4�i r; (6+2�i)r�1 ]] :4



These cells are in the block. Let x be such a cell. Let us prove that the old state of x is present in F�(c). Foreach i such that �i = 1, 4r�xi�8r�1. By construction of the sets EO� , the ones which contain x must verify:8i, if �i=1 then �i=1, thus � � � so that x62FO� . This means that all the old states needed to compute theadded new states are present and that e� is a function.Let us prove that e� is one-to-one, or equivalently, that the erased states are uniquely de�ned. Theerased states are in the cells Q1�i�d[[ (2+2�i)r; (4+4�i)r�1 ]]. To compute them from the new states andA�1, we need the new states in the cells Q1�i�d[[ (1+2�i)r; (5+4�i)r�1 ]]. These cells are in the block. Letx be such a cell. For each i such that �i=0, 1r�xi�5r�1. By construction of the sets EN� , the set in whichx is found, must verify: 8i, if �i=0 then �i=0, thus ��� so that x2FNsucc(�). This means that all the newstates needed to compute the deleted old states are present in Fsucc(�)(C). The transition e� is one-to-one,T� is a block permutation. �Since we have 2d bp which go from F(0;0;:::0)(c) to F>(c):Theorem 4 Any d-dimensional reversible cellular automaton can be represented using 2d block permutations.Lemma 5 Any reversible cellular automaton can be represented by a reversible block cellular automaton.Proof. The cardinalities of the basic sets are jEO� j=Q1�i�d(2+2�i)r=2d�b 4b rd where b is the number of 1of �. The sets EO� (EN� ) form a partition of the torus. For any block, the number of new (old) states tellswhich � is to be used. The sets of blocks for each e� inputs (outputs) are disjoint. Then all the partialde�nition of e� are gathered in a unique e that is a one-to-one function and all bp in a unique bp T suchthat: 8c 2 C; G(c) = T(1;1;:::1) � : : :T(1;0;:::0) � T(0;0;:::0)(c) :This can be grouped in a reversible block cellular automaton:B = � (S [ f?g)2; (6r; 6r; : : :; 6r); 2d; (3r �)�2f0;1gd; (S [ f?g)2 � :The r-bca B uses 2d partitions to simulate the r-ca A. The last bp must maps (?� S)Zd into (S � ?)Zdin order to iterate the simulation. �Figure 2 shows how the new states are generated and the old states discarded in dimension 2. The leftcolumn indicates the distribution of new and old states inside [[ 0; 6r ]]. On the right it is depicted how thepermutation operates on shifted blocks. The dotted lines indicates the distances r.3.3 Composition of the bp'sIn this subsection we collapse the states from (SA [ f?g)2 to SA [ S2A. This decreases the number of statesand make iterating directly possible. We use the following Lemma:Lemma 6 In every partition, the positions of the cells with two ca states in each block are enough todetermine �.Proof. If all cells are single, then � = (0; 0; : : :0).Let "j be the following base of f0; 1gd: "ji=1 if and only if i=j, otherwise "ji=0. Let 'j = (3+3�+"j)rbe some element of Zd. Since the EO� (EN�0) form a partition of the lattice, let us �nd the � (�0) whichcorresponds to 'j. From the de�nitions of EO� , the value of � depends only on � and each componentdepends only in the value on each direction. The relations between those elements ofZd are summed up onFig. 3.Thus, if ���, the old state of the cell 'j is still present. If �j=0 then ���0, which means that the newstate has not been added yet in the cell 'j. If �j=1 then �0��, which means that the new state has beenadded in the cell 'j . 5



e0BBBB@ 1CCCCA = ;e0BBBB@ 1CCCCA = ;e0BBBB@ 1CCCCA = ;e0BBBB@ 1CCCCA = ;Old states, New states.Window at the origin and block permutation after shift.Figure 2: How states are generated and erased.�i 'ji �i �0ii 6= j 0 3 0 01 6 1 1i = j 0 4 1 11 7 1 0Figure 3: Relations between �, 'j, � and �0.The coordinate of 'j depends on �, but inside blocks of the � partition (the �rst shifted by 3� r), the3�r term disappears and only remains 'j 0 = (3+"j)r, which is independent from �.Altogether, the cell (3+"j)r has two states if and only if �j=1 (i.e., ��� and �0��). This means thatsimply by looking whether the states in the cells (3+"j)r are single, the value of � can be guessed. �The sets S �f?g and f?g�S can both be collapsed onto S without losing the de�nition and injectivityof e. The set of states (S [ f?g)2 collapses on S [ S2. Apart from lowering the set of states, this allows thesystem to be iterated. This corresponds exactly to our simulation de�nition now.4 Another ConstructionIn this Section, we built a representation with d+ 1 Block Permutations of width 3(d+ 1)r.6



4.1 New bp'sThe following sets are used, 8� 2 f0; 1; 2; : : :d+ 1g:HN� = S0��<� � 3�r + [[ r; 3(d+ 1)r � r � 1 ]]d � ;HO� = S���<d+1 � 3�r + [[ r; 3(d+ 1)r � r � 1 ]]d � :The sets are supposed to be completed by all 3(d+ 1)r shifts.Lemma 7 These sets verify the symmetry HN� = �3r�HOd+1�� and the following equalities: HN0 = HOd+1 = ;and HNd+1 = HO0 =Zd.Proof. The symmetry and the equality with ; are obvious.For the second part, we prove that HNd =Zd, the last equality is done by symmetry. Let x be any elementof the underlying lattice Zd. The d+ 1 sets 3�r + [[�r; r � 1 ]] (for � 2 [[ 0; d ]]) are non-empty and disjoint.Since x has d coordinates, there exists a �0 such that no coordinate of x belongs to 3�0r+[[�r; r�1 ]]. Thismeans that all xk belong to 3�0r + [[ r; 3(d+ 1)r � r � 1 ]], thus x 2 HNd . �As before a wider set of states (S [ ?)2 is used during the composition. Let8c 2 C; 8�; H�(c) = � cjHO� ; G(c)jHN� � :With Lem. 7, we have: H0(c) = (c;?) and Hd+1(c) = (?;G(c)).Let D� be a bp of width 3(d + 1)r and origin 3�r. The local function e� is de�ned so that D� mapsH�(c) into H�+1(c). The bp D� add new states and erase old states.Let us prove that there is enough data in H�(c) to compute the new states. The states added belongs to:�� = HN�+1 nHN�= � 3�r + [[ r; 3(d+ 1)r � r � 1 ]]d � n [0��<� � 3�r+ [[ r; 3(d+ 1)r � r � 1 ]]d � :For any x 2 ��, x 2 3�r + [[ r; 3(d+ 1)r � r � 1 ]]d and the origin of D� is 3�r. Then all the cells of theneighborhood of x and the old states needed to compute the new state of x are in the block 3�r+ [[ 0; 3(d+1)r� 1 ]]d. Now, it only remains to verify that old states needed to compute the new states are still present.For any � in [[ 0; � � 1 ]], since x 62 3�r + [[ r; 3(d + 1)r � r � 1 ]]d, there is some index j� such thatxj� 62 3�r+ [[ r; 3(d+ 1)r� r� 1 ]]. So xj� is in 3�r+ [[�r; r� 1 ]] (remember that all is 3(d+ 1)r periodic).And all j� must be di�erent because the sets 3�r + [[�r; r � 1 ]] are disjoint.Let y be any cell needed to compute x, y belongs to x+[[�r; r ]]. The cell yj� must be in 3�r+[[�2r; 2r�1 ]].If y does not belong to HO� then for all �0 2 [[�; d+ 1 ]], there is some k�0 such that yk�0 does not belongto �0r+[[ r; 3(d+1)r� r�1 ]], or equivalently, yk�0 2 3�0r+[[�r; r�1 ]]. Again all the k�0 must be di�erent.Altogether, there are d+ 1 j� and k�0 for d values so there are � and �0 such that j� = k�0 . Then theintersection of 3�r + [[�2r; 2r � 1 ]] and 3�0r + [[�r; r � 1 ]] is not empty. This means that �0 = �. But, byde�nition of � and �0, � < �0.Thus y belongs to HO� and the old states needed to compute the new state of x are present in the block.Using the symmetry between HN and HO, the old states erased can be computed from the new states inH�+1(c).The 3 bp in dimension 2 are given in Fig. 4.4.2 Collapsing the StatesWe collapse again the states on SA [ S2A.Lemma 8 The bp is de�ned by the position of the double states.7



!.!Old states, New states.Figure 4: The 3 steps in dimension 2.Proof. If all cells are single, then � = 0.Let �i be the following vector:�i = 3�r + (�3; �6; �9 : : : ;�3i; �3i; � � � � 3i) :The vector �i hold two states only if it belongs to both HN� and HO� . The equation3�r + (�3;�6;�9 : : : ;�3i;�3i; � � � � 3i) 2 3�r + [[ r; 3(d+ 1)r � r � 1 ]]dimplies that �i belongs to HO� for � � d, which is always the case. The vector �i belongs to HN� only if3�r + (�3;�6;�9 : : : ;�3i;�3i; � � � � 3i) 2 [0��<� �3�r + [[ r; 3(d+ 1)r � r � 1 ]]d� ;(�3;�6;�9 : : : ;�3i;�3i; � � � � 3i) 2 [����<0 �3�r + [[ r; 3(d+ 1)r � r � 1 ]]d� ;which implies that �3�+ 1 < �3i, i + 1 < �. Then � is the maximum i such that �i holds two states, plustwo. If there is no such i then � = 1.Inside a block of the � partition, �i simpli�es to (�3;�6;�9 : : : ;�3i;�3i; � � �� 3i), which is independentof �. As before, it is enough to know the position of the double states in a block to know which bp to use.�With above Lemma, all local functions of the bp are compatible and can be grouped in a unique bijectivelocal function and states can be collapsed. Altogether:Theorem 9 Any r-ca can be expressed as a composition of d+ 1 bp of width 3(d+ 1)r.The origins of the partitions are: 0, 3r, 6r, 9r : : : and 3dr.8



5 ConclusionWe prove conjectures 1 and 2. The proof is done in a rather technical way and is not so explicit and visibleas the one in [2]. Nevertheless, we have improved the number of block permutations needed: 2d instead of2d+1� 1. Generation and erasing are still done progressively. But they are made concurrently, not one afterthe other as in the �rst construction. The only drawback is that the size of the block is (6r)d instead of(4r)d.We modify the block permutations and the set of states used in order to have the possibility to iteratethem.We also give a construction with d + 1 bp. But the width is 3(d + 1)r instead of 6r. This means thatthe size of the blocks are (3(d+ 1)r)d instead of (6r)d. The complexity of the bp is the size of its table. Itshould be noted that if the number of bp is decreasing, the complexity is increasing: the exponent of thenumber of state is a factorial instead of an exponential.As already noted by Kari [6], the fact that the bp representation can be e�ectively constructed does notcontradict the undecidability of reversibility because the inverse ca is needed for the construction.To have a bp allows one to use reversible circuitry in order to build r-ca. This was done in [2] to provethat, for 2 � d, there exists one d-dimensional reversible ca able to simulate any d-dimensional r-ca.Since the bp are compatible and the states are collapsed, the composition can be iterated directly. Thisde�nes a reversible block cellular automaton, also known as a ca with the Margolus neighborhood. Therepresentation Th. 4 means that d-r-ca can be simulated by d-dimensional reversible block cellular automata.In [4], we use this to simulate d-r-ca with d-dimensional partitioned cellular automata (as de�ned by Morita[7]) and extend the result of [2] to dimension 1. Partitioned ca are ca whose set of states is a product setindexed by [[�r; r ]]. In this model, each part of a state is sent to one and only one of its neighbors.References[1] S. Amoroso and Y. Patt. Decision procedure for surjectivity and injectivity of parallel maps for tessellationstructure. Journal of Computer and System Sciences, 6:448�464, 1972.[2] J. O. Durand-Lose. Reversible cellular automaton able to simulate any other reversible one using par-titioning automata. In latin'95, number 911 in Lecture Notes in Computer Science, pages 230�244.Springer-Verlag, 1995.[3] J. O. Durand-Lose. Automates Cellulaires, Automates à Partitions et Tas de Sable. PhD thesis, labri,1996. In French.[4] J. O. Durand-Lose. Intrinsic universality of a 1-dimensional reversible cellular automaton. In stacs'97,number 1200 in Lecture Notes in Computer Science, pages 439�450. Springer-Verlag, 1997.[5] J. Kari. Reversibility and surjectivity problems of cellular automata. Journal of Computer and SystemSciences, 48(1):149�182, 1994.[6] J. Kari. Representation of reversible cellular automata with block permutations. Mathematical SystemTheory, 29:47�61, 1996.[7] K. Morita. Reversible simulation of one-dimensional irreversible cellular automata. Theoretical ComputerScience, 148:157�163, 1995.[8] T. To�oli and N. Margolus. Invertible cellular automata: A review. Physica D, 45:229�253, 1990.9
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