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Abstract

Cellnlar Automata are mappings such that each cell is npdated according to the states aronnd it and
a unique local function. Block Permutations are mappings that divide partitions regnlarly in rectangular
blocks of states and make the same permutations on each block. We prove that any d-dimensional
Reversible Cellular Automata (d-R-CA) can be expressed as the restriction of a composition of 27 Block
Permutations (BP). We exhibit such representation for any d-R-ca with 27 BP of width 6r. We also give
a construction with d 4+ 1 BP, but with width 3(d + 1)r.

1 Introduction

Cellular Automata (ca) provide the most famous model for parallel phenomena, computations and architec-
tures. They operate as iterative systems on d-dimensional infinite arrays, the underlying space is 7Z%. Fach
cell takes a value from a finite set of states §. An iteration of a ¢a is the synchronous replacement of the
state of every cell by the image of the states of neighboring cells according to a unique local function.

Reversible Cellular Automata (R-ca) are famous for modeling non-dissipative systems as well as for
backtracking a phenomenon to its source. Reversibility is thought of as a means to save energy in computers.
We refer the reader to the 1990 article of Toffoli and Margolus [8] to get a full introduction to the rR-ca
field (history, aims, uses, decidability ... ) and a large bibliography. Tn this article, they make the following
conjecture about R-CA :

Conjecture 1 [8 Conjecture 8.1] Any cellular automaton can be expressed as a composition of block per-
mutations.

A block is a d-dimensional array of states. The lattice 7% can be partitioned into regularly displayed
blocks. A Block Permutation (BP) is a generalization of a permutation e over such a partition of 7Z%.

Kari [6] proves the Conj. 1 for dimensions 1 and 2. He uses S? as the set of states for the BP during the
simulation. At the end, he conjectures that:

Conjecture 2 [6, Conjecture 5.3| Any d-dimensional cellular automaton can be expressed as a composition
of 2% block permutations.
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In [2], we prove Conj. 1 for any dimension with 2971 — 1 8P of width 4. Tn this article, we prove Conj. 1
for any dimension with the number of permutations proposed by Kari, 2. Qur constructive proof is based
on the constructions made in [2] and the progressive erasing in Kari’s proof. The size of the blocks is much
greater than the neighborhood: (6r,6r,...67), where r is the greater of the radii of the reversible ca and of
its inverse. But the width of the block is constant: 67.

We give another construction with only d 4+ 1 BP. There is an important drawback to this: the width of
the blocks is 3(d 4+ 1)r instead of 6r. Within this construction, the origins of the BP are translated by 3r
whereas before they take all values in {0, 3r}%.

All definitions and proofs in this article can be read without any previous knowledge of the subject. The
article is structured as follows. The definitions of Cellular Automata (ca), Block Permutations (RP) and
reversibility are given in Section 2. Tn Section 3, for any reversible ca A, we exhibit 27 BP such that the
global function of A is a restriction of their composition. This proves the conjecture. Tn Sect.4, we give a
construction with only d + 1 BP, but with wider blocks.

2 Definitions

Let d be a strictly positive integer. Cellular automata and block permutations define mappings over d-
dimensional infinite arrays over a finite set of states §. We denote C = S7 the set of configurations. For
any x € 7.4, o, is the shift by z: Ve € C,Vi € 7.4, 0,(c)i = ¢ijs-

The set, of integers {7,7+ 1,7+ 2,...5} is denoted [7, j]. For any configuration ¢ and any subset. F of
7.2, c|r 1s the restriction of ¢ to F.

We denote < and < the following orders over 7% = < y & Yk, 2, < y, and 2z < y < Yk, 2, < y,. We
denote 4+, mod, div and . the pointwise vectorial addition, modulo, Fulerian division and multiplication over
7.4, This means that: Vo, y € 7% Yk, (x + ) = 71 + Y&, (rmody)r = z, mod yy, (z divy), = xx divy and

2.1 Cellular Automaton

A Cellular Automaton (ca) A is defined by (d,S8,r, f), where the radius r is a strictly positive natural

number, and the local function f maps Ser+1)"

into themselves as follows:

into 8. The global function of A, Gao, maps configurations

YeelC, Vie Zd7 QA((')7 = f(c|77+|[*7'77']|d) .

The new state of a cell depends only on the states of the cells which are at distance at most r.

2.2 Block Permutation

A Block Permutation (BP) is defined by (d,8,v,0,¢) where the size v is an element of 7 such that 1 < v,
and o is a coordinate modulo v (i.e., 0 € 7% and 0 < 0 < v). The basic block V is the following subset of 7.%:
[0, 1] x [0, va] x ---x [0, va]. The function e is a permutation of S¥. When all the lengths of the block
are equal, we say that it 1s the width of the BP.

The block permutation of origin 0, 77, is the following mapping over C: for any ¢ € C, for any i € 77, let
a=idive and b = imodwv so that i = a.v + b, then T%(¢c); = e(¢ja v4v )p- In other words, the block which
holds 7 in a regular partition issued from 0 is updated according to e. The same happens to all the blocks
of this partition.

The Block Permutation of ovigin o, T, is ¢, 0T o ¢_,. Tt is the same as before but with the partition is
shifted by o.

We call Block Permutation Automaton or Reversible Block Cellular Automaton the composition of various
BP with the same size and function e.

2.3 Reversibility

Both Cellular Automata and Block Permutations are synchronous and massively parallel mappings.



A Cellular Automaton A is reversible if and only if G4 is bijective and there is another ca B such that
QT = @Gg. Such an automaton B is called the inverse of A. Reversible cA are denoted R-CA.

Amoroso and Patt [1] give an algorithm which decides whether a 1-dimensional cellular automata is
reversible or not. Kari [5] proves that the reversibility of ca is undecidable in greater dimensions.

By construction, block permutations are reversible. One simply uses the inverse permutation on the same
partition to get the inverse block partition.

2.4 Simulation

Since cA are iterative, we use the following definition.

For any two functions f : ¥ — F and ¢ : G — (G, g simulates f if there exist two encoding functions
a:F — Gand §:G — F, space and time inexpensive compared to f and g, and a function ¢ : N x F = N
such that: Yz € F,¥n € N, f"(z) = B0 g*"%) o a(z).

This corresponds to the commuting diagram of Fig.1. The function g can be used instead of f for

iterating.
F— F
VYn €N, 0<mn, o 8
gw(n )
G G

Figure 1: g simulates f.

Simulation is a transitive relation. A simulation is in linear time 7 if ©(n,.) = 7o for all natural n. Tf
both f and ¢ are invertible and ¢ simulates f, by the unicity of predecessors, the function ¢ can be extended
so that the equality f” = 8o ¢?(") o still holds for n negative.

An automaton simulates another if and only if its global function simulates the global function of the
other.

3 Construction of the Block Partition Representation

Let A = (S,d,r, f) be a reversible cellular automaton. We prove that it is the product of 2¢ block permu-
tations. We consider that A~' is known and that the radius r is large enough for both reversible cellular
automata A and A~'. Let v = 6r be the width of all the BP that we built. We need some more definitions
before going further on.

3.1 Notations

We use the set {0, 1}7 with the order < defined as follows: first by the number of 1s, and then backward lex-
icographically. For example, (0,0,...0) < (1,0,...0) < (0,1,0,...0) < ... <(0,0,...0,1) < (1,1,0,...0) <
(1,0,1,0...0) < ... < (0,...0,1,1) < ... < (1,1,...1). Let succ () be the least element greater than « in
{0,1}%. We denote T for suce ((1,1,1,...1)), it does not belongs to {0, 1} but is practical for writing. Tt
should be noted that if Os and 1s are permuted, exactly the reverse order is obtained. For any a € {0, 1}4,
we define the shift ¢, to be o3, ,, and #1(a) to be the number of 1 in a.

The set. of symbols of the BP is (Sy U{—})? where — is a symbol which does not belong to S and means
‘void’. The first component 1s the old state of the cell and the second component its new state. The next



sets correspond to where the old states are deleted and the new states are added:

ES = J] [@+28)r, (4+48)r—17 ,
1<i<d

Fe = [0, 61"\ |J 2,

p<o

By = T [O+48)r, (5428017 ,
1<i<d

Y= RS
p<o

Although it is not written for the sake of writing, the sets are supposed to be completed by all 67 shifts.
All Eg (Eg‘) are disjoint. Let 3 be the complement of 3. The sets Eg and Eﬁﬂ are equal up to a 3r shift.

The set FN is equals to [0, (67—1)]? because:

N __ N
Um= U =
B<T pe{n,1}4
_ N N
= U #u U =
Be{0,1}4,3,=0 Be{0,1}4.8,=1
= [r,7=11x |J FE}

preq0,1}4

o

= [r,7r—1]"% .

It should not be forgotten that all is done in a (6r)%-periodic space. We prove in the same way that F2 = (.
Tt follows that the sets Eg (Eg‘) form a partition of the whole lattice 7% Tet:

Fole) = (ero, G(e)mn)

This 18 a mix of old and new states of the configurations. Tt corresponds to the different steps that a
configuration ¢ has to travel to become G 4(¢) within our construction.

Since F(%,O,uﬂ) =10, (6r—1)]% and F('\(I),O,MO) =0, then ¢ = (¢, -) = Foo,..0y(c) and G(c) = (—,G(e)) =
Fr(e). We define the following sets of ‘double configurations’:

Yo € 10,1} Co = { Fa(c) |ceC ) .

3.2 Definitions of the Block Partitions

We construct block permutations which go from F o _0y(¢) to Fr(c). For any o in {0, 13, let T, 1 Coy —
Conce(a), such that T, (Fo(c)) = Fauce(a)(€). The local transition is e, and the origin of the partition is 3ra.
To prove that this is a function, we must prove that the states added are uniquely defined.

Lemma 3 For any o, there is a block permutation T, between Co and Cqoc(ny such that To(Fo(c)) =
fqu(‘,(‘,(o{)(c)~

Proof. We are working in the block [T, ., ,[ (3a;)r, (643a;)r—1]. The added new states are in the cells
which are in
gy =[] T(+4a)r, (5+20:)r—17 .
1<i<d

To compute the new states, we need the old states of the cells in

H [4ea;r, (6+205)r—1] .

1<i<d



These cells are in the block. Tet 2 be such a cell. Tet us prove that the old state of 2 is present, in F,(¢). For
each i such that o; = 1, 4r<x;<8r—1. By construction of the sets Eg, the ones which contain x must verify:
Vi, if a;=1 then g;=1, thus o < 3 so that & F9. This means that all the old states needed to compute the
added new states are present and that e, i1s a function.

Let us prove that e, is one-to-one, or equivalently, that the erased states are uniquely defined. The
erased states are in the cells H1<7:<d[[(2+2“77)7°7 (44+4a;)r—1]. To compute them from the new states and
A~ we need the new states in the cells H1<i<d[[(]+26«7;)r, (b+4a;)r—1]. These cells are in the block. Tet

x be such a cell. For each 7 such that o;=0, 1r<z;<hr—1. By construction of the sets Eg‘, the set in which

x is found, must verify: Vi, if a;=0 then §;=0, thus 8<a so that zeFN

snce(a)” This means that all the new

states needed to compute the deleted old states are present in Foueciaycy- The transition e, is one-to-one,
T 18 a block permutation.

O

Since we have 2% BP which go from Foo,0,..0y(c) to Fr(e):

Theorem 4 Any d-dimensional reversible cellular automaton can be represented using 2% block permutations.

Lemma 5 Any reversible cellular automaton can be represented by a reversible block cellular automaton.

Proof. The cardinalities of the basic sets are Eg|: ITicica(2+28:)r=2%"" 4> r? where b is the number of 1

of 3. The sets Eg (Eg‘) form a partition of the torus. For any block, the number of new (old) states tells
which « is to be used. The sets of blocks for each e, inputs (outputs) are disjoint. Then all the partial

definition of e, are gathered in a unique e that is a one-to-one function and all BP in a unique BP T such
that:
YeeC, g((‘) = TUJWJ) o.. ‘T(LOVMO) o T(O,O,MO)(C) .

This can be grouped in a reversible block cellular automaton:

B = ((S U {7})27 (67“7 67“7 .. .767°)7 de (37“ O“)()/6{0,1}’17 (S U {7})2) -
The R-BCA B uses 2¢ partitions to simulate the R-ca A. The last BP must maps (— x S)W into (8§ x —)W
in order to iterate the simulation.

O

Figure 2 shows how the new states are generated and the old states discarded in dimension 2. The left
column indicates the distribution of new and old states inside [0, 6r]. On the right it is depicted how the
permutation operates on shifted blocks. The dotted lines indicates the distances r.

3.3 Composition of the BP’s

Tn this subsection we collapse the states from (Sa U {—1)? to Sa US4%. This decreases the number of states
and make iterating directly possible. We use the following Lemma:

Lemma 6 Tn every partition, the positions of the cells with two ca states in each block are enough to
determine a.

Proof. Tf all cells are single, then o = (0,0,...0). '

Let &/ be the following base of {0,1}%: /=1 if and only if i=j, otherwise e/=0. Let ¢/ = (34+3a+42/)r
be some element of 77 Since the Eg (Eg‘,) form a partition of the lattice, let us find the 8 (3) which
corresponds to ¢/. From the definitions of Eg, the value of 8 depends only on o and each component
depends only in the value on each direction. The relations between those elements of 7% are summed up on
Fig. 3.

Thus, if @<, the old state of the cell ¢/ is still present. Tf ;=0 then o<, which means that the new
state has not been added yet in the cell /. Tf ;=1 then §'<a, which means that the new state has been
added in the cell 7.
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Figure 2: How states are generated and erased.

a @l | B B
.10 310 0
A 6 1 1

0 4 |1 1
AN 701 0

Figure 3: Relations between o, ¢/, § and g’

The coordinate of ¢/ depends on «, but inside blocks of the a partition (the first shifted by 3ar), the

3ar term disappears and only remains gpjl = (34¢7)r, which is independent from a.
Altogether, the cell (3+¢7)r has two states if and only if a;=1 (i.e., <o and #'<a). This means that

simply by looking whether the states in the cells (34¢7)r are single, the value of a can be guessed.
O

The sets S x {—} and {—} x S can both be collapsed onto § without losing the definition and injectivity
of e. The set of states (S U {—})2 collapses on SUS2. Apart from lowering the set of states, this allows the
system to be iterated. This corresponds exactly to our simulation definition now.

4 Another Construction

In this Section, we built a representation with d + 1 Block Permutations of width 3(d 4+ ])r.



4.1 New BP’s
The following sets are used, YA € {0,1,2,...d+ 1}:

HY = Un<pen (3pr+[r3(d+1)r—r—1]%) |
H)(\) = UA§u<d+1 (3pr—|—[[r,3(d+])r—r—]]]d).

The sets are supposed to be completed by all 3(d 4 1)r shifts.

Lemma 7 These sets verify the symmetry HY = —3r—H((,?+17)\ and the following equalities: HY = Hr(l)+1 =

and HY | = HY = 7.“.

Proof. 'The symmetry and the equality with §§ are obvious.
For the second part, we prove that HN = 7% the last equality is done by symmetry. Tet 2 be any element
of the underlying lattice 7Z%. The d + 1 sets 3Ar + [ —r, r — 1] (for A € [0, d]) are non-empty and disjoint.
Since = has d coordinates, there exists a Ay such that no coordinate of 2 belongs to 3Agr +[ —r, r—1]. This
means that all 2 belong to 3\gr 4+ [r, 3(d+ 1)r —r — 1], thus € H(',\'

O

As before a wider set of states (S U —)? is used during the composition. Tet
Ve €0, YA, Ha(e) = (cm G )

With Lem. 7, we have: Hy(c) = (¢, —) and Hap1(e) = (—,G(e)).

Tet Dy be a BP of width 3(d + 1)r and origin 3Ar. The local function ey is defined so that Dy maps
H(e) into Hagpr(e). The BP Dy add new states and erase old states.

Tet us prove that there is enough data in H(¢) to compute the new states. The states added belongs to:

Ay = H;\I+1\H§l
(3Ar+[r, 3(d+ T)yr —r — 17%) \ U (Bpur+[r, 3(d+)r —r—17%) .

0<u<

For any € Ay, # € 3Ar 4 [, 3(d + 1)r — r» — 1]% and the origin of Dy is 3Ar. Then all the cells of the
neighborhood of z and the old states needed to compute the new state of = are in the block 3Ar + [0, 3(d—|—
Dr—1 J%. Now, it only remains to verify that old states needed to compute the new states are still present.

For any g in [0, A — 17, since @ & 3ur + [, 3(d + 1)r — r — 1]%, there is some index j, such that
x5, & 3ur+[r,3(d+1)r—r—1]. So x;, isin 3ur+ [ —r, r— 1] (remember that all is 3(d + 1)r periodic).
And all j, must be different because the sets 3ur + [ —r, r — 1] are disjoint.

Let y be any cell needed to compute x, y belongs to #+[ —», 7]. The cell y; must be in 3pr+[ —2r, 2r—1].

If y does not belong to HY then for all y' € [, d + 1], there is some kys such that yg , does not belong
to p'r+[r, 3(d+1)r—r—1], or equivalently, Yk, € 3u'r+[—r, r—1]. Again all the k, must be different.

Altogether, there are d + 1 j, and k, for d values so there are y and g’ such that j, = k. Then the
intersection of 3ur + [ —2r, 2r — 1] and 3p’r + [—7, r — 1] is not empty. This means that p’ = u. But, by
definition of u and p', p < .

Thus y belongs to H? and the old states needed to compute the new state of = are present in the block.

Using the symmetry between HN and F© the old states erased can be computed from the new states in
7‘[)\+1(C).

The 3 BP in dimension 2 are given in Fig. 4.

4.2 Collapsing the States

We collapse again the states on Sx U S3.

Lemma 8 The BP 1s defined by the position of the double states.
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Figure 4: The 3 steps in dimension 2.

Proof. Tf all cells are single, then A = 0.
Let ¢' be the following vector:

¢ = 3\ + (=3, -6, -9 ..., —3i, —3i ---—3i) .
The vector ¢* hold two states only if it belongs to both H;\\' and HS. The equation
3Ar4+(—3,-6,-9...,-3i,-3i,---—3i) € A +[r,3(d+1)r—r—1]*

implies that ¢’ belongs to H)(\) for A < d, which is always the case. The vector ¢’ belongs to H;\\' only if

BAP 4 (=3,-6,—-9 .., —3i,—3i,---—3i) € |J  (Bur+[r3d+)r—r—1]7) ,
0<u<

(—3,-6,—9...,-3i,=3i,--—3)) € |  Gu+[r3d+)yr—r—1]7) ,
—A<u<0

which implies that —3A+ 1 < =34, i +1 < X. Then X is the maximum i such that ¢* holds two states, plus
two. If there 1s no such ¢ then A = 1.
Inside a block of the A partition, ¢* simplifies to (—3, —6, —9 ..., —3i, =34, --— 3i), which is independent
of A. As before, it is enough to know the position of the double states in a block to know which BP to use.
O
With above Lemma, all local functions of the BP are compatible and can be grouped in a unique bijective
local function and states can be collapsed. Altogether:

Theorem 9 Any R-CA can be expressed as a composition of d+ 1 BP of width 3(d + 1)r.

The origins of the partitions are: 0, 3, 6r, 97 ... and 3dr.



5 Conclusion

We prove conjectures 1 and 2. The proof is done in a rather technical way and is not so explicit and visible
as the one in [2]. Nevertheless, we have improved the number of block permutations needed: 27 instead of
29+1 _ 1 Generation and erasing are still done progressively. But they are made concurrently, not one after
the other as in the first construction. The only drawback is that the size of the block is (67)? instead of
(4r)".

We modify the block permutations and the set of states used in order to have the possibility to iterate
them.

We also give a construction with d + 1 BP. But the width is 3(d—|— ])r instead of 6r. This means that
the size of the blocks are (3(d + 1)r)? instead of (6r)?. The complexity of the BP is the size of its table. Tt
should be noted that if the number of BP 1s decreasing, the complexity is increasing: the exponent of the
number of state is a factorial instead of an exponential.

As already noted by Kari [6], the fact that the BP representation can be effectively constructed does noft,
contradict the undecidability of reversibility because the inverse ca 1s needed for the construction.

To have a BP allows one to use reversible circuitry in order to build R-cA. This was done in [2] to prove
that, for 2 < d, there exists one d-dimensional reversible ca able to simulate any d-dimensional R-CA.

Since the BP are compatible and the states are collapsed, the composition can be iterated directly. This
defines a reversible block cellular automaton, also known as a ¢A with the Margolus neighborhood. The
representation Th. 4 means that d-R-cA can be simulated by d-dimensional reversible block cellular automata.
Tn [4], we use this to simulate d-rR-cA with d-dimensional partitioned cellular automata (as defined by Morita
[7]) and extend the result of [2] to dimension 1. Partitioned ¢a are ¢a whose set of states is a product set
indexed by [ —r, r]. Tn this model, each part of a state is sent to one and only one of its neighbors.
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