
Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

High Speed Implementation of CellularAutomatonMarc DaumasJ�erôme-Olivier Durand-LoseLouis-Pascal Tock Janvier 1996
Technical Report No 96-01

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

High Speed Implementation of Cellular AutomatonMarc DaumasJ�erôme-Olivier Durand-LoseLouis-Pascal TockJanvier 1996
AbstractTheoretical research on cellular automata aims at designing a class of new powerful tools fora wide range of applications. Yet, nothing is possible without e�cient implementation. Wepresent in this work an overview of the implementation of Wolfram rule 54 cellular automatonon recon�gurable hardware. Performances of the design are analyzed and perspectives are drawnon near-future cellular automaton implementations.Keywords: FPGA, Computer Architecture, Cellular AutomatonR�esum�eLes recherches th�eoriques sur les automates cellulaires ont pour but de d�e�nir un classe d'outilspuissants qui puissent être utilis�es par un grand nombre d'applications. N�eanmoins, rien n'estpossible sans une implantation e�cace de ces automates cellulaires. Nous pr�esentons dans ce tra-vail l'implantation de l'automate 54 de Wolfram sur un circuit recon�gurable. Les performancesdu circuit sont analys�ees a�n de pr�esenter des perspectives sur les implantations possibles dansun futur proche grâce �a cette technologie.Mots-cl�es: Pr�edifus�es Actifs, Architecture des Ordinateurs, Automates Cellulaires

1

2

High Speed Implementation of Cellular AutomatonMarc Daumasy, J�erôme-Olivier Durand-Lose� & Louis-Pascal TockzyLaboratoire de l'Informatique du Parall�elisme - CNRS�Ecole Normale Sup�erieure de LyonLyon, France 69364�Departamento de Ingeneria MathematicaUniversidad de ChileSantiago, ChilezUniversit�e Claude Bernard de LyonLyon, France 69622AbstractTheoretical research on cellular automata aims at designing a class of new powerful tools for a widerange of applications. Yet, nothing is possible without e�cient implementation. We present in this workan overview of the implementation of Wolfram rule 54 cellular automaton on recon�gurable hardware.Performances of the design are analyzed and perspectives are drawn on near-future cellular automatonimplementations.IntroductionImplementations of cellular automata (CA) may be used for experimentation or as production tools. Thereare two classes of implementation: the programs from the �rst class generate a time-space diagram of theevolution of the automaton; the ones from the second class are only evolving toward a �nal steady state ofthe automaton. In any case, the speed of the program is critical and many simple automata are not usedonly because they could not be implemented e�ciently.In the 80's, To�oli and Margolus have designed the CAM-6 card for IBM-PC compatible to simulate 1Dand 2D cellular automata with performance comparable to the CRAY-I [4]. They o�er a software library todrive the chip and build the space-time diagram along with some utilities. Their card is able to simulate a256 � 256 array of binary cells with the 8-nearest-cell neighborhood and generate new data at the rate ofabout 6 M bit per second. But this hardware is especially designed for CA.ProgrammableActive Memories (PAM) including the Digital PeRLe 1 board [1, 2] o�er a good platform toimplement cellular automaton. The PeRLe board is a general purpose recon�gurable hardware coprocessor.It is composed of a 4 � 4 grid-connected matrix of Xilinx XC 3090 chip Field Programmable Gate Arrays(FPGA) [6].The cellular automaton based on Wolfram's rule 54 is a two-state ring-connected automaton with arelatively small neighborhood [5]. We have implemented 1024 cells on the PAM. Each cell updates every125 ns, this leads to the global computation power of 8 G cell-update per second. The program generates thetime-space diagram of the automaton for any input and as many as 105 transitions in a matter of 1 second.1

Updated Cell

Righ
t n

eig
hb

or

Le
ft

ne
igh

bo
r

Figure 1: Cellular Automaton Architecture
Left neighbor

R
ig

ht
 n

ei
gh

bo
r

0 1

0

1

Left neighbor

R
ig

ht
 n

ei
gh

bo
r

0 1

0

1 01

1 1

10

0 0

0 1

State State

New state New stateFigure 2: Wolfram Rule 54 Truth TableIn Section 1, we present W54 automaton and Digital PeRLe 1 board. Then, in Section 2, we present theimplementation of W54 on the PAM and �gures of performance. Finally, we suggest directions for futureresearch toward building both experimental automata and applications.1 Environment1.1 Wolfram Rule 54Wolfram widely studied all one dimensional binary cellular automata with neighborhood f -1,0,1 g. Thereare exactly 256 such automata. This number is deduced from the concatenation of the images of the heightelements of f0,1g3.W54 is a one dimension cellular automaton. The state of each cell is only stored with one bit. Theupdate rule of the automaton involves only the left and right closest neighbors (see �gure 1). The rule reallyinvolves all neighbors and is not trivial to compute. W54 automaton is a good representative to 3-neighbors,2-state CA. Moreover, its global behavior leads to interesting space-time diagrams.The truth table of the rule is presented in �gure 2. It can be coded with the boolean expression below.updated state = not active state xor (left state and right state)The automaton is known for presenting some pattern on speci�c con�gurations. The con�guration!(0111)! is two-periodic, with the associated con�guration !(1000)!. Figure 3 presents a small time spacediagram of the automaton for this initial state expanded below, for the diagram we have coded cell state 1with a black square. : : :011101110111011101110111 : : :One of the interesting fact on W54 automaton is that, if we cut and paste two in�nite parts of thiscon�guration, the border will regularly move right or left. It will behave like some sort of particle with someinteresting properties when colliding: the con�guration just keeps going or remains stuck. It may happenthat a third particle restores the two previous ones; many other types of interesting behaviors are observed.2

Space

T
im

e

Figure 3: Example of W54 EvolutionThe following example shows that the W54 automaton is not injective and therefore not reversible: thesetwo con�gurations evolve towards the same state.: : :0101010101010101010 : : : : : :0000000000000000000 : : :: : :0000000000000000000 : : : : : :0000000000000000000 : : :1.2 Board ArchitectureThe Digital PeRLe-1 board is one example of Programmable Active Memory (PAM). It is based on FieldProgrammable Gate Array (FPGA) technology and can be used as a universal hardware coprocessor whichis coupled to a standard host computer. The board loads its con�guration (the nature of the automaton) andexchanges data to be computed (initial state and intermediate states) with the host through the fast TUR-BOchannel interface. The PeRLe 1 board designed as a general purpose recon�gurable hardware coprocessorfeatured very good behavior to simulate cellular automata.FPGA Xilinx XC3090 The board is based on the Xilinx XC3090 chip. It is a high density IC that canbe con�gured by the user and that belong to the Logic Cell Array (LCA) family [7].User-speci�ed logic functions are performed by the 20� 16 Con�gurable Logic Blocks (CLB) of the chip.Data can come in to or go out from the chip via 144 I/O Blocks (IOB). Three kinds of programmableinterconnection resources are provided to connect IOBs and CLBs, and CLBs among themselves: generalpurpose interconnections, direct connections and long lines. Figure 4 presents the structure of an LCA.The 20� 16 CLBs of the chip perform some user-speci�ed logic functions chosen from two functions ofup to 4 variables with one variable common to both functions, any function of 5 variables or some functionsof seven variables. Each CLB features �ve logic inputs and two
ip-
ops (see �gure 5).General purpose interconnections use switching matrices to drive a signal over the CLB array. Theyare supported by �ve horizontal and �ve vertical wires located between the rows and columns of CLBs andIOBs. The number of interconnect combination each time a vertical vector crosses an horizontal vector islimited to 20. 3

I/O Blocks

CLBs

Switching matrix

3 vertical long lines

CLB’s I/O

Horizontal long lines Figure 4: CLB's Signals.
Flip/
Flop

Flip/
Flop

Combinatorial
FunctionFigure 5: Con�gurable Logic Block.4

R
A
M

RAM

R
A
M

Controller

Switchs

Computational
matrix

1MO memory

Fifo
switch

RAM : LCA (XC3090)Figure 6: DEC PeRLe-1 Board.Direct interconnections are used to route a signal between adjacent blocks. The propagation delay isminimal and there is no use of general purpose interconnection. Circuits involving such connections willmaximize their speed. So, automata using 4-nearest-cell neighborhood will have the fastest implementation.Internally, data are spread over the chip via horizontal and vertical long lines which drive a signal for along distance (allowing a high level of fan-out). The long lines enable one to connect every CLB of a row or acolumn. Each CLB's column has three vertical long lines, and each CLB's row has two horizontal long lines.Three-state bu�ers also allow the use of horizontal long lines to form on-chip wired-OR and multiplexedbuses.Each IOB includes input and output storage elements and I/O options to deal with the many way inputsor outputs are performed: direct, registered, inverted, 3-state con�gured: : :DEC PeRLe-1 This board [8] consists of 4� 4 Xilinx XC3090 chips organized as a computational matrixand 4 banks of fast static memory. Seven more Xilinx XC3090 chips are present on the board: the 4switches are dedicated to implement data routing and preformatting functions; the �fo switch connects tothe board I/O system; the two controllers command the data path and the board electric control signals.Communication with the host is done through two 32-bit wide FIFO devices, one for each direction. Anoverall DEC PeRLe-1 board architecture view is given in �gure 6.All these basic programmable resources are interconnected. They allow data distribution over the boardand permit one to establish a variety of di�erent data paths. Such
exible features permit us to e�cientlymap the automaton to the board.The major data processing is made by the 4� 4 array of LCAs called computational matrix. Each LCAof the matrix follows a regular scheme of interconnection (see �gure 7). Three kinds of user-programmableinterconnection resources are provided: the matrix direct connections which are used between adjacent LCAs,the matrix buses which connect one side (north, east, west or south) of all LCAs in the same row or column,and the matrix ring buses which connect all the LCAs.The propagation delays are di�erent according to the interconnection resource used. The matrix directconnection features the fastest connection: 24 ns. The matrix bus has a propagation delay of 28 ns, and thematrix ring bus has a propagation delay of 43 ns. High performance circuits will avoid the matrix ring busesand usually involve nearest neighbor communications.The surrounding logic is driven by �ve switches and two controllers which provide the user with a powerfuldata path control. These user-programmable devices manage data inputs and outputs, the four banks of5

16*20

Direct
Connection

Matrix
Bus

Ring
Bus

CLBs

Figure 7: Interconnection Scheme of one LCA.memory, and can be used for data preformatting. The four switches are connected to the computationalmatrix via 64-bit wide matrix busses, and connected to the memory banks via 32-bit wide buses. Two 32-bitwide buses connect the switches to the two controllers and the �fo switch.The board features four banks of 1 MBytes static memory. They are 32-bit wide and fast enough forworking with the computational matrix without altering performances. They are accessed through theswitches.A 32-bit wide FIFO link connects the board to the host. This link can be accessed through a DMAchannel to exchange data at a speed of 100 Mbytes/s. Lastly, the board is cadenced by a user-programmableclock able to reach 40 MHz in case of high speed designs.1.3 Programming the BoardThe PeRLe1DC library [9] provides the PeRLe 1 board designer with an easy way to con�gure the board.The library is written in C++ and takes advantages of many features of the language.Logic Logic is speci�ed in terms of boolean equations using constants, variables, registers for synchronouscircuits, clocks, multiplexers and the classic logic operators like logical and, logical or, etc: : :Data Structure Advanced data structures such as static and dynamic vectors of boolean variables, equa-tion handlers (to create classes returning complex boolean expressions), design hierarchy involvingC++ inheritance are imported from the C++ possibilities.Place/Route Automatic logic placement and routing of the data on the LCAs is done by the Xilinx CADtools. Yet any part of the circuit can be placed and/or routed by the user. It is also possible to tagsome critical signal for a careful route by the Xilinx tools.I/O Pin Assignment A signal can be assigned to an internal buses of the board as well as a pin of a chipsproviding the user with full data path control.Designs made with this library can be simulated at di�erent stages of the de�nition. The generated �lesare compatible with the Xilinx net-list format and the Xilinx CAD tools are used at early stages of thedesign.2 Implementing W54We have directly mapped the automaton ring to the board. With 5120 CLBs on the computational matrix,1024 cells of 4 CLBs each has been implemented, leaving 1024 CLBs for glue logic. One elementary automaton6

cell was built and replicated across every CLBs of the matrix. The challenging part of this work was toconnect the di�erent cells: we have introduced an original scheme to load the initial state from the host andto save each intermediate state on a disk �le.Our goal was to update the 1024 ring connected cells of the automaton each clock cycle and to store theirstate stepwise every n clock cycles. The process is divided into three parts:1. Vector initialization.2. Updating n time the automaton state x[i] for 0 � i < 1024.x[i] = f(x[i]; x[i� 1]; x[i+ 1]) where f(a; b; c) = a xor (b and c):3. Saving the vector's states and returning to step 2.The boards never gets a chance to stop producing some new results. Yet the board works as long as itsoutput bu�er is not full. When the �fo output bu�er is full, a mechanism integrated to the board stops theclock until some data are read from the board. This mechanism ensure that the board produces data as longas the client program on the host reads the results.2.1 Board ControlAt the board level, we distinguish between three states indicated each by an active signal: the automaton isworking (work); it is loading its initial state (enL); the current state is presently being saved (enS).The board is con�gured as a 32� 32 grid of elementary cells that we will describe latter. During a loador save operation, the state of the 32 cells of one column of the grid are send from the west switch to thematrix or vice versa. The operation is carried away in 32 cycle by addressing each cycle a new column ofthe matrix.During the �rst 32 clock cycles after the initialization of the board, a 1 shifting through a registeractivates the signals enR[i] (enable read) for each column, i = 0 : : :n � 1. The enL (enable load) signalis also activated, hence the input �fo reads one 32 bit word from the connection with the host each clockcycle. The word is sent to the west switch which dispatches it to the matrix. Each cell of the ith columnactivated by the signal enR[i] save the corresponding bit of the word as its new state. The remaining cellsof the matrix are kept unchanged. This �rst step achieves the loading of the automaton initial state.After-while, the board enters in the working state. The work signal is activated; all the cells are updatedevery clock cycle. A counter keeps the number of cycle spend working. When the automaton has updatedn consecutive clock cycles, the automaton is stopped. The counter is reseted and the board starts sendingthe automaton state to the host to be saved on a disk �le.In a way similar to the �rst step, the 32 enW[i] (enable write) signals are activated, one per clock cycle,and the automaton state is put in the �fo output which is activated by the enS (enable save) signal. Whenthe state is �nally saved, the board automaton is reactivated (see �gure 8).The process loops until the �fo output bu�er is full. The image of one state of the automaton takes up32 of the 256 words available in each �fo bu�er. Eight states can be stored together in the bu�er before theprocess stops. Figure 9 presents how the signals are generated by process. The actual implementation of thework signal uses a decrementing register.2.2 Elementary CellEach component of the ring is set up as an elementary cell. The elementary cell stores the state x of thecorresponding cell of the automaton. Three control signals de�ne the instant behavior of a cell from its pointof view, they are shared by all the cells of a same column inside the 32� 32 matrix: work[c], enR[c] andenW[c]. One bus, xload[r], is shared by all the cell of one row inside a chip. A chip hold a sub-matrix of8� 8 cells.The logic code managing the cell is presented bellow using a syntax closed to the PeRLe1DC library.Figure 10 presents such a cell. 7

cycle i

West

Switch

xlp

Switch
South

0

enR

work=0

enW=0

(a)

West

Switch

Switch
South

work=0

(b)

enW

xload

enR=00 00 0 0 00 0 0 0 0

from

0 0Figure 8: Load and Save Operations.
000000000 000000 110 0

enR[0] enR[31]

enL = enR[0]+...+enR[31]

enW[0] enW[31]

000

enS=enW[0]+...+enW[31]
n steps

work[0] work[n−1]

work=work[0]+...+work[n−1]Figure 9: Generating Signal Process.8

xload[r]

work[c] enR[c]

z, xy Horizontal long line

Vertical long line

CLBs

enW[c]

f(x)

x

xg xd

Figure 10: Cell(r,c).y = mux (work[c], f(x, xg, xd), x); // Normal transformationz = mux (enR[c], xload[c], y); // Load modex = reg (z); // Synchronous operationxload[r] += TriState (x, ~enW[c]); // Save modeWhen work is active then the cell operates in normal mode, the state x is updated each clock cycle(125 ns) using the W54 automaton rule. Otherwise the state x of the cell is frozen. When enR is active thecell state is read from the three-state bus xload.Every time the intermediate state needs to be stored on the host disk �le, the enW signal of the cell isactivated. The current state value is written on the horizontal three-state bus xload. In the mean time, theaccess to this bus for the other cells of the same line is disabled.One can have di�erent automata simply by changing the f function. All the ring connected two stateautomata studied by Wolfram can thus be implemented e�ciently without the need to design a new circuit.2.3 Ring ConnectionWe have implemented three di�erent elementary cell connection pattern for a Xilinx XC3090 chip dependingon the position of the chip in the computation matrix. The pattern are named L, N and U depending ontheir form (see �gure 11). The L pattern features only direct vertical connections between the elementarycells. The two other patterns connect some vertical line together on the upper row (LCA N) or on the lowerrow (LCA U).Connecting all the chips using only the fast direct connection of the PeRLe 1 board as presented �gure 12builds a 1D ring on the 2D computational matrix. In order to close the ring, a link is set up between theends of the vectors on the upper left and the upper right corner.The data transmitted by the matrix in a load or save operation is the direct transcription of the automatonstate. The state vector is coded on 32 words of 32 bits as x0 : : :x31; x32 : : :x63 : : : x1023. One word amongtwo has to be reversed in order to adapt to the physical ring mapping on the computational matrix. Thistreatment occurs in the west switch. It uses a toggling control activated only in the load or save mode.2.4 IO ManagementFigure 11 shows the external signals received by each LCA from its point of view. Each chips sees 8 bit widesignals, but at the board level the buses are merged to a 32 bit wide bus connected to the correspondingswitch. The control signals are sent on the vertical buses of the board by the south switch. As they are9

L N U

enR[0..7]

enW[0..7]
work[0..7]

xlp[0..7]

Elementary cellFigure 11: LCA Patterns.
N N N N

L L L L

L L L L

U U U U

LCAFigure 12: W54 Mapping.10

transmitted on long line of the chip, they reach every elementary cell of a given column (8 columns perLCA). The xlp signals, which are used during the load and save operations, are driven in each chip throughthe horizontal bus xload.Loading the state in the automaton, the control signal works has a cursor, and the datum to be read isfound on the horizontal bus. No cell writes on the xload bus. The information is read from the xlp bus onthe board. Saving the state, only one column of cells of the entire board is active. Hence, only one columnof 4 chips out of the 16 chips holds some active cells. The xload bus of these chips is not driven by the xlpsignal of the board. The buses are set by the active cells. The buses output connection to the xlp signalon board are activated, and the xlp signal is set according to the state of the active cells. The other chips,including the west switch monitor the value of xlp, hence the value of the active cells is retrieved on theswitch.2.5 PipeliningThe commuting time of the elements of the design is very small. Yet the critical path of one load or saveoperation involves transistors from the south switch down to the �fo bu�er transiting inside the computationalmatrix. Sending a signal from one chip to another on the board is a slow operation compared to the poweravailable inside every chip. To be able to use a high clock frequency, we have pipelined the IO operations.By introducing some latch in the data path from the �fo switch to the computational matrix, we havebeen able to sustain operation on a much higher clock frequency. Some logic has been added to the switchesto make sure that the signals that were synchronous without the retiming barriers arrive together. Forexample the control signals for the output �fo are delayed a few cycle for the information to arrive from thecomputational matrix to the �fo switch. No retiming barrier has been introduced inside the computationalmatrix because it would require state prediction to cross the retiming barriers. Although state predictionwas simple with W54, we have restrained from implementing it. Our generic implementation shows thatany cellular automaton up to 1024 cells with a relatively small neighborhood (up to 8 neighbors) can besimulated with comparable results.The board produced excellent results on this problem, updating 1 GB/s. If we compare our implementa-tion clock cycle of 125 ns to the clock speed usually obtained on the PeRLe board (cycles from 25 ns to 100 ns)and our link of 32 MB/s with the host to the maximum bandwidth of the DMA channel (100 MB/s) ourarchitecture �ts correctly the PeRLe board. We present in �gure 13 a larger sample of W54 evolution on thestandard con�guration, and �gure 14 illustrates the evolution of the automaton on a random con�guration.3 ConclusionWe have presented our implementation of Wolfram rule 54 cellular automaton. The target PAM architectureis Digital PeRLe 1 board. In this design, the size of the automaton was not critical, we have shown that adegree of integration twice or four times higher could still have been considered. The resolution of the screenlimits the size of the time-space diagram that can usefully be computed.We are moving toward automata that are able to recognize one given state and to trigger an action onthis state. This functionality implemented in the two remaining CLBs could easily be used to automaticallyinvestigate the periodicity of a cellular automaton on a given state.More complex automata are possible with a larger neighborhood. The communication switches are farfrom saturated and CA with a neighborhood of 4 or 8 will achieve equivalent performance. More promisingare problems where the state of the automaton should only be saved after a large number of iteration. Thesaving could be triggered by a counter or by some dedicated cells of the automaton.11

Figure 13: W54 Time-Space Diagram on Standard Con�guration (350� 175).References[1] P. Bertin, D. Roncin & J. Vuillemin, \Introduction to programmable active memories", Systolic ArrayProcessors, Prentice Hall, also available from Paris Research Laboratory, PRL-RR 3, June 1989.[2] P. Bertin, D. Roncin & J. Vuillemin, \Programmable Active Memories: a Performance Assessment",Paris Research Laboratory, PRL-RR 24, March 1993.[3] B. Chopard & M. Droz, \Cellular Automata Approach to Non-Equilibrium Phase Transitions in aSurface Reaction Model: Static and Dynamic Properties", Journal of Physics, Math. Gen. 21, 1988.[4] T. To�oli & N. Margolus, \Cellular Automata Machine - A New Environment for Modeling", MITpress, Cambridge Mass, 1987.[5] S. Wolfram, \Theory and Applications of Cellular Automata", World Scienti�c, 1986.[6] Xilinx Inc., \The programmable gate array data book", Product Briefs, Xilinx, 1987.[7] Xilinx, \The Programmable Gate Array Data Book", 2100 Logic Drive, San Jose, 95124 California,1992.[8] P. Bertin and P. Boucard, \DECPeRLe-1 Hardware Programmer's Manual", Digital Equipment Cor-poration, Paris Research Laboratory, 1993.[9] Herv�e Touati, \Perle1DC: a C++ Library for the Simulation and Generation of DECPeRLe-1 Designs",Digital Equipment Corporation, Paris Research Laboratory, 1993.12

Figure 14: W54 Time-Space Diagram on Random Con�guration (350� 350).13

