O
i Laboratoire de I'Informatique du Parallélisme

Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

-

High Speed Implementation of Cellular
Automaton

Marc Daumas

Jérome-Olivier Durand-Lose Janvier 1996

Louis-Pascal Tock

Technical Report N© 96-01

Ecole Normale Supérieure de Lyon

I“l 46 Allée d'ltalie, 69364 Lyon Cedex 07, France
Téléphone : (+33) 72.72.80.00 Télécopieur : (+33) 72.72.¢
Adresse électronique : lip@lip.ens-lyon.fr



High Speed Implementation of Cellular Automaton

Marc Daumas
Jérome-QOlivier Durand-Lose

Louis-Pascal Tock
Janvier 1996

Abstract

Theoretical research on cellular automata aims at designing a class of new powerful tools for
a wide range of applications. Yet, nothing is possible without efficient implementation. We
present in this work an overview of the implementation of Wolfram rule 54 cellular automaton
on reconfigurable hardware. Performances of the design are analyzed and perspectives are drawn
on near-future cellular automaton implementations.

Keywords: FPGA, Computer Architecture, Cellular Automaton

Résumé

Les recherches théoriques sur les automates cellulaires ont pour but de définir un classe d’outils
puissants qui puissent étre utilisés par un grand nombre d’applications. Néanmoins, rien n’est
possible sans une implantation efficace de ces automates cellulaires. Nous présentons dans ce tra-
vail 'implantation de "automate 54 de Wolfram sur un circuit reconfigurable. Les performances
du circuit sont analysées afin de présenter des perspectives sur les implantations possibles dans
un futur proche grace a cette technologie.

Mots-clés: Prédifusés Actifs, Architecture des Ordinateurs, Automates Cellulaires









HicH SPEED IMPLEMENTATION OF CELLULAR AUTOMATON
Marc Daumas! Jérome-Olivier Durand-Lose* & Louis-Pascal Tock?

TLaboratoiI;e de I'Informatique du Parallélisme - CNRS
Ecole Normale Supérieure de Lyon

Lyon, France 69364

“Departamento de Ingeneria Mathematica

Universidad de Chile
Santiago, Chile

tUniversité Claude Bernard de Lyon
Lyon, France 69622

Abstract

Theoretical research on cellular automata aims at designing a class of new powerful tools for a wide
range of applications. Yet, nothing is possible without efficient implementation. We present in this work
an overview of the implementation of Wolfram rule 54 cellular automaton on reconfigurable hardware.
Performances of the design are analyzed and perspectives are drawn on near-future cellular automaton
implementations.

Introduction

Implementations of cellular automata (CA) may be used for experimentation or as production tools. There
are two classes of implementation: the programs from the first class generate a time-space diagram of the
evolution of the automaton; the ones from the second class are only evolving toward a final steady state of
the automaton. In any case, the speed of the program is critical and many simple automata are not used
only because they could not be implemented efficiently.

In the 80’s, Toffoli and Margolus have designed the CAM-6 card for IBM-PC compatible to simulate 1D
and 2D cellular automata with performance comparable to the CRAY-I [4]. They offer a software library to
drive the chip and build the space-time diagram along with some utilities. Their card is able to simulate a
256 x 256 array of binary cells with the 8-nearest-cell neighborhood and generate new data at the rate of
about 6 M bit per second. But this hardware 1s especially designed for CA.

Programmable Active Memories (PAM) including the Digital PeRLe 1 board [1, 2] offer a good platform to
implement cellular automaton. The PeRLe board is a general purpose reconfigurable hardware coprocessor.
It is composed of a 4 x 4 grid-connected matrix of Xilinx XC 3090 chip Field Programmable Gate Arrays
(FPGA) [6].

The cellular automaton based on Wolfram’s rule 54 is a two-state ring-connected automaton with a
relatively small neighborhood [5]. We have implemented 1024 cells on the PAM. Each cell updates every
125 ns, this leads to the global computation power of 8 G cell-update per second. The program generates the
time-space diagram of the automaton for any input and as many as 10° transitions in a matter of 1 second.



Updated Cell

Figure 1: Cellular Automaton Architecture

State | Left neighbor State| Left neighbor
0 0 1 1 0 1

3 3

f» 0 1 1 f» 0 0 0

(O] (O]

< <

5 1| 1 0 S 1| 0 1

o New state o New state

Figure 2: Wolfram Rule 54 Truth Table

In Section 1, we present WbH4 automaton and Digital PeRLe 1 board. Then, in Section 2, we present the
implementation of W54 on the PAM and figures of performance. Finally, we suggest directions for future
research toward building both experimental automata and applications.

1 Environment

1.1 Wolfram Rule 54

Wolfram widely studied all one dimensional binary cellular automata with neighborhood { -1,0,1 }. There
are exactly 256 such automata. This number is deduced from the concatenation of the images of the height
elements of {0,1}3.

W5h4 1s a one dimension cellular automaton. The state of each cell is only stored with one bit. The
update rule of the automaton involves only the left and right closest neighbors (see figure 1). The rule really
involves all neighbors and is not trivial to compute. W54 automaton is a good representative to 3-neighbors,
2-state CA. Moreover, its global behavior leads to interesting space-time diagrams.

The truth table of the rule is presented in figure 2. It can be coded with the boolean expression below.

updated state = not active state xor (left state and right state)

The automaton i1s known for presenting some pattern on specific configurations. The configuration
“(0111)“ is two-periodic, with the associated configuration “(1000)¥. Figure 3 presents a small time space
diagram of the automaton for this initial state expanded below, for the diagram we have coded cell state 1

with a black square.
...011101110111011101110111 ...

One of the interesting fact on W54 automaton is that, if we cut and paste two infinite parts of this
configuration, the border will regularly move right or left. It will behave like some sort of particle with some
interesting properties when colliding: the configuration just keeps going or remains stuck. It may happen
that a third particle restores the two previous ones; many other types of interesting behaviors are observed.



Space

Time

Figure 3: Example of W54 Evolution

The following example shows that the W54 automaton is not injective and therefore not reversible: these
two configurations evolve towards the same state.

...0101010101010101010. .. ...0000000000000000000 . . .
...0000000000000000000.. .. ...0000000000000000000 . . .

1.2 Board Architecture

The Digital PeRLe-1 board is one example of Programmable Active Memory (PAM). Tt is based on Field
Programmable Gate Array (FPGA) technology and can be used as a universal hardware coprocessor which
is coupled to a standard host computer. The board loads its configuration (the nature of the automaton) and
exchanges data to be computed (initial state and intermediate states) with the host through the fast TUR-
BOchannel interface. The PeRLe 1 board designed as a general purpose reconfigurable hardware coprocessor
featured very good behavior to simulate cellular automata.

FPGA Xilinx XC3090 The board is based on the Xilinx XC3090 chip. It is a high density IC that can
be configured by the user and that belong to the Logic Cell Array (LCA) family [7].

User-specified logic functions are performed by the 20 x 16 Configurable Logic Blocks (CLB) of the chip.
Data can come in to or go out from the chip via 144 1/O Blocks (IOB). Three kinds of programmable
interconnection resources are provided to connect IOBs and CLBs, and CLBs among themselves: general
purpose interconnections, direct connections and long lines. Figure 4 presents the structure of an LCA.

The 20 x 16 CLBs of the chip perform some user-specified logic functions chosen from two functions of
up to 4 variables with one variable common to both functions, any function of 5 variables or some functions
of seven variables. Each CLB features five logic inputs and two flip-flops (see figure 5).

General purpose interconnections use switching matrices to drive a signal over the CLB array. They
are supported by five horizontal and five vertical wires located between the rows and columns of CLBs and
IOBs. The number of interconnect combination each time a vertical vector crosses an horizontal vector is
limited to 20.



‘ ‘ ‘ ‘ ‘ / 3 vertical long lines
CLBsl/O - L CLBs
[ | Sy
L A _
/4 I/0O Blocks
n .
] / -
Horizontal long lines ‘ ‘ ‘ ‘ ‘ 4 ‘
Switching matrix
Figure 4: CLB’s Signals.
Flip/
| Flop e
o Combinatorial
T ™ Function
— >
I \
Flip/ -
| Flop

Figure 5: Configurable Logic Block.



pa

Controller
Fifo RAM
switch
R
| EEEE
‘ . . . . Switchs
=t 111 I .
memory
Computational . . . . ',?‘/l -
matrix
i‘—[% RAM [ ] : LcA (xC3090)

Figure 6: DEC PeRLe-1 Board.

Direct interconnections are used to route a signal between adjacent blocks. The propagation delay is
minimal and there i1s no use of general purpose interconnection. Circuits involving such connections will
maximize their speed. So, automata using 4-nearest-cell neighborhood will have the fastest implementation.

Internally, data are spread over the chip via horizontal and vertical long lines which drive a signal for a
long distance (allowing a high level of fan-out). The long lines enable one to connect every CLB of a row or a
column. Each CLB’s column has three vertical long lines, and each CLB’s row has two horizontal long lines.
Three-state buffers also allow the use of horizontal long lines to form on-chip wired-OR and multiplexed
buses.

Each TOB includes input and output storage elements and I/O options to deal with the many way inputs
or outputs are performed: direct, registered, inverted, 3-state configured. ..

DEC PeRLe-1 This board [8] consists of 4 x 4 Xilinx XC3090 chips organized as a computational matrix
and 4 banks of fast static memory. Seven more Xilinx XC3090 chips are present on the board: the 4
switches are dedicated to implement data routing and preformatting functions; the fifo switch connects to
the board I/O system; the two controllers command the data path and the board electric control signals.
Communication with the host is done through two 32-bit wide FIFO devices, one for each direction. An
overall DEC PeRLe-1 board architecture view is given in figure 6.

All these basic programmable resources are interconnected. They allow data distribution over the board
and permit one to establish a variety of different data paths. Such flexible features permit us to efficiently
map the automaton to the board.

The major data processing is made by the 4 x 4 array of LCAs called computational matriz. Each LCA
of the matrix follows a regular scheme of interconnection (see figure 7). Three kinds of user-programmable
interconnection resources are provided: the matrix direct connections which are used between adjacent LCAs,
the matrix buses which connect one side (north, east, west or south) of all LCAs in the same row or column,
and the matrix ring buses which connect all the LCAs.

The propagation delays are different according to the interconnection resource used. The matrix direct
connection features the fastest connection: 24 ns. The matrix bus has a propagation delay of 28 ns, and the
matrix ring bus has a propagation delay of 43 ns. High performance circuits will avoid the matrix ring buses
and usually involve nearest neighbor communications.

The surrounding logic is driven by five switches and two controllers which provide the user with a powerful
data path control. These user-programmable devices manage data inputs and outputs, the four banks of



A ? A
“ mEm - EE "
- I 1 > Direct
Connection
CLBs iR iR
] ]
- iR 16*20 N . Matrix
| | Bus
- Rin
o g
- L L > ~—  Bus
| l \/

Figure 7: Interconnection Scheme of one LCA.

memory, and can be used for data preformatting. The four switches are connected to the computational
matrix via 64-bit wide matrix busses, and connected to the memory banks via 32-bit wide buses. Two 32-bit
wide buses connect the switches to the two controllers and the fifo switch.

The board features four banks of 1 MBytes static memory. They are 32-bit wide and fast enough for
working with the computational matrix without altering performances. They are accessed through the
switches.

A 32-bit wide FIFO link connects the board to the host. This link can be accessed through a DMA
channel to exchange data at a speed of 100 Mbytes/s. Lastly, the board is cadenced by a user-programmable
clock able to reach 40 MHz in case of high speed designs.

1.3 Programming the Board

The PeRLelDC library [9] provides the PeRLe 1 board designer with an easy way to configure the board.
The library is written in C++ and takes advantages of many features of the language.

Logic Logic is specified in terms of boolean equations using constants, variables, registers for synchronous
circuits, clocks, multiplexers and the classic logic operators like logical and, logical or, etc. ..

Data Structure Advanced data structures such as static and dynamic vectors of boolean variables, equa-
tion handlers (to create classes returning complex boolean expressions), design hierarchy involving
C++ inheritance are imported from the C++ possibilities.

Place/Route Automatic logic placement and routing of the data on the LCAs is done by the Xilinx CAD
tools. Yet any part of the circuit can be placed and/or routed by the user. It is also possible to tag
some critical signal for a careful route by the Xilinx tools.

I/0 Pin Assignment A signal can be assigned to an internal buses of the board as well as a pin of a chips
providing the user with full data path control.

Designs made with this library can be simulated at different stages of the definition. The generated files
are compatible with the Xilinx net-list format and the Xilinx CAD tools are used at early stages of the
design.

2 Implementing W54

We have directly mapped the automaton ring to the board. With 5120 CLBs on the computational matrix,
1024 cells of 4 CLBs each has been implemented, leaving 1024 CLBs for glue logic. One elementary automaton



cell was built and replicated across every CLBs of the matrix. The challenging part of this work was to
connect the different cells: we have introduced an original scheme to load the initial state from the host and
to save each intermediate state on a disk file.

Our goal was to update the 1024 ring connected cells of the automaton each clock cycle and to store their
state stepwise every n clock cycles. The process is divided into three parts:

1. Vector 1nitialization.

2. Updating n time the automaton state x[i] for 0 < i < 1024.

z[f] = f(x[i], [i — 1], z[i + 1]) where f(a,b,¢) =@ wor (b and ).

3. Saving the vector’s states and returning to step 2.

The boards never gets a chance to stop producing some new results. Yet the board works as long as its
output buffer is not full. When the fifo output buffer is full, a mechanism integrated to the board stops the
clock until some data are read from the board. This mechanism ensure that the board produces data as long
as the client program on the host reads the results.

2.1 Board Control

At the board level, we distinguish between three states indicated each by an active signal: the automaton is
working (work); it is loading its initial state (enL); the current state is presently being saved (enS).

The board is configured as a 32 x 32 grid of elementary cells that we will describe latter. During a load
or save operation, the state of the 32 cells of one column of the grid are send from the west switch to the
matrix or vice versa. The operation is carried away in 32 cycle by addressing each cycle a new column of
the matrix.

During the first 32 clock cycles after the initialization of the board, a 1 shifting through a register
activates the signals enR[i] (enable read) for each column, ¢ = 0...n — 1. The enL (enable load) signal
is also activated, hence the input fifo reads one 32 bit word from the connection with the host each clock
cycle. The word is sent to the west switch which dispatches it to the matrix. Each cell of the it column
activated by the signal enR[i] save the corresponding bit of the word as its new state. The remaining cells
of the matrix are kept unchanged. This first step achieves the loading of the automaton initial state.

After-while, the board enters in the working state. The work signal is activated; all the cells are updated
every clock cycle. A counter keeps the number of cycle spend working. When the automaton has updated
n consecutive clock cycles, the automaton is stopped. The counter is reseted and the board starts sending
the automaton state to the host to be saved on a disk file.

In a way similar to the first step, the 32 enW[i] (enable write) signals are activated, one per clock cycle,
and the automaton state is put in the fifo output which is activated by the enS (enable save) signal. When
the state is finally saved, the board automaton is reactivated (see figure 8).

The process loops until the fifo output buffer is full. The image of one state of the automaton takes up
32 of the 256 words available in each fifo buffer. Eight states can be stored together in the buffer before the
process stops. Figure 9 presents how the signals are generated by process. The actual implementation of the
work signal uses a decrementing register.

2.2 Elementary Cell

Each component of the ring is set up as an elementary cell. The elementary cell stores the state x of the
corresponding cell of the automaton. Three control signals define the instant behavior of a cell from its point
of view, they are shared by all the cells of a same column inside the 32 x 32 matrix: work[c], enR[c] and
enW[c]. One bus, xload[r], is shared by all the cell of one row inside a chip. A chip hold a sub-matrix of
8 x 8 cells.

The logic code managing the cell is presented bellow using a syntax closed to the PeRLelDC library.
Figure 10 presents such a cell.



|
i<
B
.
.
.
West |y i West | from
> I
Switch > Switch|
.
.
.
.
-
B
.
works0  _AMMAMAMAKRMAAAAAML  workso _AMKMAAAAAKLLAAAAALY
enW=0 o\o\o\o\o\o\o\o\o\o+o\o\o\o\o\o\o\o\o\o enR=0 o\o\o\o\o\o\o\o\o\o+o\o\o\o\o\o\o\o\o\o
— —
enR enwW
South B cyclei South
Switch Switch
€Y (b)
Figure 8: Load and Save Operations.
work[0] work[n—1]
enRJ[0] enR[31] enW|0] enW[31]
+ J
ojojo .o, |00o0]0j0jO 1, 000]0j0O/O] _o , 00O
/] N
| n steps |

enL = enR[0]+...+enR[31] Work=work[0]+...+work[n-1] enS=enW][0]+...+enW][31]

Figure 9: Generating Signal Process.



I I 7‘
| Y X J |
\
by |l o 7 x } Horizontal long line
| f(x) |
xload[r] \ ,
| |
| | Vertical long line
| - | ~ “/
‘ \\\K\
| CLBs
\
[ R IR -
work[c] enR|c] enWi/c]
Figure 10: Cell(r,c).
y = mux (work[c], £(x, =xg, xd), x); // Normal transformation
z = mux (enR[c], xload[c], y); // Load mode
X = reg (2); // Synchronous operation
xload[r] += TriState (x, ~“enW[c]); // Save mode

When work is active then the cell operates in normal mode, the state x i1s updated each clock cycle
(125 ns) using the Wh4 automaton rule. Otherwise the state x of the cell is frozen. When enR is active the
cell state 1s read from the three-state bus xload.

Every time the intermediate state needs to be stored on the host disk file, the enW signal of the cell is
activated. The current state value is written on the horizontal three-state bus xload. In the mean time, the
access to this bus for the other cells of the same line is disabled.

One can have different automata simply by changing the £ function. All the ring connected two state
automata studied by Wolfram can thus be implemented efficiently without the need to design a new circuit.

2.3 Ring Connection

We have implemented three different elementary cell connection pattern for a Xilinx XC3090 chip depending
on the position of the chip in the computation matrix. The pattern are named L, N and U depending on
their form (see figure 11). The L pattern features only direct vertical connections between the elementary
cells. The two other patterns connect some vertical line together on the upper row (LCA N) or on the lower
row (LCA U).

Connecting all the chips using only the fast direct connection of the PeRLe 1 board as presented figure 12
builds a 1D ring on the 2D computational matrix. In order to close the ring, a link i1s set up between the
ends of the vectors on the upper left and the upper right corner.

The data transmitted by the matrix in a load or save operation is the direct transcription of the automaton
state. The state vector is coded on 32 words of 32 bits as g ... 231, %32...2g3...%1023. One word among
two has to be reversed in order to adapt to the physical ring mapping on the computational matrix. This
treatment occurs in the west switch. It uses a toggling control activated only in the load or save mode.

2.4 10O Management

Figure 11 shows the external signals received by each LCA from its point of view. Each chips sees 8 bit wide
signals, but at the board level the buses are merged to a 32 bit wide bus connected to the corresponding
switch. The control signals are sent on the vertical buses of the board by the south switch. As they are



-JlIE

enR[0..7] Elementary cell
enW[0..7]
work[0..7]

Figure 11: LCA Patterns.

LCA

Figure 12: W54 Mapping.

10



transmitted on long line of the chip, they reach every elementary cell of a given column (8 columns per
LCA). The x1p signals, which are used during the load and save operations, are driven in each chip through
the horizontal bus xload.

Loading the state in the automaton, the control signal works has a cursor, and the datum to be read is
found on the horizontal bus. No cell writes on the xload bus. The information is read from the x1p bus on
the board. Saving the state, only one column of cells of the entire board 1s active. Hence, only one column
of 4 chips out of the 16 chips holds some active cells. The x1oad bus of these chips is not driven by the x1p
signal of the board. The buses are set by the active cells. The buses output connection to the x1p signal
on board are activated, and the x1p signal is set according to the state of the active cells. The other chips,
including the west switch monitor the value of x1p, hence the value of the active cells is retrieved on the
switch.

2.5 Pipelining

The commuting time of the elements of the design is very small. Yet the critical path of one load or save
operation involves transistors from the south switch down to the fifo buffer transiting inside the computational
matrix. Sending a signal from one chip to another on the board is a slow operation compared to the power
available inside every chip. To be able to use a high clock frequency, we have pipelined the 1O operations.

By introducing some latch in the data path from the fifo switch to the computational matrix, we have
been able to sustain operation on a much higher clock frequency. Some logic has been added to the switches
to make sure that the signals that were synchronous without the retiming barriers arrive together. For
example the control signals for the output fifo are delayed a few cycle for the information to arrive from the
computational matrix to the fifo switch. No retiming barrier has been introduced inside the computational
matrix because it would require state prediction to cross the retiming barriers. Although state prediction
was simple with W54, we have restrained from implementing it. Our generic implementation shows that
any cellular automaton up to 1024 cells with a relatively small neighborhood (up to 8 neighbors) can be
simulated with comparable results.

The board produced excellent results on this problem, updating 1 GB/s. If we compare our implementa-
tion clock cycle of 125 ns to the clock speed usually obtained on the PeRLe board (cycles from 25 ns to 100 ns)
and our link of 32 MB/s with the host to the maximum bandwidth of the DMA channel (100 MB/s) our
architecture fits correctly the PeRLe board. We present in figure 13 a larger sample of W54 evolution on the
standard configuration, and figure 14 illustrates the evolution of the automaton on a random configuration.

3 Conclusion

We have presented our implementation of Wolfram rule 54 cellular automaton. The target PAM architecture
is Digital PeRLe 1 board. In this design, the size of the automaton was not critical, we have shown that a
degree of integration twice or four times higher could still have been considered. The resolution of the screen
limits the size of the time-space diagram that can usefully be computed.

We are moving toward automata that are able to recognize one given state and to trigger an action on
this state. This functionality implemented in the two remaining CLBs could easily be used to automatically
investigate the periodicity of a cellular automaton on a given state.

More complex automata are possible with a larger neighborhood. The communication switches are far
from saturated and CA with a neighborhood of 4 or 8 will achieve equivalent performance. More promising
are problems where the state of the automaton should only be saved after a large number of iteration. The
saving could be triggered by a counter or by some dedicated cells of the automaton.

11



(350 x 175).

mon

Standard Configurat

W54 Time-Space Diagram on

Figure 13

References

ive memories” |, Systolic Array

[1] P. Bertin, D. Roncin & J. Vuillemin, “Introduction to programmable act

Processors, Prentice Hall, also available from Paris Research Laboratory, PRL-RR 3, June 1989.

a Performance Assessment”,

[2] P. Bertin, D. Roncin & J. Vuillemin, “Programmable Active Memories

Paris Research Laboratory, PRL-RR 24, March 1993.

[3] B. Chopard & M. Droz, “Cellular Automata Approach to Non-Equilibrium Phase Transitions in a

” Journal of Physics, Math. Gen. 21, 1988.

1es

Properti

1C

ic and Dynami

Stat

Surface Reaction Model

[4] T. Toffoli & N. Margolus, “Cellular Automata Machine - A New Environment for Modeling”, MIT

press, Cambridge Mass, 1987.

[5] S. Wolfram, “Theory and Applications of Cellular Automata”, World Scientific, 1986.

[6] Xilinx Inc., “The programmable gate array data book”, Product Briefs, Xilinz, 1987.

bl

[7] Xilinx, “The Programmable Gate Array Data Book”, 2100 Logic Drive, San Jose, 95124 California

1992.

[8] P. Bertin and P. Boucard, “DECPeRLe-1 Hardware Programmer’s Manual” | Digital Equipment Cor-
poration, Paris Research Laboratory, 1993.

bl

”

1gns

f DECPeRLe-1 Desi

10on o

d Generat

1on an

lat

a C++ Library for the Simu

[9] Hervé Touati, “Perlel DC

Digital Equipment Corporation, Paris Research Laboratory, 1993.

12



4 TE ._._._._._._._._._._._._. .
444 A e e e e e | 1 o
nEP ._u_. 1451 u._u._u._.m_._._.#_ u u ._._._._._._ ._._ ._._._._._._._._._ | "_._._u._.m_._._
i."_‘u“‘.‘%%_‘ PR R
QU 4 iwu_‘ Lo E‘
hEiFERREE 'h ettt .__"_._._._._. A
A P 14 HH ._ ._._._._._._._._._._._._._ thHH
TR RN
._ LH
____ ________________ Ay .___._._.____._{ﬂ ._._._ .:.:._.._._.._.__.."._..._._ TRk
“_“_._ ._._._._._._._._._ A ._. ._.._ Brrhhe ._“_._"_._"_._._._ ._._._
._._._ ._ h ._._._._._._._ ._._._._._._._ ._u ._._._._._ ._._._._._._._._._._._._._._
._ u._ ._.__._. ._._._._._._ HH ._ ._.._.._._._ "_"_"_ i ._._._._._"_.
H._u._._ mu m a ; 4 ._..__.. ._._._._ ._._.m__ ._.._._._._._._“._._ ._._“._H_ ._ u.u.u.u.u.u H—H—H—H—.ﬂ.—. 1
] A . S
P._ b ‘ﬂh. ._ 5 ._"_u u “m REE u__ 'k m BEE L. ._ ._ __ v ._‘__‘__E{m
kAL e B f;. .a ; Ly m Hhhin)
A ._._._._._._ ._._._._ ._._._._._._._._._._ A ._._._._._
IR i m ,“m: S
Ay T Ay
Jidddy R REEL ) ._"_._u.__ ._._i._._._u._d.._. o “_ m. .m.__m__.m_.m_.m_
s IR E
.a;;a;._ bk
Al e
A0 R
o A CEEEE HEsEh
A A
.“._.._.._.._.._.._L ooy .._.____.“_.._ ..u._u Hh ._u._u._ L
._..m \ “_u“_ A “_"_“_u“_uu_"_ww._ A GGG K|
L ‘“““.“““““u“““‘“u““““‘uﬁ %m% ERE by
._._._u A ._._._._._._._._u._._ ._. ._"_._"_.m"_.m"_._"_ t "_ et A A Ay
R ERA "_._._._._ Ly A,
._._._._._.._ ._ o o o 1] Taphp u [ .._. ._._._._._._._._._._._._ -.L ._._._._._ ey ._._._._._._._._._.__n__ .&..&..“ .“-_u-_u
._m._m._._._”__ At u._u._u._u._u._u._u u._._._u._u._u H ._._.._._._._._._._._._._._._._._._._._._._._._”__ iy m._m._m._m._m._m._m._m._m._m._m._m._”__u Fiphr R
n n n ; n._._._._._u._u._u._._._u._u._u._u._u._u._._._u._u._u._u._._._u._._._ I u k| u u u u u u A4 u "_ "_ "_ "_ "_ "_ "_ "_ "_ "_ h “ "_._._._ u._._._._._._._._.m_._“
____________________________________________________________________________________________________________ ____.__._.u...._“.
"_ "_"_"_"_"_"_"_"_"_"_"_"_"_"_"_"_"_"_"_"_ i EREEEREEREEREEREERREREEEEEEEEEE ._.___._.._.__.m"_"_
:.:._._ .:._.:._._.d.ﬂ::_u._:“_ ._:.:._.:._._:.:..m____:“_:“_ ._r.:.m__“__._“.__.____
u_;.__._.“_“_“_“_“_“_._ Thhh "_._._J._ﬂﬂﬁ“ﬂ._._u._._ A
L .____. e LShna ._{ THHH : thErp R h._h._h._h._h._: Th e HH h_h..n_.“_._._._._._._ i
HHHRRY ._._._._._._._._._._ EHERRHE ._._._._._._._._._._._._._._._ Cdaiddaridda ._._._._“_ “_ “_ “_ R EEEREEEER
i ._.._. v, ] ._._._._._._._._._._._._._._._._._._._._._._._._ ._._. ._._._._._._._._._._._._._._._._._._._._._._._._ A PR Y
FHEE .._..._.. k| ."_"_ A A A A A A A b ._._._.__..__.._._ PHHERE RN .._u._u._u._u._u._u._u._”_
A A ._._._.__._ iy ._._._ ._._._._._._._._._._._._._._._._._._._._._._._._ A A AL
i S
A A ._._._._._._._ A A A A ._._._._._._._._ |
AR AT u‘““““‘“““f ﬂa“u“ﬁﬂ%ﬁu SRR R %u‘.‘.xa%ﬁ
q u_ [ ._._._._._. ._"_._._._ .._._._._._._._._. ubs .___ u__ ._u ._u ._u ._u ._u ._u ._u ._u 4 .n_ iy ._.n .m___._._._u ._u ._u ._u ._u ._u ._u.__._ 4 u ._._._._._._._._._._._._._._._._. ._._._._._._._ u_._._._._._. ._._._._._ u_ u_.m_._u_._u_._u_._u_.u_.u_.
“._ "_ “_ “_ “_h“_.“_ "_h._h { u_ u_ i ._..__.“_“._“. iy ._‘._ Ll ._._m._..:..__._._.:._‘.m ittt “_ “_ “_ “_h. it 2
R ._ h Ly
! S R
f T hu_._ S :::; & E:ER AT .‘._‘._‘._‘._‘._:._‘..: ¥
R KRR AR e U
J ] e ._._._ ._._ ._._._._ R ._._._._._._._._._ ._._ P HEHHE
: by m?.:. E.:._ m_ m_‘m_‘._im_ m_‘ PR YRR ._‘._5_4 m HERRAE ‘.. i ._; KRB
M i ..._..._._._._._ “_ ______________._ Y ._.._._.._. gt .._._.u_u_u_.u.u_.u.u_.u u uuu
h m u_ Ll ."_.:_ ._._._._._._._._._._._._._._ .:_ “_ ._._“._._._._._._ ._._._ ._._._._._ ._._ ._._._._._._._ .m W ._._._
: Al A SRR
1, LR ._._._._._._._ A 4
R m_._u.____.._ e .m_._._._._._..._.._.._. L .._.._ ._.___ ._._ ._.._._._ ._._
iy apdaitiedinddel L, __________
Tl
hh ._..._..._u ) .__h.__.._._ ] {._._._._._H._:._._._.._.n.‘ ._._._._._._.._..:._ ._._ ._"_.*. ;) “__h.:_ FEF H._._._ ._‘m._"__.__m
._“.:.:.:.:.uh.e ._.._.._._._._._ o EEt R R __ ________.._____._._.u_‘ TEERREEH
._ h i ._ phh ._._._._._._._._._._._._._._._._._.m_._._._ ._._._._._._._._._._._._._._._._._._ ._._H._._._u._u._._ ._._._ ._._._._._ "_._._._._._._._ oF ._u_”_u_”_u_._._._.u u
bbbk b, ; RE LR u Al G sty
._._._._._._._._._._._._._._._._._._._._._.__ u u u u u u u u J .__ __ __ __ __ __ __ __ | __._u k] PR 5 ._._._._._._._._._
__m.m.m.‘._._._._ ._._._._.._.._:_._._._._._._._ ._._._._. ) ._h._"_.._.“_ “_“::_ __ ...m_"_._: ._”_._“_"_._._m____. 1 ._"__.._“_.__.ﬁ ﬂ
R R e
pFrE L ._._.m_._.m_._._._._._._._._._._._._._._ ._._._._._._._._.m_._.m_._._._._._._._._._._._._._._._ Y .m_._.m_._._._._._._._._._._._._._._._._ ._._._._._H._u._._ ._._.m_._u._u._u._u._u._._ .m_._u._u._u._u._u._u._u._._ 13 .u_ u_ T u_ u_ u_ u_ 1 u_._

(350 x 350).

mon

Random Configurat

W54 Time-Space Diagram on

14

Figure

13



