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tA full 
onstru
tion of the universality of the Billiard ball model,a latti
e gas model introdu
ed by Margolus in 84 is provided. TheBBM is a reversible two-dimensional blo
k 
ellular automaton withtwo states. Fredkin's gate and reversible logi
 
an be emulated insidethe Billiard ball model. They are use to embed two-
ounters automata,a model universal for 
omputation.In the one-dimensional 
ase, there exists a universal blo
k 
ellularautomaton with 11 states.1 Introdu
tionThe Billiard ball model is a reversible 
ellular automaton of some sort.Reversibility allows to run ba
kward an automaton; information andenergy are preserved. Reversible Turing ma
hines were the �rst reversiblemodel to be proven universal [1℄.Cellular automata (CA for short) are well known models of syn
hronousand uniform pro
esses over large arrays. They operate over in�nite d-dimensional arrays of 
ells. Ea
h 
ell has a state 
hosen inside a �niteset. Ea
h iteration, ea
h 
ell is updated a

ording to a unique lo
al fun
tionand the states of the 
ells around it.The reversibility of CA has been studied from the sixties from a math-emati
al point of view, and from the seventies for a more pra
ti
al trend:saving energy. In 1970, Burks [2℄ 
onje
tured that there did not exist any�jdurand�uni
e.fr, http://www.i3s.uni
e.fr/~jdurand.yThis work was done while the author was in the Departamento de Ingenier��aMatem�ati
a, Fa
ultad de Cien
ias F��si
as y Matem�ati
as, Universidad de Chile, Santi-ago, Chile. 1



universal reversible CA. This 
onje
ture was proven false in dimension twoin 1977 by To�oli [13℄. In 1992, Morita [9℄ proved that there also exist uni-versal reversible CA in dimension one. To�oli and Margolus wrote a largesurvey about reversible CA [15℄.Physi
al 
onsiderations about latti
e gas lead Margolus [6℄ to introdu
ea new kind of CA, blo
k CA (BCA), together with a pra
ti
al example: theBilliard ball model (BBM). Blo
k CA have the same 
on�gurations as CAbut the updating is done di�erently. The array is partitioned into regularlydisplayed re
tangular blo
ks. A transition step is done by repla
ing ea
hblo
k of a given partition by its image a

ording to a unique blo
k transitionfun
tion from blo
ks to blo
ks. This repla
ement is repeated for variouspartitions in order to let information spread over the 
on�guration.In [14℄, it is 
laimed that sin
e any boolean fun
tion 
an be implementedwithin the BBM, it is universal. Their 
onstru
tion uses 
onservative logi
(reversible gates with the same number of ones in the input and in the out-put). But this implementation has two drawba
ks. First, it needs 
onstantinputs and produ
es garbage signals inside the 
on�guration; universality isnot so obvious to a
hieve. Se
ond, zeroes are en
oded by the la
k of anysignal and it is impossible to distinguish between zero and no information.In this paper, we make a full 
onstru
tion of a simulation of any two-
ounters automaton, a universal model introdu
ed by Minsky [7℄, by em-bedding reversible logi
 inside the BBM. With our en
oding, both zero andone signals are tangible.The de�nition of blo
k CA and reversibility are gathered in se
tion 2. Itis shown that one-dimensional BCA are able to simulate any Turing ma
hineand that there exists a universal one-dimensional BCA with 11 states.In se
tion 3, we re
all the de�nition of the BBM and basi
 
onstru
tionswith 
onservative logi
 as presented by Margolus. Another en
oding, whi
hwe 
all dual, is made by en
oding the value of a bit by the position of asignal. Let us remark that this en
oding is the \double-line tri
k" of vonNeumann as mentioned by Minsky [7, p. 69℄. Any fun
tion of reversiblelogi
 
an be embedded in the BBM with this en
oding, without garbage nor
onstant signals.In se
tion 4, we built a simulation of any two-
ounters automaton andproved rigorously that the BBM is universal.
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2 De�nitionsBlo
k 
ellular automata operate over bi-in�nite arrays of dimension d. Theelements of Zd are referred as 
ells. Ea
h 
ell has a value 
hosen inside a�nite set of states S. A 
on�guration is a valuation of the whole array, i.e.,an element of SZd.2.1 Blo
k 
ellular automataBlo
k 
ellular automata (blo
k CA or BCA for short) perform parallel anduniform updates of 
on�gurations.Let v1, v2, : : : vd be stri
tly positive integers. Let V be the following�nite sub-array of Zd : V = [0; v1 � 1℄ � [0; v2 � 1℄ � � � � � [0; vd � 1℄.It represents the shape of any blo
k. The blo
k transition fun
tion t is amapping over SV : t : SV ! SV .A V -partition is a regular partition of the array in blo
ks of size V . Itis de�ned by an origin oi 2 Zd as illustrated in Fig. 1. The transition step
orresponding to a partition Toi is the syn
hronous repla
ement of all theblo
ks by their images by the blo
k transition fun
tion t as depi
ted in Fig. 1.The update is done by making su

essive transition steps 
orresponding toa sequen
e of partitions.
-v1� -v1� 6v2?6v2?Roi = b0;0 b1;0b0;1 b1;1 t(b0;0) t(b1;0)t(b0;1) t(b1;1)Toi�!Figure 1: Transition step of origin oi.Repla
ements are su

essively made over various partitions identi�ed bytheir origins (oi)i (as in Fig. 1). All the transition steps use the same size ofblo
ks V and the same blo
k transition fun
tion t. More than one partitionis needed in order to let information spread over the array.The global transition fun
tion T maps 
on�gurations into 
on�gurations.It is the 
omposition of all the transition steps:T = Ton Æ Ton�1 � � � Æ To1 :A BCA is totally de�ned by (d; S; V;O; t) where O = (oi)i is the �nitesequen
e of the origins oi of the partitions.3



De�nition 1 An automaton A is reversible if its global transition fun
tionis a bije
tion and its inverse is itself the global transition fun
tion of someautomaton of the same kind (
alled the inverse and denoted A�1).Con
erning BCA:Lemma 2 A BCA is reversible if its blo
k transition fun
tion t is reversible,and then, its inverse is:B�1 = � S; V; O; t�1 � :where O is the sequen
e of the origins in reverse order.Sin
e SV is �nite, reversibility is de
idable for BCA.Remark A BCA is not exa
tly a 
ellular automaton sin
e it does not
ommute with all the shifts. Yet, it 
ommutes with all (�0v0; �1v1; : : : �dvd)-shifts (�i 2 Z). At blo
k s
ale, a BCA is indeed a 
ellular automaton.2.2 UniversalityDe�nition 3 A Turing ma
hine is de�ned by: ( �; Q; Æ; s0 ) where � isa �nite set of symbols for the tape, Q a �nite set of states of the ma
hine, Æis the transition fun
tion and s0 is the initial state.The transition fun
tion Æ yields the symbol to be written on the tape,the new state and the movement of the head a

ording to the state and theread symbol: Æ : Q� � ! Q� �� f�1; 1g [ fstopg :An automaton is universal for 
omputation if it is able to simulate anyTuring ma
hine or is able to simulate a universal automaton. There existsuniversal CA [12℄ and universal reversible CA [13, 9℄.Proposition 4 There exists universal BCA.Let M = (�; Q; Æ; s0) be a universal Turing ma
hine with distin
t mstates and n symbols (m = j�j, n = jQj and � \Q = ;).Let B be the following one-dimensional BCA:B = ( Q [ � [ f stop g; (2); ( (0); (1) ); tM ) :There are two partitions; their origins are (0) and (1). The states ofB are either symbols, states of M or an halting symbol stop. The lo
al4



8a; b 2 �, tM � a b � = a b8p; q 2 Q, tM � p q � = p qif Æ(p; a) = (q; b; 1) then 8>><>>: tM � p a � = b qtM � a p � = b qif Æ(p; a) = (q; b;�1) then 8>><>>: tM � p a � = q btM � a p � = q bif Æ(p; a) = stop then 8>><>>: tM � p a � = stop atM � a p � = stop aFigure 2: Blo
k transition fun
tion of B to simulate M .transition is de�ned on Fig. 2. The lo
ation of the head is en
oded by thepresen
e of a M -state (in Q) together with a M -symbol (in �) in one blo
k.The initial 
on�guration and some iterations are depi
ted in Fig. 3. Ea
htransition step 
orresponds to one iteration of M . Ea
h iteration of Bmakes two iterations of M . The end of the 
omputation 
orresponds to theapparition of state stop.The built BCA has minimal dimension (1), minimal width (2) and min-imal number of partitions (2) to be universal. It has m + n + 1 states.Rogozhin [10, 11℄ proved that there exists a universal Turing ma
hine with5 states and 5 symbols. It 
omes immediately that:Theorem 5 There exists a universal BCA with 11 states whi
h is geomet-ri
ally minimal.In dimension 2, the Billiard ball model des
ribed in the next se
tion isminimal geometri
ally, has only two states and is reversible. It is minimalfor every parameter but for its dimension.
5



w�2 w�1 w0 w1 w2 w3?s0 w�2 w�1 s0 w0 w1 w2 w3Æ(s; w0) = (p1; a; 1)w�2 w�1 a w1 w2 w3?p1 w�2 w�1 a p1 w1 w2 w3Æ(p1; w1) = (p2; b; 1)w�2 w�1 a b w2 w3?p2 w�2 w�1 a b p2 w2 w3Æ(p2; w2) = (p3; 
;�1)w�2 w�1 a b 
 w3?p3 w�2 w�1 a b p3 
 w3Æ(p3; b) = (p4; d;�1)w�2 w�1 a d 
 w3?p4 w�2 w�1 a p4 d 
 w3Turing ma
hine Blo
k CAThe thi
k lines indi
ate the iterated partitions.Figure 3: Simulation of a Turing ma
hine by a BCA.3 Billiard ball modelThe Billiard ball model (BBM) is a two-dimensional reversible BCA. It isde�ned by: BBM = ( f ; �g; ( 2; 2 ); ( (0; 0); (1; 1) ); tbbm ) :There are only two states: void and a parti
le symbolized by a ball �.The blo
k transition fun
tion tbbm is only partially given in Fig. 4; it shouldbe 
ompleted by rotations and symmetries. It works as follows:- if there is only one ball, the ball moves to the opposite 
orner (
ase (iv));- if there are two balls diagonally opposed, they move to the other diagonal(
ase (ii));- in any other 
ase, nothing 
hanges.The number of � is preserved. The blo
k transition fun
tion tbbm isreversible, from lemma 2, the BBM is reversible. Up to one shift, the BBMis its own inverse. 6



(i) - (ii) � � ��- (iii) �� � �� �-(iv) � �- (v) � � � �- (vi) � �� � � �� �-Figure 4: De�nition of tbbm.To prove the ability of the BBM to 
ompute, we implement logi
al wiring.Two levels of en
oding of binary signals are used: the basi
 one of To�oliand Margolus and the dual one. They are de�ned in the next subse
tions.3.1 Basi
 en
odingThis subse
tion is inspired by the works of Fredkin, Margolus and To�oli[5, 6, 14℄.Figure 5 depi
ts an example of iterations of the BBM with only one ball.It 
an be seen that the two rules (i) and (iv) of Fig. 4 are enough to 
reatea signal: a moving ball.� T0;0 � T1;1 � T0;0 �- - - �Figure 5: Ball movement.Single balls 
ould be used as signals. But it should be possible to 
hangetheir dire
tions and to make them intera
t with ea
h other. To do this, letballs travel by pairs, one behind the other. If there is a motionless re
tangleon their way, they boun
e on it as depi
ted in Fig. 6. The key rule is therule (ii) of Fig. 4.� � � �� � � ��� � � � �� � � ��� � � � �� � � �� � � � � �� � � �� �T0;0 T1;1 T0;0- - -Figure 6: Re
e
tion of a signal.7



Signals are now en
oded with two 
onse
utive balls. They 
an movediagonally, in both dire
tions, everywhere. With re
e
tions of signals it iseasy to build delays: the path of a signal is enlarged as depi
ted in Fig. 7.R � R	RFigure 7: Delay.When signals meet on the side, they go in the same two dire
tions butthe are shifted one diagonal ba
kward as depi
ted in Fig. 8. The dotted lineis the way they would have follow if only one signal would have been present.� � � � � �� � ���� ���� � �� � � � � �- - - - -Figure 8: Signals 
ollision.Signal 1 is en
oded with one signal and 0 with no signal.In 
onservative logi
, all gates are reversible and the number of ones(and zeroes) is preserved. It is not possible to dupli
ate a signal nor todis
ard it. For example, the only 
onservative gate working with one bit isthe identity and with two bits is the permutation (and the identity). To geta gate with a minimal 
omputing ability, one has to 
onsider a three bitsgate: the Fredkin gate. This gate works as follows: one bit goes throughuna�e
ted and depending on its value, the two others just pass through orare permuted as represented in Fig. 9.8�; � 2 f0; 1g ---- ---1�� 1��-- ---- ---0�� 0���RFigure 9: Fredkin gate.8



Fredkin gates 
an be simulated on the BBM with the basi
 en
oding [14℄.Also the BBM is simple, their 
onstru
tion is designed in two levels and takesa large amount of spa
e and time. Morita [8℄ proved that it is possible tobuilt any 
onservative gate out of Fredkin gates. The only signals needed arezero signals whi
h are regenerated at the end. Sin
e zeroes are implementedby the la
k of any signal:Lemma 6 The BBM is able to simulate any 
onservative logi
al fun
tionwith basi
 signals without feeding nor disposal problem.Any binary fun
tion f 
an be implemented with 
onservative logi
alfun
tions. It is done using a larger 
onservative fun
tion ' in the followingway. Constant bits 
 are added to the f -entry x to form a '-entry x:
. Theoutput of ' is the output of f together with bits whi
h are only there toguaranty that ' is 
onservative.This te
hnique has drawba
ks: 
onstant bits have to be provided, andunwanted bits are generated (and have to be disposed o� in some way). This
an not be avoided with irreversible fun
tions. The BBM does not allow to
reate nor to remove balls.3.2 Dual en
odingThe pre
eding 
onstru
tion is interesting as long as one uses automata whi
hworks in a �nite and known time. But when this time is unknown, it isimpossible to distinguish between the answer 0, i.e. no signal, and an un-�nished 
omputation. Additional features have to be provided to solve thisproblem whi
h is parti
ularly annoying with Turing ma
hines whi
h mayunpredi
tably stop at any time.To mind this, we use the dual en
oding also known as the \double-linetri
k" of von Neumann. This is done by doubling the signal as depi
ted inFig. 10. A signal is now always 
omposed of two 
onse
utive balls. Theirposition indi
ates the value of the bit. The presen
e and value of any dualsignal are expli
it.It is possible to build a Fredkin gate with the new en
oding as depi
tedin Fig. 11. Some delays are needed, but they are not indi
ated for 
larity.It is still possible to 
ompute any 
onservative fun
tion, but it is nowpossible to make an autonomous not gate (Fig. 12). There is no risk of
ollision be
ause there is only one real signal for any dual signal.We 
all reversible logi
 the restri
tion of the logi
al fun
tions to thebije
tive ones. Let f : f0;1gn ! f0;1gn be any reversible logi
al fun
-tion en
oded with dual signals. It 
an also be viewed as a fun
tion f1 :9



s+ s� s0 0 No signal0 1 01 0 11 1 ErrorFigure 10: From basi
 en
oding to dual en
oding.
- -- -- -fg - -- -- -fg
 n 
+
� 
0+
0� o
0x n x+x� x0+x0�ox0y n y+y� y0+y0�oy0

---
---Figure 11: Fredkin gate for dual signals.f(0; 1); (1; 0)gn ! f(0; 1); (1; 0)gn in the basi
 en
oding. Fun
tion f1 is apartial de�nition of a 
onservative fun
tion f2 : f0; 1g2n ! f0; 1g2n. FromLem. 6 
omes:Lemma 7 The BBM is able to simulate any reversible logi
al fun
tion withdual signals without any feeding nor disposal.4 Universality of the BBMA two-
ounters automaton is a �nite automaton linked to two 
ounters whi
h
an hold any positive integer value. The automaton 
an perform the follow-ing operations on the 
ounters: add one, subtra
t one (zero if it is alreadys 8<: s+s� s+s� 9=; s-? --6 -6 -Figure 12: A not gate with dual signals.10



zero) and test for nullity and bran
h.Minsky proved that there exist universal two-
ounters automata [7℄. Toprove that the BBM is universal, it is enough to show that it is able tosimulate any two-
ounters automaton.Lemma 8 The BBM is able to simulate any two-
ounters automaton.The 
onstru
tion relies on the automaton on the one side, and on the
ounters on the other side.The automaton 
an be simulated by a large logi
al unit. The state ofthe automaton is en
oded in a part of the output whi
h is fed ba
k to theinput. To perform an a
tion on the 
ounters, the automaton unit send the
orresponding order signal to the 
ounters. The state remains the sameuntil a noti�
ation of the exe
ution of the order is re
eived. Then the stateis 
hanged and a new 
y
le starts. The automaton is depi
ted in Fig. 13.Constant input has to be provided and garbage output is produ
ed be
ausethe fun
tion of the automaton 
an be irreversible. The 
ow of 
onstants isin�nite sin
e no one 
an presume of the duration of the 
omputation.
Mainautomaton?Garbage signals
?Constants

�6 -State -Ordero
� eEnd of exe
ution

-�6 ? -�6 ? -�6 ?-� -�a0b0 a1b1 a2b2
Figure 13: Main automaton and two register units.An order o is en
oded with two dual signals: o = (o0;o1). Signal o0 isused to state that there is an order, and o1 to de�ne it. The end of exe
utionnoti�
ation signal e equals 1 to notify that an order was well 
arried out bythe register, otherwise it is 0.Counters are stored and handled inside a unique in�nite line of logi
alregister units. The value of 
ounters are en
oded in unary with dual signals11



(n � 1n0!). The two 
ounters are denoted a = a0a1 : : : and b = b0b1 : : :The 
orresponding signals are lo
ked between 
onse
utive register units asdepi
ted in �gures 13 and 15. The register units update the values of thesignals a

ording to the orders re
eived from the automaton.Signals a0 and b0 are not nested between two register units but betweenthe automaton and the �rst register unit. Sin
e signal a0 (b0) equals 0 onlyif a (b) equals 0, the automaton 
an test easily whether a (b) is 0. Thisallows the automaton to test dire
tly the nullity of any 
ounter.The 
ru
ial part is the administration of the 
ounters. The register unitsare all identi
al and 
ommuni
ate with the signals o, l, r and e. The fun
tionof a register unit is de�ned by the table of Fig. 14. It should be noted thateven if it is not 
onservative, it is reversible as it 
an be proved from thetable. The last two lines of the table look like they 
an be merge into a rulelike \if o0 is 0 then nothing 
hanges" but the fun
tion wouldn't be one toone anymore. Ea
h register unit implements a reversible fun
tion. Thanksto Lem. 7, register units 
an be totally autonomous. They do not bring anyperturbation in the 
on�guration.---�� ---��---?� �6-�oinlinlouteout ooutroutrinein oin lin rin ein oout lout rout eout1,- 1 1 0 *,* * * *1,1 1 0 0 0,1 * 1 11,0 1 0 0 0,1 0 * 10,1 - - 0 *,* * * *0,0 - - - *,* * * *� : don't 
are � : un
hangedFigure 14: Register unit and the 
orresponding logi
al fun
tion.A register unit works by modifying l and r a

ording to their values andthe order o. If there is an order to exe
ute (o0 = 1), the values are modi�edonly at the end of meaning part of the 
ounter (l = 1 and r = 0, se
ond andthird lines of Fig. 14). The modi�
ation is indi
ated by o1: 0 for subtra
tionand 1 for an addition. To subtra
t one, the appropriate register unit sets lto 0; to add one, it sets r to 1.Signal e is 0 ex
ept when it brings the noti�
ation that an order wasexe
uted (and then it is 1). It is set to 1 by a register unit whi
h 
arriesout an order. There is never more than one a
tive order (ot = (1; :)) ornoti�
ation signal (et = 1) in a whole 
on�guration.The automaton and the register units are 
onne
ted as depi
ted inFig. 15. Ea
h unit only has a's, then b's, su

essively. Ea
h time, (lin; rin)and (lout; rout) are both either (ak;ak+1) or (bk;bk+1) depending on the12



parity of the 
lo
k. All the same, depending on the parity of t, ot meetsonly a's or only b's, but it meets all of them as it 
an be seen on Fig. 15.---�� ot+1bi�1ai�1et�2 ---�� otaibiet�1 ---�� ot�1bi+1ai+1et ---�� ot�2ai+2bi+2et+1ot+1bi�1biet�1 otaiai+1et ot�1bi+1bi+2et+1M.A. ---��ot+ia0b0et�i�1 : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+2ai�1bi�1et�1 ---�� ot+1biaiet ---�� otai+1bi+1et+1 ---�� ot�1bi+2ai+2et+2ot+2ai�1aiet ot+1bibi+1et+1 otai+1ai+2et+2M.A. ---��ot+i+1b0a0et�i : : :: : :: : :: : : : : :: : :: : :: : :---�� ot+3bi�1ai�1et ---�� ot+2aibiet+1 ---�� ot+1bi+1ai+1et+2 ---�� otai+2bi+2et+3ot+3bi�1biet+1 ot+2aiai+1et+2 ot+1bi+1bi+2et+3M.A. ---��ot+i+2a0b0et�i+1 : : :: : :: : :: : : : : :: : :: : :: : :Figure 15: Automaton, units and wiring for three su

essive iterations.Let us de
ompose the exe
ution of an order.If the 
ounter a (b) is null, the automaton knows it sin
e a0 (b0) is partof its inputs. It 
an test and bran
h dire
tly. If it wants to subtra
t one,the automaton just goes to the next instru
tion. If it wants to add one, itsets a0 (b0) to 1 and goes to the next instru
tion.To make an operation op (op is 1 for addition, 0 for subtra
tion) overa (b) the automaton sends a signal o = (1; op) syn
hronized with a0 (b0).Then it waits till it re
eives a e equal to 1 indi
ating that the operation wasperformed; then it goes on to the next operation.The order o is treated by the register units as follows. The signal otravels and meets su

essively all the pairs (ai;ai+1) whi
h are equal to(1;1) until it rea
hes the end of the meaning part of the 
ounter ((ai;ai+1)equals (1;0)). If op is 1 (addition) then the output value (ai;ai+1) is set to(1;1), otherwise (subtra
tion) it is set to (0;0). The signal o is set to (0;1)and moves endlessly to the right. The signal e is set to 1 and moves ba
k tothe automaton and indi
ates that the operation was 
arried out. The nextoperation 
an start.The exe
ution time is proportional to the value of a (b).13



Going ba
kward in time, the register unit whi
h performs the operationis de�ned by the meeting of the e equal to 1 and the �rst o equal to (0;1).The performed operation is de�ned by the value of (ai;ai+1).It should be noted that to build a n-
ounters automaton, one just haveto enlarge the distan
e between register units and add new trapped signals.Theorem 9 The BBM is universal.The universality of the BBM was totally proved using reversible te
h-niques. For the register units, reversibility was designed abstra
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