
Token based self-stabilizing uniform algorithmsJo�roy BeauquierLRI CNRS-UMR 8623, Bat 490, Universit�e Paris Sud, F-91405 Orsay Cedex,Fran
eE-mail: jb�lri.frandJ�erôme Durand-LoseI3S, CNRS UPREES-A 6070, 930 Route des Colles, BP 145, 06903 SophiaAntipolis Cedex, Fran
eE-mail: jdurand�uni
e.frandMaria Gradinariu and Colette JohnenLRI CNRS-UMR 8623, Bat 490, Universit�e Paris Sud, F-91405 Orsay Cedex,Fran
eE-mail: mariag�lri.frE-mail:
olette�lri.frVersion:This work1 fo
uses on self-stabilizing algorithms for mutual ex
lusion and leader ele
-tion | two fundamental tasks for distributed systems. Self-stabilizing systems are able tore
over by themselves, regaining their
onsisten
y from any initial or intermediary faulty
on�guration.The proposed algorithms are designed for any dire
ted, anonymous network and sta-bilize under any distributed s
heduler. The algorithms keystone is the token managementand routing poli
ies. In order to break the network symmetry, randomization is used. Thespa
e
omplexity is O((D++D�) � (log(snd(n))+ 2)) where n is the network size, snd(n)is the the smallest integer that does not divide n and D+ and D� are the maximal outand in degree respe
tively. It should be noti
ed that snd(n) is
onstant on the averageand equals 2 on odd size networks.Key Words: self-stabilization, randomized proto
ol, unfair s
heduler, leaderele
tion, mutual ex
lusion, dire
ted network.1. INTRODUCTIONIn a distributed system, several pro
essors
ooperate to a
hieve some global task.A prerequisite for
ooperation is to implement a distributed
ontrol, i.e. rea
hing ormaintaining a global predi
ate despite of partial (or lo
al) a

ess to the system state.Token
ir
ulation and leader ele
tion algorithms
onstitute well-known examples ofglobal tasks. The former manages the fair
ir
ulation of exa
tly one token, while thelatter
onsists in distinguishing one pro
essor
alled the leader. The fair
ir
ulation1
onta
t author : Colette Johnen, LRI, universit�e Paris-Sud,
entre d'Orsay, 91405 OrsayCedex, Fran
e,
olette�lri.fr, tel : +33 1 69 15 67 02, fax : +33 1 69 15 65 861

of exa
tly one token
an be used to solve the mutual ex
lusion problem. On
e aleader is ele
ted, many other tasks
an be solved using a
entralized
ontrol (forinstan
e, resour
e allo
ation or syn
hronization).Self-stabilization is a framework for dealing with
hannel or memory transientfailures. After a failure, the system is allowed to temporarily exhibit an in
orre
tbehavior, but after a period of time (as short as possible) it must behave
orre
tly,without external intervention. A self-stabilizing leader ele
tion or token
ir
ula-tion proto
ol starting, for example, in a symmetri

on�guration requires a way tobreak the symmetry. The id-based systems (every pro
essor has an unique identi-�er) prevent the existen
e of symmetri

on�gurations. In anonymous systems (allpro
essors are identi
al), the symmetry
an only be broken by randomization [?℄.Related works. Self-stabilization was introdu
ed by Dijkstra in [?℄; three self-stabilizing deterministi
 token
ir
ulation algorithms for semi-uniform systems arepresented. In a semi-uniform algorithm, some spe
i�
 pro
essors do not performthe same algorithm as the other pro
essors. In [?℄, Israeli and Jalfon provide a tokenmanagement poli
y and a graph traversal s
heme (token routing s
heme) yieldingself-stabilizing mutual ex
lusion for undire
ted (bidire
tional) networks. In orderto break symmetry they use the random walks te
hnique des
ribed by Aleliunaset al. in [?℄. Self-stabilizing token
ir
ulation algorithms
oping with anonymoussystems are presented in [?, ?℄. These solutions are designed for dire
ted (unidi-re
tional) rings. In [?℄, Herman presents an algorithm for odd size rings. In [?℄,Beauquier et al. present an algorithm whi
h ensures token
ir
ulation on dire
tedrings of any size. To guarantee the presen
e of a token in the ring the smallest nondivisor of n (n being the network size), snd(n) | the \magi
" number as it wasde�ned in [?℄ | is used. Alstein et al. present in [?℄ two mutual ex
lusion algo-rithms for dire
ted arbitrary networks with identi�ers requiring the prepro
essingof a spanning tree. Kakugawa and Yamashita present in [?℄ a self-stabilizing token
ir
ulation proto
ol under unfair s
heduler on rings. In [?℄, Durand-Lose reportsan original token management solution on undire
ted networks whi
h ensures theexisten
e of a single token in the network (the \magi
 number" is also used). Ran-dom walks are used for breaking symmetry. The spa
e
omplexity of this proto
olis O(D � log(snd(n))) where D is the maximal pro
essor's degree. In [?℄, Rosazpresents a randomized mutual ex
lusion algorithm in the message passing model.The solution has a polynomial stabilization time. Awerbu
h and Ostrovsky presentin [?℄, a self-stabilizing leader ele
tion proto
ol on undire
ted id-based networks.It requires log�(N) states per pro
essor (N is the network size). A basi
 proto
olis given, requiring N states per pro
essor, and the result is obtained by using adata stru
ture that stores distributively the variables. In an appendix of [?℄, Itkisand Levin use another data stru
ture based on the Thue-Morse sequen
e, requiringO(1) bits per edge to store, in a distributed manner, variables having possibly Nvalues. These two last algorithms require undire
ted networks. Assuming that thedeadlo
k freedom property is guaranteed externally, Mayer et al. propose in [?℄ arandomized self-stabilizing leader ele
tion proto
ol in the message passing model.In [?℄, Dolev et al. present two leader ele
tion proto
ols in
omplete networks. Theproto
ols are self-stabilizing under read/write atomi
ity. Using the s
heduler-lu
kgame te
hnique, polynomial bounds for the stabilization time are provided. In [?℄ adynami
 leader ele
tion algorithm under read/write atomi
ity is reported by Dolevet al.. Randomization is used for breaking symmetry but an unbounded memoryspa
e is required. Beauquier et al. propose in [?℄ a spa
e optimal leader ele
tion on2

the ring topology. The propose bound for the spa
e
omplexity is O(log(snd(n))).Our Contributions. We propose a self-stabilizing token
ir
ulation algorithmand a leader ele
tion algorithm under an arbitrary s
heduler for any anonymousdire
ted network : there is no requirement on the s
heduler and on the networktopology (ex
ept strong
onne
tivity). The optimality of the result is proven in[?℄ for the ring topology. Proto
ols are based on a token management poli
y thatguarantees the presen
e of at least one token. We also provide a token routingpoli
y whi
h ensures the token
ir
ulation. The token routing poli
y provides anupper bound for the number of steps exe
uted by a pro
essor between two su

essivesteps of any other pro
essor. This poli
y is used in the automati

onstru
tion ofAlgorithm 6.2 | self-stabilizing leader ele
tion under an arbitrary s
heduler. Aprobabilisti
 version of token
ir
ulation (Algorithm 4.1) yields a mutual ex
lusionproto
ol. The spa
e
omplexity of our algorithms is O((D++D�)�(log(snd(n))+2))bits per pro
essor where D+ and D� are the maximal out and in network degrees.It should be noti
ed that snd(n) is
onstant on the average and equals 2 on odd-sizenetworks. 2. MODELTransition System. A distributed system is a
olle
tion of inter
ommuni
at-ing state ma
hines. We model a distributed system as a transition system TS =(�; C; T; I) where � is an alphabet, C is the set of system
on�gurations, T � C�Cis the set of transitions and I � C is the set of initial
on�gurations. Ea
h transi-tion of T is labeled with a symbol from �. A probabilisti
 distributed system is adistributed system where a probabilisti
 distribution is de�ned on transitions.A
omputation e of TS starting in a
on�guration
1 2 I is a maximal sequen
eof transitions e = ((
1;
2); (
2;
3) : : :) su
h that (
i;
i+1) 2 T , 8i � 1. The lengthof a �nite pre�x h of a
omputation is denoted by length(h), the last
on�guration inh is represented by last(h), and the �rst
on�guration in h is first(h) (first
an bealso used for an in�nite
omputation). A
omputation fa
tor is a �nite sequen
e of
omputation steps. If h and x are
omputation fa
tors su
h that first(x) = last(h)then hx denotes the fa
tor
orresponding to the sequen
e h followed by x.Let
 be a system
on�guration. A TS-tree rooted in
, T ree(
), is the tree-representation of all
omputations starting from
. Let nd1 be a node in T ree(
),the �-bran
h rooted in nd1 is the set of all T ree(
)
omputations starting in nd1having the �rst transitions labeled with � (a letter of �). The degree of nd1 isthe number of bran
hes rooted in nd1. A sub-TS-tree of degree 1 rooted in
 is arestri
tion of T ree(
) in whi
h any node has the degree 0 (i.e. there is a deadlo
k)or 1. On a sub-tree of degree 1 of a probabilisti
 distributed system, the set of�rst transitions of a bran
h is the base set for a dis
rete probabilisti
 spa
e. Anytransition in this set has a positive probability and the sum of probabilities is 1 forevery node.S
heduler and strategy. A s
heduler is usually presented in the literature (see[?℄, [?℄, [?℄) as an adversary for a distributed system whi
h \
hooses" at ea
h
on�guration the next transition. Classi
ally, a s
heduler is de�ned as a fun
tionover the distributed system exe
utions whi
h, for a given
on�guration, returns thenext transition. In the pro
ess of
hoosing a transition, a s
heduler may have a

ess3

p1p3

p1,p3

1/41/4

p1p4p2p4 p1p3p2p3

1/41/4

p4 p2 p3 p1p3 p2p1p4

p1p4

p1p4

p1p3

p3 p1

p2p3

p3 p2

p1p3

p3 p1

p1,p4 p1,p3 p2,p3 p1,p3

p1

1/2 1/2 1/2 1/2

p3

p1,p4 p2,p3 p1,p3p2,p4 FIG. 1 The beginning of T ree(
) of the Algorithm 4.1to partial or total information on the system history. Note that some importants
heduler types
annot be modeled as fun
tions over the �nite history of systemexe
utions, like for instan
e the fair s
heduler.In the model that we use, a s
heduler is a predi
ate over the system
omputa-tions. This de�nition
opes up with any type of s
heduler even with those havinga dynami
al behavior, a

ording to the system evolution. In the sequel, we usethe k-bounded s
heduler (during a system
omputation, while a pro
essor is en-abled another pro
essor
an perform at most k a
tions) and the distributed unfairs
heduler (during a
omputation, some enabled pro
essors may starve | they neverperform an a
tion).The intera
tion between a s
heduler and the distributed system generates whatwe
all here strategies, de�ned as follows :Definition 1 (Strategy). Let TS be a transition system, let A be a s
hedulerand let
 be a TS
on�guration. A strategy rooted in
 is a sub-TS-tree of degree1 of T ree(
) su
h that any
omputation of the sub-tree veri�es the s
heduler A.In Figure 1, we present the beginning of the T ree(
) of the Algorithm 4.1 onthe 4-ring (p1, p2, p3 and p4). The Algorithm 4.1 provides a self-stabilizing token
ir
ulation.
 is the
on�guration where both pro
essor p1 and p3 have a token.Figure 2 presents the beginning of a spe
i�
 strategy of T ree(
) : at ea
h step, allpro
essors having a token perform their a
tion.Note that a T S tree
an be de
omposed in a in�nity of strategies.Let st be a strategy. An st-
one Ch
orresponding to a pre�x h is the set ofall possible
omputations in st with the same pre�x h. The measure of an st-
oneCh is the measure of the pre�x h (i.e., the produ
t of the probabilities of all thetransitions o

urring in h). An st-
one Ch0 is
alled a sub-
one of Ch if and only ifh0 = hx, where x is a
omputation fa
tor.In [?℄ it is proven, following the
lassi
al theory of probabilisti
 automata (see[?℄), that for any strategy, it
an be built a probabilisti
 spa
e having the strategyas a base set.Distributed system topology. Throughout this paper we
onsider distributedsystems of n inter
ommuni
ating
omputing devi
es mapped as a strongly
onne
t-ed dire
ted graph DG = (V;E) where V is the set of graph nodes and E the set ofdire
ted edges. Ea
h node represents a
omputing devi
e, also
alled pro
essor. If(p; q) 2 E then p is an in-neighbor of q and q is an out-neighbor of p (p may send4

p1,p4

p1p3

p1,p3

p1p3p2p3p1p4p2p4

p2,p4 p2,p3 p1,p3

1/4 1/4 1/4 1/4 1/41/4

1/41/4 1/4 1/41/4 1/4 1/4 1/4

1/4

p1p3 p1p2p4p3p4 p1p2 p2p4 p1p2 p3p4p1p4 p3 p2p4 p2p3 p1p3p1p4p2p3p2p4FIG. 2 The beginning of a strategy from
 of the Algorithm 4.1some data to q on (p; q), but q
annot). In the sequel, the set of node p in-neighborsis denoted by In(p) and their number is denoted by D�(p). Similarly the set ofout-neighbors is denoted by Out(p) and the number of those neighbors by D+(p).Any node p in the network shares registers with its in and out neighbors. The nodep reads the shared registers with its in-neighbors (denoted Rpin[q℄; q 2 In(p)) and isallowed to freely perform write and read operations on the shared registers with theout-neighbors (denoted Rpout[z℄; z 2 Out(p)). For a node p all the edges oriented toits out-neighbors are
alled outgoing edges and all the edges oriented towards p are
alled in
oming edges.Distributed algorithm. Any pro
essor in a distributed system exe
utes an al-gorithm whi
h has two parts : a de
larative part and a �nite set of guarded a
tionspart (i.e. label :: hguardi �! hstatementi). The values of lo
al variables and out-registers of a pro
essor de�ne the pro
essor
urrent state. The guard of a pro
essorp is a boolean expression involving the state of p and the values of p's in-neighborsregisters. A guarded a
tion (also
alled rule) is enabled if its guard is true. Weassume that for any pro
essor there is at most one enabled a
tion at a time. Apro
essor having an enabled a
tion is also
alled enabled pro
essor.Our model deals with all kinds of atomi
 step. For instan
e, our model dealwith the read/write atomi
ity ([?℄) where a pro
essor atomi
 step
onsists of aninternal operation followed by either a read or a write operation (into a pro
essor'sout-register) but not both. The presented algorithms are designed for the model of
omposite atomi
ity where a pro
essor atomi
 step
ontains both read and writeoperations : in one atomi
 step, a pro
essor evaluates its guards and exe
utes thestatement of one enabled rule.When an algorithm
ontains guarded a
tions with random outputs the algorithmis probabilisti
 (randomized) otherwise it is deterministi
. The pro
essors exe
utingprobabilisti
 algorithms are
alled randomized pro
essors.5

Distributed system versus transition system. Let S be a distributed system. Wemodel the distributed system S by the transition system TS. A
on�guration of TSis a ve
tor
ontaining the states of all pro
essors from S. Let
 be a
on�gurationof TS, a transition from
 is determined by the exe
ution of one atomi
 step from
 by one or several pro
essors. A lo
al
on�guration is the part of a
on�gurationthat
an be \seen" by a pro
essor (i.e. its state and the state of its neighbors). A
on�guration is symmetri
al if all pro
essors have the same lo
al
on�guration.Probabilisti
 Self-Stabilizing Systems A probabilisti
 self-stabilizing system is aprobabilisti
 distributed system satisfying two properties : probabilisti

onvergen
e(the system
onverges to
on�gurations satisfying a legitima
y predi
ate) and
or-re
tness (all the
omputations starting from
on�gurations satisfying a legitima
ypredi
ate satis�es the system spe
i�
ation).A predi
ate P is
losed for the
omputations of a distributed system if and onlyif when P holds in a
on�guration
, P also holds in any
on�guration rea
hablefrom
.Notation 1. Let S be a system, A be a s
heduler and st be a strategy satisfyingthe predi
ate A. Let CP be the set of all system
on�gurations satisfying a
losedpredi
ate P (formally 8
 2 CP;
 ` P). The set of
omputations of st that rea
h
on�gurations in CP is denoted by EPst and its probability by Prst(EPst).Definition 2 (Probabilisti
 Stabilization). A system S is self-stabilizing undera s
heduler A for a spe
i�
ation SP if and only if there exists a
losed legitima
ypredi
ate L on
on�gurations su
h that in any strategy st of S under A, the twofollowing
onditions hold :(i) The probability of the set of
omputations of st, starting from
, rea
hing in a�nite number of steps a
on�guration
0, su
h that
0 satis�es L is 1 (probabilisti

onvergen
e). Formally, 8st; P rst(ELst) = 1(ii) All
omputations, starting from a
on�guration
0 su
h that
0 satis�es L, satisfySP (strong
orre
tness). Formally, 8st;8e 2 st : e = e0e00 with last(e0) ` L thene00 ` SP .Note that this de�nition is stronger than the one used in [?, ?℄ where the system
orre
tness is probabilisti
 : for all strategies the probability of the set of
ompu-tations rea
hing legitimate
on�gurations and satisfying the system spe
i�
ation is1. The probabilisti

orre
tness will be
alled in the sequel weak
orre
tness andsystems satisfying a weak
orre
tness will be
alled weak self-stabilizing systems.Convergen
e of Probabilisti
 Stabilizing Systems Based on previous works onthe probabilisti
 automata (see [?℄, [?℄, [?℄) [?℄ presents a detailed framework forproving self-stabilization of probabilisti
 distributed systems. A key notion is lo-
al
onvergen
e denoted LC. The LC property is a progress statement as thosepresented in [?℄ (for the deterministi
 systems) and [?℄ (for the probabilisti
 sys-tems). Informally, the LC property for a probabilisti
 self-stabilizing system andtwo predi
ates P1 and P2 means that starting in a
on�guration satisfying P1, thesystem will rea
h a
on�guration whi
h satis�es a parti
ular predi
ate P2, in abounded number of
omputation steps with positive probability. Formally the lo
al
onvergen
e property is de�ned as follows :6

Definition 3 (Lo
al Convergen
e). Let st be a strategy, P1 and P2 be twopredi
ates on
on�gurations, where P1 is a
losed predi
ate. Let Æ be a positiveprobability and N a positive integer. Let Ch be a st-
one with last(h) ` P1 andlet M be the set of sub-
ones Ch0 of the
one Ch su
h that for every sub-
oneCh0 : last(h0) ` P2 and length(h0) � length(h) � N . The
one Ch satis�es LC(P1; P2; Æ;N) if and only if Prst(SCh02M Ch0) � Æ.Now, if in strategy st, there exist Æst > 0 and Nst � 1 su
h that any st-
one,Ch with last(h) ` P1, satis�es LC(P1; P2; Æst; Nst), then the main theorem of theframework presented in [?℄ states that the probability of the set of
omputations ofst rea
hing
on�gurations satisfying both P1 and P2 is 1. Formally :Theorem 1. [?℄ Let st be a strategy. Let P1 and P2 be
losed predi
ates on
on�gurations su
h that Prst(EP1) = 1. If 9Æst > 0 and 9Nst � 1 su
h thatany st-
one Ch with last(h) ` P1, satis�es the LC (P1; P2; Æst; Nst) property, thenPrst(EP) = 1, where P = P1 ^ P2.Remark 1. If any strategy, st, of a distributed system satis�esLC(PR1; PR2; Æst; Nst)with PR1 the true predi
ate (veri�ed by any
on�guration) and PR2 being the le-gitima
y predi
ate then the system satis�es the probabilisti

onvergen
e as de�nedin De�nition 2.3. TOKEN MANAGEMENT AND TOKEN ROUTING POLICYThe notions of token management and token routing poli
ies were introdu
edfor self-stabilizing systems in [?℄. In order to implement a token management, oneneeds to design a pattern that (i) allows a pro
essor to de
ide if it has a tokenthrough its lo
al information (its state, and the out-registers of its out-neighbors).But also, the pattern should ensure that there is always at least one token in thenetwork. In [?℄ it is suggested to use \the magi
" number (the smallest non divisorof the network size) for solving this problem. [?℄ deals with undire
ted generalgraphs and dire
ted rings. In this se
tion, we present a token management andtoken routing poli
ies for general dire
ted graphs.3.1. Token management poli
yA \token" is represented by a predi
ate. A pro
essor with the \token" predi-
ate true is said to be \privileged". The self-stabilizing systems a
hieving mutualex
lusion or leader ele
tion needs to guarantee that in the system there is alwaysa privileged pro
essor. Des
riptions of su
h predi
ates
an be found in [?℄ for di-re
ted rings and [?℄ for undire
ted networks. In the following, we de�ne the tokenpredi
ate for dire
ted networks.3.1.1. Token de�nitionWe de�ne tokens for dire
ted networks and then, prove that there is at leastone token in any system
on�guration.Notation 2. Let snd(n) be the smallest non divisor of n (the number of pro-
essors). Let �Tp be the di�eren
e (modulo snd(n)) between the sum of in-register7

values and the sum of out-register values of a pro
essor p. Formally :�Tp = 0� Xq2In(p)Rpin[q℄� Xq2Out(p)Rpout[q℄1A mod snd(n) : (1)Definition 4. A pro
essor p holds a token if and only if �Tp 6= 1 . A pro
essorholding a token is a privileged pro
essor.Using the same reasoning as in [?℄ or [?℄, we �nd out that this
onvention issuÆ
ient to guarantee the presen
e of at least one token in any
on�guration.Lemma 1. Let DS be a distributed system. In any DS
on�guration there is atleast one privileged pro
essor.Proof. Suppose that there is no privileged pro
essor, hen
e �Tp = 1 for anypro
essor p in the network. By summing the �Tp for all p, we get :Xp2V 0� Xq2In(p)Rpin[q℄� Xq2Out(p)Rpout[q℄1A = 0 = n mod snd(n) : (2)Equation (2) means that snd(n) divides n whi
h is impossible from the de�nitionof snd(n).3.1.2. Swit
h te
hniquePassing a token from a pro
essor p to one of its out-neighbors is made a

ordingto the swit
h te
hnique ([?℄). Suppose without loss of generality, that the outgoingedges of a pro
essor are labeled 0; 1; : : :D+(p) � 1. A pro
essor passes the tokensthat it re
eives a

ording to this labeling : if the last token has been passed on theedge i then the next one will be passed on the edge (i+ 1) mod D+(p).Token passing. A pro
essor p passes a token to an adja
ent pro
essor q 2Out(p) by modifying the value of Rout[q℄ in the following way : Rpout[q℄ = Rpout[q℄+�Tp � 1. Hen
e the new value of �Tq is in
reased by �Tp � 1 and the new valueof �Tp is set to 1 : the token is passed from p to q.Tokens meeting. When two tokens are passed to the same pro
essor q, then�Tq is in
reased twi
e. Either the tokens annihilate ea
h other, or they merge intoa single token. The same phenomenon happens when a pro
essor q having a tokenre
eives another token.Remark 2. The number of tokens in a network does not in
rease.3.2. Fair token routing poli
yThe fair token routing poli
y is provided by Algorithm 3.1 whi
h performs token
ir
ulation in deterministi
 networks. Due to the parti
ular en
oding of a tokenone or more tokens are always present. A pro
essor holding a token sends it deter-ministi
ally to one of its out-neighbors. The interesting property of the algorithmis that, even if the s
heduler is unfair, in any
omputation ea
h pro
essor re
eivesin�nitely many often a token. Algorithm 3.1 will be used later, in a hierar
hi
al
omposition for ensure fairness from an unfair s
heduler.8

Algorithm 3.1 Fair token routing algorithm for pro
essor pShared registers with the in-neighbors :RFTin [1::D�(p)℄ where RFTin [i℄2 [0; snd(n)� 1℄Shared registers with out neighbors :RFTout [1::D+(p)℄ where RFTout [j℄ 2 [0; snd(n)� 1℄Variables on p :dire
tionFT 2 [0; D+(p)� 1℄ (the outgoing dire
tion of the last sent fair token)Fun
tions :�FT = �Pq2In(p)RFTin [q℄�Pq2Out(p) RFTout [q℄� mod snd(n)Ma
ros :New Dir Fair Token :: dire
tionFT := (dire
tionFT + 1) mod D+Pass Fair Token :: RFTout [dire
tionFT ℄ := (RFTout [dire
tionFT ℄ +�FT � 1) mod snd(n)Predi
ates :Fair Token � [�FT 6= 1 ℄A
tion :FA:: Fair Token �! New Dir Fair Token; Pass Fair TokenAlgorithm 3.1 des
ription. Des
ription is very simple. In any system
on�g-uration there is a pro
essor holding a token a

ording to the De�nition 4. It
anpass this token a

ording to the swit
h te
hnique. The swit
h te
hnique in en
odedin the ma
ro New Dir Fair Token(p) where the new destination for the token is
omputed.Algorithm 3.1 analysis. The swit
h te
hnique guarantees that in any
ompu-tation, any pro
essor holds a token in�nitely many times (fairness of the token
ir
ulation). Moreover, the number of steps taken by the other pro
essors betweentwo su

essive a
tions of a given pro
essor is bounded.Lemma 2. Let e be an arbitrary
omputation of Algorithm 3.1 starting in a
on�guration
 with m tokens (1 � m � n). Let p be a pro
essor holding a tokenin
. Any in-neighbor pj of p, pj 2 In(p), exe
utes at most m � D+(pj) a
tionsbetween two
onse
utive a
tions of p in e.Proof. Let us
onsider a fa
tor f of
omputation e su
h that f starts by a pa
tion, �nishes by a p a
tion too, and along the fa
tor f the pro
essor p does notexe
ute any a
tion. Let us determine the maximal number of a
tions whi
h
anbe done by pj in f . Every exe
ution of a pj a
tion produ
es a token passage toone of the pj out-neighbors
hosen a

ording to the swit
h te
hnique (dire
tionFTis in
remented). Therefore after at most D+(pj) a
tions of pj a token will besent to the pro
essor p. Pro
essor p keeps the token until the end of f sin
e p isnot a
tivated. Assume that the pro
essor pj exe
utes again D+(pj) a
tions hen
eanother token is sent to the pro
essor p. The pro
essor p may or not exe
ute it9

a
tion | in the �rst
ase the fa
tor f ends and the number of a
tions exe
uted bypj in f is 2 �D+(pj). In the se
ond
ase p keeps another token; thus, there are atmost m� 2 tokens that
an freely move.After at most m �D+(pj) a
tions of pj in f the pro
essor p holds the only tokenin the network. Thus p is the only pro
essor whi
h
an exe
ute an a
tion; the fa
torf has to end. The maximal number of a
tions exe
uted by pj in f is m �D+(pj).Let us
onsider two pro
essors p and q. The distan
e between p and q (the lengthof a shortest dire
ted path between p and q) is denoted dist(p; q). Shortest path(p; q)denotes the set of pro
essors on a shortest dire
ted path from p to q.Lemma 3. Let e be an arbitrary
omputation of Algorithm 3.1 starting in a
on�guration with m tokens. For any two distin
t pro
essors, p and q, betweentwo a
tions of p the pro
essor q
omputes at most Qdi=1m � D+(qi) where qi 2Shortest path(q; p) and dist(q; p) = d.Proof. We
all the i-th pro
essor on the shortest past between q and p is qi,with q = q1. From Lemma 2, we know that between two a
tions of p the pro
essorqd exe
utes at most m � D+(qd) a
tions; and between two a
tions of qd, the pro-
essor qd�1 exe
utes at most m � D+(qd�1). Therefore between two a
tions of pthe pro
essor at distan
e 2 of p exe
utes its a
tions m2 �D+(qd) �D+(qd�1) times.Repeating the reasoning, between two a
tions of p the pro
essor q exe
utes at mostQdi=1m �D+(qi) a
tions where qi 2 Shortest path(q; p).Let us denote by D+ the maximal out degree of the network pro
essors and byDiam the network diameter (Diam = maxp;qdist(p; q)).Corollary 1. In any
omputation of Algorithm 3.1 starting in a
on�gurationwith 1 � m � n tokens, where n is the network size, between two a
tions of apro
essor any other pro
essor exe
utes at most (m �D+)Diam a
tions under anys
heduler.Lemma 4. Let e be a
omputation of Algorithm 3.1 starting in a
on�gurationwith 1 � m � n tokens, where n is the network size. In e, any pro
essor exe
utesit a
tion within(n� 1) (m �D+)Diam + 1
omputation steps.Proof. Let p be an arbitrary pro
essor. From the Lemma 3 and the Corollary 1,between two a
tions of p another pro
essor exe
utes at most (m �D+)Diam a
tions.The system size is n hen
e the pro
essor p exe
utes it a
tion after at most (n �1) (m �D+)Diam
omputation steps.Corollary 2. A pro
essor
omputes the a
tions of Algorithm 3.1 in�nitelyoften.The following Corollary provides the bound for Algorithm 3.1 k-fairness de�nedas follows :Definition 5. A distributed algorithm is k-fair if and only if on every
om-putation, the two following properties hold : (i) every pro
essor exe
utes an a
tionin�nitely often and (ii) between any two a
tions of a pro
essor, at most k a
tionsare exe
uted by any other pro
essor.Corollary 3. Algorithm 3.1 is an (n �D+)Diam-fair algorithm.10

Proof. The proof results from the dire
t appli
ation of the Corollaries 1 and2. The lemmas 4 provide also the bound for the length of a round in an arbitrary
omputation e of Algorithm 3.1, de�ned as follows :Definition 6. Let e be a
omputation of Algorithm 3.1. A round in e is afa
tor of e in whi
h any pro
essor holds a token at least on
e.Corollary 4. In any
omputation of Algorithm 3.1 the maximal bound for around length is B = (n� 1) � (n �D+)Diam + 14. MUTUAL EXCLUSION UNDER A K-BOUNDED SCHEDULERIn the sequel, we present a self-stabilizing mutual ex
lusion algorithm under ak-bounded s
heduler (Algorithm 4.1). A s
heduler is k-bounded i� while a givenpro
essor is enabled, another pro
essor
an perform at most k times its a
tions.This algorithm uses the routing poli
y previously presented but the token movesdepend on a
oin tossing.4.1. Algorithm 4.1 des
riptionThe main di�eren
e with the random walks presented by Israeli and Jalfon in[?℄ is the fa
t that randomization is used here to de
ide whether or not the tokenwill be sent (it is not used to de
ide to whi
h of the neighbors it will be sent). Thedestination out-neighbor is still determined by the swit
h te
hnique. The randomwalks method
opes only with the undire
ted networks. Our method also
opeswith dire
ted, strongly
onne
ted networks.4.2. Algorithm 4.1 analysisWe prove Algorithm 4.1 weak self-stabilizing under a k-bounded s
heduler forthe mutual ex
lusion spe
i�
ation de�ned as follows :Definition 7. [Token
ir
ulation spe
i�
ation - STC℄ In the network \thereis only one token" and any pro
essor in the network holds the token in�nitely often.Let us denote by LTC the following predi
ate over
on�gurations : there isexa
tly one token. All the
on�gurations of Algorithm 4.1 whi
h satisfy Predi
ateLTC are
alled legitimate
on�gurations.A

ording to Remark 2, we have :Lemma 5. The predi
ate LTC is
losed for Algorithm 4.1.Convergen
e proof. In the following we prove Algorithm 4.1
onvergen
e forLTC under a k-bounded s
heduler. In order to show the system
onvergen
e weprove that any system strategy st under a k-bounded s
heduler veri�es the lo
al
onvergen
e property of De�nition 3 for LTC .Definition 8. Let e be a
omputation of Algorithm 4.1. A round in e is afa
tor in whi
h a token visits all pro
essors.11

Algorithm 4.1 Routing proto
ol for the probabilisti
 token for pro
essor pShared registers with the in-neighbors :RPTin [1::D�(p)℄ where RPTin [i℄ 2 [0; snd(n)� 1℄Shared registers with the out neighbors :RPTout [1::D+(p)℄ where RPTout [j℄ 2 [0; snd(n)� 1℄Variables :dire
tionPT 2 [0; D+(p)� 1℄ (the previous dire
tion of the probabilisti
 token)Fun
tions :�PT = �Pq2In(p)RPTin [q℄�Pq2Out(p) RPTout [q℄� mod snd(n)Ma
ros :New Dir Probabilisti
 Token :: dire
tionPT := (dire
tionPT + 1) mod D+(p)Pass Probabilisti
 Token :: RPTout [dire
tionPT ℄ := (RPTout [dire
tionPT ℄ +�PT � 1) mod snd(n)Predi
ates :Probabilisti
 Token � [�PT 6= 1 ℄A
tions :A:: Probabilisti
 Token �!if (random(0, 1) = 0) then f New Dir Probabilisti
 Token;Pass Probabilisti
 Token gLemma 6. Let st be a strategy of Algorithm 4.1 under a k-bounded s
hed-uler. There exist � > 0 and N � 1 su
h that any st-
one veri�es the propertyLC(true;LTC ; �; N).Proof. Let Ch1 be an arbitrary st-
one with last(h1) =
1. Assume that thenumber of tokens in
1 is m. Denote by (pi)i=1;:::;m the pro
essors holding thesetokens. Consider the following s
enario : the token held by pro
essor p1 (
alledtoken t1) merges with the token held by the pro
essor p2 (
alled token t2). Weprove that : (i) the s
enario holds with positive probability and (ii) the s
enariois repeated until there is only one token in the network.� We
all h2 the
omputation from last(h1) having the following properties :(1) when the s
heduler
hooses the pro
essor holding the token t1 the result of
oin tossing is 1 (hen
e the token
ir
ulates); (2) when the s
heduler
hoosesanother token the result of
oin tossing is 0 (the token is frozen) (3) themoving token rea
hes p2 in the last
on�guration of h2. In last(h1h2) thenumber of tokens is lesser than m� 1.The t1 token
ir
ulates \pseudo-deterministi
ally" : when a pro
ess holdingthe t1 token, performs an a
tion it releases the token. Therefore within B
omputation steps of t1, the t1 token has rea
hed all pro
essors.In the worst
ase, the s
heduler
hooses t1 when it
annot do another
hoi
e :the other privileged pro
essors have performed k a
tions (the s
heduler is k-12

bounded). Therefore, within k � (m � 1) + 1) � B
omputation steps, the t1token rea
hed all pro
essors (i.e. has merged with another token). We have :Prst(Ch1h2) � Prst(Ch1)�(12)(k�(m�1)+1)�B and length(h2) � (k�(m�1)+1)�B.� By su

essive appli
ations of the previous s
enario we built some sub-
oneChm . In last(hm), the number of tokens is 1, Prst(hm) � Prst(h1)�(12)[(m�1)+ k�m�(m�1)2 ℄�Band length(hm) � [(m� 1) + k�m�(m�1)2 ℄ �BTherefore the property LC(true;LTC ; �; N) where � � (12) (k�n2+2�n)�B2 and N �(k�n2+2n)�B2 is veri�ed.Remark 3. The previous result holds only under a k-bounded s
heduler. Underan unfair s
heduler, the Algorithm 5.1 does not
onverge to LTC . For example,on a dire
tional ring, an unfair s
heduler may have the following strategy : sele
tsthe same privileged pro
essor till it passes its token; then sele
ts another privilegedpro
essor till it passes its token, and so on. With this strategy, all the tokens moveat the same speed in the ring; they will never merge.Lemma 7. Algorithm 4.1 has a �nite expe
ted stabilization time.Proof. In order to establish the expe
ted stabilisation time we use the te
hniquepresented in [?℄ and the � value showed in Lemma 6, � � (12) (k�n2+2�n)�B2 (B providedby Corollary 4). The expe
ted stabilisation times is bounded by 1� � 2 (k�n2+2�n)�B2 .Remark 4. Note that majorations used in proving Lemma 6 are brutal, hen
ethe provided exponential bound for the stabilisation time.Lemma 8. Let st be a strategy of Algorithm 4.1 under a k-bounded s
heduler.There exist RT > 0 and � > 0 su
h that any st-
one Ch with last(h) is a legitimate
on�guration has a sub-
one Chh0 with lenght(h0) � RT su
h that h0 is a round andPrst(Chh0) � Prst(Ch) � �.Proof. Let h0 be the
omputation from last(h) where the only token moves atea
h
omputation step until the token has visited all pro
essors. The probabilityof Chh0 is �1 � Prst(Ch)(12)B . As this s
enario is \pseudo-deterministi
" the tokenrea
hes all pro
essors in at most B
omputations steps, The length(h0) � B.From Lemmas 8 and Theorem 1, we get :Corollary 5. In any strategy of Algorithm 4.1 under a k-bounded s
hedulerthe probability of the set of
omputations satisfying : (1) a legitimate
on�gurationis rea
hed and (2) after rea
hing a legitimate
on�guration there are an in�nitenumber of rounds, is 1.Corollary 6 (Corre
tness proof). In any strategy of Algorithm 4.1 the prob-ability of the set of
omputations rea
hing a legitimate
on�guration and satisfyingSTC is 1.Theorem 2. Algorithm 4.1 is weak self-stabilizing for the spe
i�
ation STC .Proof. The weak
orre
tness is provided by the Corollary 6, the
onvergen
e isprovided by the Lemma 6 and the Theorem 1.Remark 5. Algorithm 4.1 satis�es only the weak
orre
tness. It
ould be easilytransformed in a strong self-stabilizing algorithm using the te
hnique reported in[?℄. Clearly, the expe
ted steps of stabilisation is exponential.13

5. LEADER ELECTION UNDER A K-BOUNDED SCHEDULERInformally, a self-stabilizing distributed system whi
h solves the leader ele
tionproblem must satisfy the property that on
e the system is stabilized there is onlyone, un
hanged leader. Formally, this spe
i�
ation is de�ned as follows :Definition 9 (Leader ele
tion spe
i�
ation - SLE). Let Leader Mark be a pred-i
ate over the lo
al
on�gurations. Any
omputation, e, of a self-stabilizing systemveri�es the leader ele
tion spe
i�
ation if and only if the two following propertiesholds : (1) e rea
hes a
on�guration, where the Leader Mark predi
ate is truefor one and only one pro
essor, p (also
alled leader), and (2) in any
on�gurationo

urring afterward in e, p is always the unique leader.In the following, we present an algorithm for leader ele
tion whi
h stabilizesunder a k-bounded s
heduler.5.1. Algorithm 5.1 des
riptionAlgorithm 5.1 has two distin
t layers of tokens. The �rst (respe
tively se
ond)layer ensures the
ir
ulation of Leader Mark (respe
tively Colored Token) tokensfollowing the routing poli
y of Se
tion 4. On
e the algorithm is stabilized, theLeader Mark is frozen and the Colored Token keeps
ir
ulating.Colored Token and Leader Mark have a virtual \
olor" attribute. Ea
h tokenhas a di�erent role and then
olors are managed independently.A pro
essor holding a Leader Mark token is
onsidered as a leader. The
olorof the Leader Mark token is the
olor of the pro
essor holding it.A Colored Token is used in order to dete
t the presen
e of some other leaders.The value of the
olor attribute for Colored Token is the
olor of the pro
essorhaving passed the token (an in-neighbor of the pro
essor holding the
olored token).A pro
essor, p, keeps a
opy of the previous values of its in-registers (in the variableOldCTin), in order to �nd the sender of the
olored token (only the sender
hangedthe value of the
orresponding out-register). When several
olored tokens meet onthe same pro
essor, the
olor of the resulting
olored token is the
olor of the �rstpro
essor (a

ording to the lo
al swit
hing order) that has sent a
olor token.During its
ir
ulation a Colored Token
olors all the non leader pro
essors withits
olor (A3). A leader whi
h has sent a Colored Token waits until it returns. Atthat time, if the
olor of Colored Token is the same as its
olor, then it stays aleader but goes on
he
king by randomly sele
ting a new
olor and starting a new
ir
ulation of the
olored token (A
tion A2). In this
ase, it has no informationtelling it that it is not the single leader.Sin
e
olor is randomly sele
ted, if there are several leaders in the network, aleader will eventually get a
olored token that does not have its
olor. In this
ase,the leader passes its leadership and Colored Token with a new randomly
hosen
olor (A
tion A1). In this
ase it supposes that there are several leaders.On
e the algorithm is stabilized, there remains only one frozen leader and onlyone
olored token whi
h may
ir
ulate.5.2. Algorithm 5.1 analysisLet us de�ne the following predi
ates over
on�gurations :� LCT � there is exa
tly one
olored token;14

De
laration 1 Registers, variables, predi
ates and ma
ros for p exe
uting Algo-rithm 5.1Shared registers with the in-neighbors :RLMin [1::D�(p)℄ where RLMin [i℄ 2 [0; snd(n)� 1℄ (for leader mark)RCTin [1::D�(p)℄ where RCTin [i℄ 2 [0; snd(n)� 1℄ (for
olored token)R
olorin [1::D�(p)℄ where R
olorin [i℄ 2 f0; 1g (for the
olor)Shared registers with out-neighbors :RLMout [1::D+(p)℄ where RLMout [j℄ 2 [0; snd(n)� 1℄ (for leader mark)RCTout [1::D+(p)℄ where RCTout [j℄ 2 [0; snd(n)� 1℄ (for
olor token)R
olorout [1::D+(p)℄ where R
olorout [j℄ 2 f0; 1g (for the
olor)Variables :dire
tionPT 2 [0; D+(p)� 1℄ (the previous dire
tion of a probabilisti
 token)OldCTin [1::D�(p)℄ (the old values from the registers RCTin)
olor is a boolean : 0 = red and 1 = green (the
olor of the pro
essor p)Fun
tions :�LM = �Pq2In(p)RLMin [q℄�Pq2Out(p) RLMout [q℄� mod snd(n)�CT = �Pq2In(p)RCTin [q℄�Pq2Out(p) RCTout [q℄� mod snd(n)Ma
ros :New Dir Probabilisti
 Token :: dire
tionPT := (dire
tionPT + 1) mod D+(p)Pass Leader Mark :: RLMout [dire
tionPT ℄ := (RLMout [dire
tionPT ℄ +�LM � 1) mod snd(n)Pass Colored Token :: RCTout [dire
tionPT ℄ := (RCTout [dire
tionPT ℄ +�CT � 1) mod snd(n)Update Old :: 8i 2 [1::D�(p)℄OldCTin [i℄ := RCTin [i℄Randomly Change Color ::
olor := random(red; green);8j 2 [1::D+(p)℄; R
olorout [j℄ :=
olor;Change Color ::
olor := R
olorin [i℄, where i 2 [1::D�(p)℄ su
h thatOldCTin [i℄ 6= RCTin [i℄; 8j 2 [1::D+(p)℄; R
olorout [j℄ :=
olor;Predi
ates :Leader Mark � [�LM 6= 1 ℄Colored Token � [�CT 6= 1 ℄Same Color � [
olor = R
olorin [j℄ where j 2 [1::D�(p)℄ su
h thatOldCTin [j℄ 6= RCTin [j℄ ℄
15

Algorithm 5.1Randomized leader ele
tion algorithm under a k-bounded s
hedulerA
tions :A1:: Leader Mark ^ Colored Token ^ :Same Color �!if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti
 Token; Pass Leader Mark;Pass Colored Token gA2:: Leader Mark ^ Colored Token ^ Same Color �!if (random(0,1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti
 Token; Pass Colored Token gA3:: Colored Token ^ :Leader Mark �!if (random(0; 1) = 0) thenf Change Color; Update(Old);New Dir Probabilisti
 Token; Pass Colored Token g� LColor � (i) on any pro
essor, for any value j 2 [1::D+(p)℄, we have :R
olorout [j℄ =
olor and (ii) on any pro
essor, ex
ept the pro
essor having the
olored token p, we haveOldCTin = RCTin ; and on p, for any value j 2 [1::D�(p)℄,ex
ept one, we have : OldCTin [j℄ = RCTin [j℄.� LLM � there is exa
tly one leader mark;� Same Color � the unique leader mark and the unique
olored token have thesame
olor.Definition 10. Let us denote by LLE the predi
ate whi
h is true when thefollowing four predi
ates hold : (1) LCT , (2) LColor, (3) LLM , and (4) Same Color.A legitimate
on�guration for Algorithm 5.1 is a
on�guration satisfying thepredi
ate LLE .Remark 6. Predi
ates LCT and LLM are
losed.Lemma 9. Let st be a strategy of Algorithm 5.1 under a k-bounded s
heduler.We have Prst(LCT) = 1.Proof. The
olored token follows the routing poli
y as it was de�ned in these
tion 4. A

ording to the Lemma 6 : 9Æst > 0 and 9nst � 1 su
h that any st-
onesatis�es the LC (true;LCT ; Æst; nst) property. We get Prst(LCT) = 1 by Theorem1. Lemma 10. Let st be a strategy of Algorithm 5.1; Prst(LCT ^ L
olor) = 1.Proof. Let Ch be an arbitrary
one of the strategy st su
h as last(h) satis�esthe predi
ate LCT . Let Chh0 be an arbitrary sub-
one of Ch. Let p be a pro
essorthat has performed an a
tion in h0. After the p's a
tion, p satis�es (i) for any valuei 2 [1::D+(p)℄, we have : R
olorout [j℄ =
olor and (ii) OldCTin = RCTin until one of its in-neighbor gives it the
olored token. In this
ase, on p, for any index j 2 [1::D+(p)℄,but one (
alled l), OldCTin [j℄ = RCTin [j℄. RCTin [l℄ is the in-register of p
orrespondingto the pro
essor that has given the
olored token to p.16

We
all h00 the
omputation from last(h) where the
olored token moves at ea
h
omputation step until all pro
essors have got the
olored token. The
on�gurationlast(xh00) veri�es the predi
ate LCT ^ LColor. The probability to obtain the
oneChh00 is �1 � Prst(Ch)(12)B . The length(h00) � B.Lemma 11. Predi
ates LCT ^ LColor ^ LLM and LCT ^ LColor are
losed forAlgorithm 5.1.Proof. Let e be an arbitrary exe
ution of Algorithm 5.1. Let
 be a
on�gurationsatisfying the predi
ate LCT ^ LColor in e. In
, only the pro
essor p that has the
olored token has an index l su
h that OldCTin [l℄ 6= RCTin [l℄. Only p may perform ana
tion. In all
ases, after the a
tion of p, the
olor out-register of p has the samevalue as its
olor variable. After this a
tion, either no variable value is
hanged :the predi
ate LCT ^ LColor is still veri�ed. Or p updates the variable Old andgives the
olored token to a neighbor q : now only the pro
essor q has an index l0su
h that OldCTin [l0℄ 6= RCTin [l0℄ (RCTin [l0℄ being the out-register of p shared with q).Therefore, the next
on�guration in e is a
on�guration verifying LCT and LLM .Remark 7. On a
on�guration
 verifying the predi
ate LCT ^LColor, only A
-tion A1 or A2 may
hange the
olor of the
olored token.Notation 3. Let us denote by NLead(
) the number of leader marks in the
on�guration
.Lemma 12. Let st be a strategy of Algorithm 5.1 under a k-bounded s
heduler.There exist � > 0 and N � 1 su
h that any
one of st, Ch with last(h) ` LCT ^LColor, satis�es Lo
al Convergen
e (LCT ^LColor; LLM ; �; N).Proof. Assume that last(h) does not satisfy the predi
ate LLM . Hen
eNLead(last(h)) =m with m > 1 and there is only one
olored token in last(h). The proof has thefollowing informal steps : (1) we prove that with positive probability the
oloredtoken meets for the �rst time a pro
essor holding a leader mark, let us denote thisleader mark by lm1, (2) with positive probability the leader mark, lm1
ir
ulatesin the network until it merges with another leader mark. And we repeat the steps(1) and (2) until there is exa
tly one leader mark in the network.Assume that in last(h) the
olored token is not on a leader. We
all h0 the
omputation from last(h) where the
olored token moves at ea
h
omputation stepuntil it rea
hes a leader (A
tion A3). A

ording to this s
enario, the
olored to-ken is \pseudo-deterministi
" : it moves at ea
h
omputation step. The stepsnumber to rea
h a leader is at most the length of a round of Algorithm 3.1. Theprobability of ea
h
omputation step is (12)B . The probability of the
one Chh0 is�1 � Prst(Ch)(12)B . The length(h0) � B where B is the bound stated in Corollary4. On
e the
olored token and the leader mark are on the same pro
essor, thereare two
ases : (a) the
olored token and the leader token have the same
olor, or(b) they have di�erent
olors (hh0 is now
alled H).� a
ase - Only A
tion A2
an be performed (by the leader having the
olortoken - p). Let us
alled q the next leader that the
olored token will meet. Westudy the history h00 where (1) p does not \
hoose" the
olor of q and (2) the
olored token moves at ea
h
omputation step until it rea
hes q. At the end,of this history, the
ase b is rea
hed : the
olored token and the leader markare on the same pro
essor, and they have di�erent
olors. The probability ofthe
one CHh00 is �2 � Prst(Ch)(12)2B+1. The length(h0h00) � 2B. Now, Hh00is
alled H . 17

� b
ase - Only A
tion A1
an be performed (by the pro
essor having the
olortoken - p). The probability that the pro
essor p passes the both tokens toan out-neighbor q (having the
olor
ol) and
olors the
olored token witha
olor di�erent of
ol is 14 . q is the same state as the p state before themove. q has the both tokens, but the
olor of the leader mark is not the
olor of the
olored token. We
all h1 the
omputation from last(H) wherethe
olored token and the leader mark move together until they meet anotherleader mark. The probability of the sub-
one CHh1 of the
one CH whereNLead(last(Hh1)) = m� 1 is �3 � Prst(CH)(12)2B and length(h1) � B.The probability of the
one ChH1 where NLead(last(hH1)) = m � 1 is �01 �Prst(Ch)(12)4B+1. The length(H1) � 3B.The probability of the
one ChHm�1 where NLead(last(hHm�1)) = 1 is �0m�1 �Prst(Ch)(12)(m�1)(4B+1). Nm�1 = length(Hm�1) � 3(m � 1)B. Therefore, theproperty Lo
al Convergen
e(LCT ^ LColor; LLM ; �m�1; Nm�1) is satis�ed.A

ording to the Theorem 1, we have :Corollary 7. Let st be a strategy of Algorithm 5.1 under a k-bounded s
hed-uler. We have Prst(LCT ^ LColor ^ LLM) = 1.Lemma 13. The predi
ate LCT ^LColor ^LLM ^Same Color is a
losed pred-i
ate for Algorithm 5.1.Proof. Let
 be a
on�guration satisfying the predi
ate LCT ^ LColor ^ LLM ^Same Color. In
, there is a unique leader mark and only one
olored token. Bothhave the same
olor. Only A
tion A2 may
hange the
olor of the
olored token.After that a
tion, the both tokens have the same
olor.Lemma 14. Let st be a strategy of Algorithm 5.1 under a k-bounded s
heduler.There exist � > 0 and N � 1 su
h that any
one of st, Ch su
h that last(h) ` LCT^LColor^LLM , satis�es Lo
al Convergen
e(LCT ^LColor^LLM ; Same Color; �;N).Proof. Assume that last(h) does not satis�es the predi
ate Same Color. Thereare two
ases; in the �rst
ase the leader mark and the
olored token are on di�erentpro
essors, while in the se
ond one the
olored token and the leader mark are onthe same pro
essor.In the �rst
ase, let h0 be the
omputation from last(h) where the
oloredtoken
ir
ulates until it rea
hes the leader. The probability of the
one Chh0 is � �Prst(Ch)(12)B . The length(h0) � B. Now both tokens are on the same pro
essor.Assume now that the pro
essors have di�erent
olors. The probability that p givesthe both tokens to an out-neighbor q and
olors the
olored token with the q's
oloris 14 . After that, q is a leader, q has the
olored token; and the
olored token hasthe q's
olor.Therefore the probability of
one Chh00 with last(hh00) `LCT ^ LColor ^ LLM ^Same Color is � � Prst(Ch)(12)B+2 and length(h00) � B + 1.Lemma 15. Algorithm 5.1 has a �nite stabilisation time.Proof. Using Lemmas 6, 10, 12 and 14 the expe
ted stabilisation time is boundedby 1� where � � (12) kn2+10nB+2n+4B+42 (B provided by Corollary 4). Therefore theexpe
ted stabilization time of Algorithme 5.1 is �nite.18

Lemma 16. Any
omputation of Algorithm 5.1 starting in a legitimate
on�g-uration satis�es the spe
i�
ation SLE.Proof. Let e be a
omputation starting in a legitimate
on�guration
 | thepredi
ate LLE is satis�ed by
. The only appli
able rules are those where the leadermark is not moved (A2 and A3), hen
e the problem spe
i�
ation is satis�ed.Theorem 3. Algorithm 5.1 is self-stabilizing for the spe
i�
ation SLE.Proof. The
onvergen
e is given by Corollary 7, Lemmas 13 and 14 and Theorem1. The
orre
tness is given by Lemma 16.6. TOKEN BASED ALGORITHMS UNDER AN UNFAIR SCHEDULERIn this se
tion, we extend Algorithms 4.1 and 5.1 to
ope up with unfair s
hed-uler. For this purpose, the idea of
ross-over
omposition (introdu
ed in [?℄) isused to
ompose Algorithms 4.1 and 6.2 with a k-fair algorithm (see De�nition 5).Algorithm 3.1 is an (n � D+)Diam-fair algorithm under any unfair s
heduler. The
ross-over
omposition guarantees that a stabilizing algorithm for spe
i�
ation SP ,that works under the k-bounded s
heduler
omposed with a k-fair algorithm underan arbitrary s
heduler, is stabilizing under any unfair s
heduler for spe
i�
ationSP .The
ross-over
omposition
ombines two algorithms |the weaker and thestronger| to get a new algorithm. The algorithms are
onsidered stronger orweaker a

ording to their properties toward the s
heduler. When an algorithmneeds a spe
ial s
heduler then it is
onsidered \weaker". By
ontrary, when thealgorithm is preserving its properties even under an unfair s
heduler then it playsthe \stronger" role.In this paper, the stronger (Algorithm 3.1) supports the stronger adversary(unfair s
heduler), while the weaker (Algorithms 4.1 or 5.1) provides its spe
i�
ation(token
ir
ulation or leader ele
tion) under a weaker adversary (the k-boundeds
heduler).Algorithm 6.1, the result of
ross-over
omposition between Algorithm 3.1 andAlgorithm 4.1, has the following a
tions [A is the label of Algorithm 4.1 rule andFA is the label of Algorithm 3.1 rule℄ :B1::< guard A > ^ < guard FA > �! < statement A >;< statement FA >B2::: < guard A > ^ < guard FA > �! < statement FA >Algorithm 6.1 Randomized token
ir
ulation algorithm under unfair s
hedulerA
tions :B1:: Fair Token ^ Probabilisti
 Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) then f New Dir Probabilisti
 Token;Pass Probabilisti
 Token gB2:: Fair Token ^ :Probabilisti
 Token �!New Dir Fair Token; Pass Fair Token;Algorithm 6.2, the result of
ross-over
omposition between Algorithm 3.1 andAlgorithm 5.1, has the following a
tions [(Ai)i=1;4 are the labels of the rules of19

Algorithm 5.1℄ :C1::< guard A1 > ^ < guard FA > �! < statement A1 >;< statement FA >C2::< guard A2 > ^ < guard FA > �! < statement A2 >;< statement FA >C3::< guard A3 > ^ < guard FA > �! < statement A3 >;< statement FA >C4::: < guard A1 > ^: < guard A2 > ^: < guard A3 > ^ < guard FA > �! <statement FA >Algorithm 6.2 Randomized leader ele
tion algorithm under unfair s
hedulerA
tions :C1:: Fair Token ^ Leader Mark ^ Colored Token ^ :Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti
 Token; Pass Leader Mark;Pass Colored Token gC2:: Fair Token ^ Leader Mark ^ Colored Token ^ Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilisti
 Token; Pass Colored Token gC3:: Fair Token ^ :Leader Mark ^ Colored Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Change Color; Update(Old); New Dir Probabilisti
 Token;Pass Colored Token gC4:: Fair Token ^ :Colored Token ^ :Leader Mark �!New Dir Fair Token; Pass Fair Token;Algorithms 6.1 and 6.2 des
ription. Algorithms 6.1 and 6.2 are the result of
ross-over
omposition between Algorithms 5.1 (the weaker) and 3.1 (the stronger).The
omposed algorithm
ontaines an extra layer whi
h ensures the algorithm
on-vergen
e under any unfair s
heduler.Algorithm 6.1 and 6.2 analysis. In [?℄, it is proven that the
ross-over
om-position between a probabilisti
 algorithm self-stabilizing for a spe
i�
ation SPunder a k-bounded s
heduler, playing the weaker role, and a deterministi
 algorith-m satisfying the k-fairness property, playing the stronger role, is a self-stabilizingalgorithm for SP under any unfair s
heduler.Theorem 4. Algorithms 6.1 and 6.2 are self-stabilizing for the spe
i�
ationsSTC and SLE respe
tively under an unfair s
heduler.Lemma 17. The stabilization time for Algorithms 6.1 and 6.2 is �nite.Proof. The expe
ted stabilization time for Algorithms 6.1 and 6.2 is boundedby the values provided by Lemmas 7 and 15 with k = (n �D+)Diam and B =(n� 1) � (n �D+)Diam + 1 (
orollaries 3 and 4).20

7. CONCLUSIONThis work fo
uses on token based self-stabilizing algorithms. The
onsiderednetworks are anonymous and dire
ted. We present for this type of networks, atoken management and routing poli
y as solutions to the open problem proposedby Israeli and Jalfon in [?℄. Note that the
urrent paper propose the �rst gener-al solution for this problem. Moreover, we present self-stabilizing algorithms formutual ex
lusion and leader ele
tion on anonymous, dire
ted networks based onthis poli
ies. In order to break the symmetry we use randomization. One of theproposed algorithms is weak self-stabilizing for the mutual ex
lusion spe
i�
ation,another one is self-stabilizing for the leader ele
tion spe
i�
ation under any unfairdistributed s
heduler. Finally, we present a probabilisti
 analysis for the proposedalgorithms.All the results are summarized in the following table :Spe
i�
ation Alg. S
heduler Corre
tness Spa
e Complexity (states)Fair token
ir
. 3.1 unfair deterministi
 n � D+ � sndD+Mutual ex
lusion 4.1 k-bounded weak prob. n � D+ � sndD+Leader ele
tion 5.1 k-bounded strong prob. n � D+ � 2D++1 � snd2�D++D�Mutual ex
lusion 6.1 distrib. unfair weak prob. n � D+2 � snd2�D+Leader ele
tion 6.2 distrib. unfair strong prob. n � D+2 � 2D++1 � snd3�D++D�The spa
e
omplexity of our algorithms is O((D++D�) � (log(snd(n))+2)) bitsper pro
essor. Note that snd(n) (the smallest non divisor of n) is
onstant in theaverage and equals 2 for odd size networks.Noti
e that our algorithms are spa
e optimal for the ring topology as it wasproven in [?℄. REFERENCES[1℄ R. Aleliunas, R.M.Karp, R. Lipton, L. Lovasz, and C. Ra
ko�, Random walks,universal traversal sequen
es and the
omplexity of the maze problem, in\FOCS'79, Pro
eedings of the 20st Annual IEEE Symp. on Foundation ofComputer S
ien
e," pp. 218{223, 1979.[2℄ D. Alstein, J.H. Hoepman, B. Olivier, and P. Put, Self-stabilizing mutualex
lusion on dire
ted graphs, Te
hni
al Report 9513, CWI Amsterdam, 1995.[3℄ D. Angluin, Lo
al and global properties in networks of pro
essors, in \S-TOC'80, Pro
eedings of the 12th Annual ACM Symp. on Theory of Comput-ing," pp. 82{93, 1980.[4℄ B. Awerbu
h and R. Ostrovsky, Memory-eÆ
ient and self-stabilizing networkreset, in \PODC'94, Pro
eedings of the 13th Annual ACM Symp. on Prin
iplesof Distributed Computing," pp. 254{263, 1994.[5℄ J. Beauquier, S. Cordier, and S. Dela�et, Optimum probabilisti
 self-stabilization on uniform rings, in \WSS'95, Pro
eedings of the Se
ond Work-shop on Self-Stabilizing Systems", pp. 15.1{15.15, 1995.21

[6℄ J. Beauquier, M. Gradinariu, and C. Johnen, Memory spa
e requirements forself-stabilizing leader ele
tion proto
ols, in \PODC'99, Pro
eedings of the 18thAnnual ACM Symp. on Prin
iples of Distributed Computing," pp. 199{208,1999.[7℄ J. Beauquier, M. Gradinariu, and C. Johnen, Randomized self-stabilizing opti-mal leader ele
tion under arbitrary s
heduler on rings, Te
hni
al Report 1225,Laboratoire de Re
her
he en Informatique, September 1999.[8℄ J. Beauquier, S. Kutten, and S. Tixeuil, Self-stabilization in eulerian net-works with
ut-through
onstraints, Te
hni
al Report 1200, Laboratoire deRe
her
he en Informatique, January 1999.[9℄ K. Chandy and J. Misra, \Parallel Programs Design: A Foundation," Addison-Wesley, New York, 1988.[10℄ A.K. Datta, M. Gradinariu, and S. Tixeuil, Self-stabilizing mutual ex
lusionusing unfair distributed s
heduler, in \IPDPS'00, Pro
eedings of the Int. Par-allel and Distributed Pro
essing Symp.," pp. 465{470, 2000.[11℄ E. Dijkstra, Self stabilizing systems in spite of distributed
ontrol, Communi-
ations of the ACM, 17, 11 (Nov. 1974), 643{644.[12℄ S. Dolev, A. Israeli, and S. Moran, Self-stabilizing of dynami
 systems assum-ing only read/write atomi
ity, Distributed Computing, 7, 1 (1993), 3{16.[13℄ S. Dolev, A. Israeli, and S. Moran, Analyzing expe
ted time by s
heduler-lu
kgames, IEEE Trans. on Software Engineering, 21, 5 (May 1995), 429{439.[14℄ S. Dolev, A. Israeli, and S. Moran, Uniform dynami
 self-stabilizing leaderele
tion, IEEE Trans. Parallel Distrib. Systems, 8, 4 (April 1997), 424{440.[15℄ J. Durand-Lose, Randomized uniform self-stabilizing mutual ex
lusion Inform.Pro
ess. Lett., 74, 5-6 (June 2000), 203{207.[16℄ T. Herman, Probabilisti
 self-stabilization, Inform. Pro
ess. Lett., 35 2 (June1990), 63{67.[17℄ A. Israeli and M. Jalfon, Token management s
hemes and random walks yieldself-stabilizing mutual ex
lusion, in "PODC'90, Pro
eedings of the 9th AnnualACM Symp. on Prin
iples of Distributed Computing," pp. 119{131, 1990.[18℄ G. Itkis and L. Levin, Fast and lean self-stabilizing asyn
hronous proto
ols,in \FOCS'94, Pro
eedings of the 35th Annual IEEE Symp. on Foundations ofComputer S
ien
e," pp. 226{239, 1994.[19℄ H. Kakugawa and M. Yamashita, Uniform and self-stabilizing token ringsallowing unfair daemon, IEEE Trans. Parallel Distrib. Systems, 8, 2 (Feb.1997), 154{162.[20℄ A. Mayer, Y. Ofek, R. Ostrovsky, and M Yung, Self-stabilizing symmetrybreaking in
onstant-spa
e, in \STOC'92, Pro
eedings of the 24th AnnualACM Symp. on Theory of Computing," pp. 667{678, 1992.22

[21℄ L. Rosaz, Self-stabilizing token
ir
ulation on an asyn
hronous unidire
tionalring, in \PODC'00, Pro
eedings of the 19th Annual ACM Symp. on Prin
iplesof Distributed Computing," pp. 249{258, 2000.[22℄ R. Segala, Modeling and Veri�
ation of Randomized Distributed Real-TimeSystems, Ph.D. thesis, MIT, Department of Ele
tri
al Engineering and Com-puter S
ien
e, 1995.[23℄ R. Segala and N. Lyn
h, Probabilisti
 simulations for probabilisti
 pro
esses,in \CONCUR'94, Con
urren
y Theory, 5th International Conferen
e," Le
tureNotes in Computer S
ien
e, Vol 836, Springer-Verlag, 1994.[24℄ S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of proba-bilisti
 i/o automata. in \CONCUR'94, Con
urren
y Theory, 5th Internation-al Conferen
e," Le
ture Notes in Computer S
ien
e, Vol 836, Springer-Verlag,1994.

23

