Token based self-stabilizing uniform algorithms

Joffroy Beauquier
LRI CNRS-UMR 8623, Bat 490, Université Paris Sud, F-91405 Orsay Cedex,
France
E-mail: jb@lri.fr

and

Jérome Durand-Lose
13S, CNRS UPREES-A 6070, 930 Route des Colles, BP 145, 06903 Sophia
Antipolis Cedex, France
E-mail: jdurand@unice.fr

and

Maria Gradinariu and Colette Johnen
LRI CNRS-UMR 8623, Bat 490, Université Paris Sud, F-91405 Orsay Cedex,
France
E-mail: mariag@Iri.fr
E-mail: colette@Iri.fr

Version:

This work® focuses on self-stabilizing algorithms for mutual ezclusion and leader elec-
tion — two fundamental tasks for distributed systems. Self-stabilizing systems are able to
recover by themselves, regaining their consistency from any initial or intermediary faulty
configuration.

The proposed algorithms are designed for any directed, anonymous network and sta-
bilize under any distributed scheduler. The algorithms keystone is the token management
and routing policies. In order to break the network symmetry, randomization is used. The
space complexity is O((DT + D7) - (log(snd(n)) + 2)) where n is the network size, snd(n)
is the the smallest integer that does not divide n and D' and D~ are the maximal out
and in degree respectively. It should be noticed that snd(n) is constant on the average
and equals 2 on odd size networks.

Key Words: self-stabilization, randomized protocol, unfair scheduler, leader
election, mutual exclusion, directed network.

1. INTRODUCTION

In a distributed system, several processors cooperate to achieve some global task.
A prerequisite for cooperation is to implement a distributed control, i.e. reaching or
maintaining a global predicate despite of partial (or local) access to the system state.
Token circulation and leader election algorithms constitute well-known examples of
global tasks. The former manages the fair circulation of exactly one token, while the
latter consists in distinguishing one processor called the leader. The fair circulation

Lcontact author : Colette Johnen, LRI, université Paris-Sud, centre d’Orsay, 91405 Orsay
Cedex, France, colette@Iri.fr, tel : 4+33 1 69 15 67 02, fax : +33 1 69 15 65 86

of exactly one token can be used to solve the mutual exclusion problem. Once a
leader is elected, many other tasks can be solved using a centralized control (for
instance, resource allocation or synchronization).

Self-stabilization is a framework for dealing with channel or memory transient
failures. After a failure, the system is allowed to temporarily exhibit an incorrect
behavior, but after a period of time (as short as possible) it must behave correctly,
without external intervention. A self-stabilizing leader election or token circula-
tion protocol starting, for example, in a symmetric configuration requires a way to
break the symmetry. The id-based systems (every processor has an unique identi-
fier) prevent the existence of symmetric configurations. In anonymous systems (all
processors are identical), the symmetry can only be broken by randomization [?].

Related works. Self-stabilization was introduced by Dijkstra in [?]; three self-
stabilizing deterministic token circulation algorithms for semi-uniform systems are
presented. In a semi-uniform algorithm, some specific processors do not perform
the same algorithm as the other processors. In [?], Israeli and Jalfon provide a token
management policy and a graph traversal scheme (token routing scheme) yielding
self-stabilizing mutual exclusion for undirected (bidirectional) networks. In order
to break symmetry they use the random walks technique described by Aleliunas
et al. in [?]. Self-stabilizing token circulation algorithms coping with anonymous
systems are presented in [?, ?]. These solutions are designed for directed (unidi-
rectional) rings. In [?], Herman presents an algorithm for odd size rings. In [?],
Beauquier et al. present an algorithm which ensures token circulation on directed
rings of any size. To guarantee the presence of a token in the ring the smallest non
divisor of n (n being the network size), snd(n) — the “magic” number as it was
defined in [?] — is used. Alstein et al. present in [?] two mutual exclusion algo-
rithms for directed arbitrary networks with identifiers requiring the preprocessing
of a spanning tree. Kakugawa and Yamashita present in [?] a self-stabilizing token
circulation protocol under unfair scheduler on rings. In [?], Durand-Lose reports
an original token management solution on undirected networks which ensures the
existence of a single token in the network (the “magic number” is also used). Ran-
dom walks are used for breaking symmetry. The space complexity of this protocol
is O(D - log(snd(n))) where D is the maximal processor’s degree. In [?], Rosaz
presents a randomized mutual exclusion algorithm in the message passing model.
The solution has a polynomial stabilization time. Awerbuch and Ostrovsky present
in [?], a self-stabilizing leader election protocol on undirected id-based networks.
It requires log* (V) states per processor (N is the network size). A basic protocol
is given, requiring N states per processor, and the result is obtained by using a
data structure that stores distributively the variables. In an appendix of [?], Itkis
and Levin use another data structure based on the Thue-Morse sequence, requiring
O(1) bits per edge to store, in a distributed manner, variables having possibly N
values. These two last algorithms require undirected networks. Assuming that the
deadlock freedom property is guaranteed externally, Mayer et al. propose in [?] a
randomized self-stabilizing leader election protocol in the message passing model.
In [?], Dolev et al. present two leader election protocols in complete networks. The
protocols are self-stabilizing under read/write atomicity. Using the scheduler-luck
game technique, polynomial bounds for the stabilization time are provided. In [?] a
dynamic leader election algorithm under read/write atomicity is reported by Dolev
et al.. Randomization is used for breaking symmetry but an unbounded memory
space is required. Beauquier et al. propose in [?] a space optimal leader election on

the ring topology. The propose bound for the space complexity is O(log(snd(n))).

Our Contributions. We propose a self-stabilizing token circulation algorithm
and a leader election algorithm under an arbitrary scheduler for any anonymous
directed network : there is no requirement on the scheduler and on the network
topology (except strong connectivity). The optimality of the result is proven in
[?] for the ring topology. Protocols are based on a token management policy that
guarantees the presence of at least one token. We also provide a token routing
policy which ensures the token circulation. The token routing policy provides an
upper bound for the number of steps executed by a processor between two successive
steps of any other processor. This policy is used in the automatic construction of
Algorithm 6.2 — self-stabilizing leader election under an arbitrary scheduler. A
probabilistic version of token circulation (Algorithm 4.1) yields a mutual exclusion
protocol. The space complexity of our algorithms is O((D*T +D™)-(log(snd(n))+2))
bits per processor where DT and D~ are the maximal out and in network degrees.
It should be noticed that snd(n) is constant on the average and equals 2 on odd-size
networks.

2. MODEL

Transition System. A distributed system is a collection of intercommunicat-
ing state machines. We model a distributed system as a transition system T'S =
(X,C,T,I) where ¥ is an alphabet, C is the set of system configurations, T'C C'x C
is the set of transitions and I C C is the set of initial configurations. Each transi-
tion of T is labeled with a symbol from X. A probabilistic distributed system is a
distributed system where a probabilistic distribution is defined on transitions.

A computation e of T'S starting in a configuration ¢; € I is a maximal sequence
of transitions e = ((¢1, ¢2), (¢2,¢3) . ..) such that (¢;,¢;11) € T, Vi > 1. The length
of a finite prefix h of a computation is denoted by length(h), the last configuration in
h is represented by last(h), and the first configuration in h is first(h) (first can be
also used for an infinite computation). A computation factor is a finite sequence of
computation steps. If h and z are computation factors such that first(z) = last(h)
then hz denotes the factor corresponding to the sequence h followed by zx.

Let ¢ be a system configuration. A TS-tree rooted in ¢, Tree(c), is the tree-
representation of all computations starting from ¢. Let nd; be a node in Tree(c),
the a-branch rooted in nd; is the set of all Tree(c) computations starting in nd;
having the first transitions labeled with « (a letter of X). The degree of nd; is
the number of branches rooted in nd;. A sub-TS-tree of degree 1 rooted in ¢ is a
restriction of Tree(c) in which any node has the degree 0 (i.e. there is a deadlock)
or 1. On a sub-tree of degree 1 of a probabilistic distributed system, the set of
first transitions of a branch is the base set for a discrete probabilistic space. Any
transition in this set has a positive probability and the sum of probabilities is 1 for
every node.

Scheduler and strategy. A scheduler is usually presented in the literature (see
[?], [?], [?]) as an adversary for a distributed system which “chooses” at each
configuration the next transition. Classically, a scheduler is defined as a function
over the distributed system executions which, for a given configuration, returns the
next transition. In the process of choosing a transition, a scheduler may have access

p1p3

[)
pLp3 pl
p3

p2p4 plp4 p2 plp3
P4
(o]

p3 plp4 plp3 p2p3 plp3
p2) pL,p: p2,p3 pLp: plp p1p3 p2,p3 plp3
p4 \ P2 p4 \ p1 p3 \ P2 p3 \ Pl p4 \ p1 p3 \ pl p3 \ p2 p3 \ p1
[e] o [e] le] [e] (o] o [e]

FIG. 1 The beginning of Tree(c) of the Algorithm 4.1

to partial or total information on the system history. Note that some important
scheduler types cannot be modeled as functions over the finite history of system
executions, like for instance the fair scheduler.

In the model that we use, a scheduler is a predicate over the system computa-
tions. This definition copes up with any type of scheduler even with those having
a dynamical behavior, according to the system evolution. In the sequel, we use
the k-bounded scheduler (during a system computation, while a processor is en-
abled another processor can perform at most k actions) and the distributed unfair
scheduler (during a computation, some enabled processors may starve — they never
perform an action).

The interaction between a scheduler and the distributed system generates what
we call here strategies, defined as follows :

DEFINITION 1 (Strategy). Let T'S be a transition system, let A be a scheduler
and let ¢ be a T'S configuration. A strategy rooted in ¢ is a sub-TS-tree of degree
1 of Tree(c) such that any computation of the sub-tree verifies the scheduler A.

In Figure 1, we present the beginning of the Tree(c) of the Algorithm 4.1 on
the 4-ring (p1, p2, p3 and p4). The Algorithm 4.1 provides a self-stabilizing token
circulation. ¢ is the configuration where both processor pl and p3 have a token.
Figure 2 presents the beginning of a specific strategy of Tree(c) : at each step, all
processors having a token perform their action.

Note that a 7S tree can be decomposed in a infinity of strategies.

Let st be a strategy. An st-cone Cj corresponding to a prefix h is the set of
all possible computations in st with the same prefix h. The measure of an st-cone
Cp, is the measure of the prefix h (i.e., the product of the probabilities of all the
transitions occurring in h). An st-cone Cj is called a sub-cone of Cj, if and only if
h' = hz, where z is a computation factor.

In [?] it is proven, following the classical theory of probabilistic automata (see
[?]), that for any strategy, it can be built a probabilistic space having the strategy
as a base set.

Distributed system topology. Throughout this paper we consider distributed
systems of n intercommunicating computing devices mapped as a strongly connect-
ed directed graph DG = (V, E) where V is the set of graph nodes and E the set of
directed edges. Each node represents a computing device, also called processor. If
(p,q) € E then p is an in-neighbor of g and ¢ is an out-neighbor of p (p may send

p1p3
°

p1,p3
p2 plp4 p2p3 plp3
p2,p4 pl,pﬂl p2,p3 pl,p3

o o
U4 ua 14 v4 14 14 4
val \ya vy \ya VAl \ya VAl \ya
plp3 p3p4 plp2 p2p4 plp2 p2p4 pl plp4 p3p4 p3 p2p4 p2p3 p2p4 p2p3 plpd plp3

FIG. 2 The beginning of a strategy from ¢ of the Algorithm 4.1

some data to g on (p, q), but ¢ cannot). In the sequel, the set of node p in-neighbors
is denoted by In(p) and their number is denoted by D~ (p). Similarly the set of
out-neighbors is denoted by Out(p) and the number of those neighbors by DT (p).
Any node p in the network shares registers with its in and out neighbors. The node
p reads the shared registers with its in-neighbors (denoted R! [q], ¢ € In(p)) and is
allowed to freely perform write and read operations on the shared registers with the
out-neighbors (denoted R?,;[z], 2 € Out(p)). For a node p all the edges oriented to
its out-neighbors are called outgoing edges and all the edges oriented towards p are
called incoming edges.

Distributed algorithm. Any processor in a distributed system executes an al-
gorithm which has two parts : a declarative part and a finite set of guarded actions
part (i.e. label :: (guard) — (statement)). The values of local variables and out-
registers of a processor define the processor current state. The guard of a processor
p is a boolean expression involving the state of p and the values of p’s in-neighbors
registers. A guarded action (also called rule) is enabled if its guard is true. We
assume that for any processor there is at most one enabled action at a time. A
processor having an enabled action is also called enabled processor.

Our model deals with all kinds of atomic step. For instance, our model deal
with the read/write atomicity ([?]) where a processor atomic step consists of an
internal operation followed by either a read or a write operation (into a processor’s
out-register) but not both. The presented algorithms are designed for the model of
composite atomicity where a processor atomic step contains both read and write
operations : in one atomic step, a processor evaluates its guards and executes the
statement of one enabled rule.

When an algorithm contains guarded actions with random outputs the algorithm
is probabilistic (randomized) otherwise it is deterministic. The processors executing
probabilistic algorithms are called randomized processors.

Distributed system versus transition system. Let S be a distributed system. We
model the distributed system S by the transition system T'S. A configuration of TS
is a vector containing the states of all processors from S. Let ¢ be a configuration
of T'S, a transition from c is determined by the execution of one atomic step from
¢ by one or several processors. A local configuration is the part of a configuration
that can be “seen” by a processor (i.e. its state and the state of its neighbors). A
configuration is symmetrical if all processors have the same local configuration.

Probabilistic Self-Stabilizing Systems A probabilistic self-stabilizing system is a
probabilistic distributed system satisfying two properties : probabilistic convergence
(the system converges to configurations satisfying a legitimacy predicate) and cor-
rectness (all the computations starting from configurations satisfying a legitimacy
predicate satisfies the system specification).

A predicate P is closed for the computations of a distributed system if and only
if when P holds in a configuration ¢, P also holds in any configuration reachable
from c.

NOTATION 1. Let S be a system, A be a scheduler and st be a strategy satisfying
the predicate A. Let C'P be the set of all system configurations satisfying a closed
predicate P (formally Ve € CP,c - P). The set of computations of st that reach
configurations in CP is denoted by £Pg; and its probability by Prg(EPst).

DEFINITION 2 (Probabilistic Stabilization). A system S is self-stabilizing under
a scheduler A for a specification SP if and only if there exists a closed legitimacy
predicate L on configurations such that in any strategy st of S under A, the two
following conditions hold :
(i) The probability of the set of computations of st, starting from ¢, reaching in a
finite number of steps a configuration ¢', such that ¢’ satisfies L is 1 (probabilistic
convergence). Formally, Vst, Pry(ELst) = 1
(#1) All computations, starting from a configuration ¢’ such that ¢’ satisfies L, satisfy
SP (strong correctness). Formally, Vst,Ve € st : e = e'e” with last(e’) b L then
e+ SP.

Note that this definition is stronger than the one used in [?, ?] where the system
correctness is probabilistic : for all strategies the probability of the set of compu-
tations reaching legitimate configurations and satisfying the system specification is
1. The probabilistic correctness will be called in the sequel weak correctness and
systems satisfying a weak correctness will be called weak self-stabilizing systems.

Convergence of Probabilistic Stabilizing Systems Based on previous works on
the probabilistic automata (see [?], [?], [?]) [?] presents a detailed framework for
proving self-stabilization of probabilistic distributed systems. A key notion is lo-
cal convergence denoted LC. The LC property is a progress statement as those
presented in [?] (for the deterministic systems) and [?] (for the probabilistic sys-
tems). Informally, the LC property for a probabilistic self-stabilizing system and
two predicates P, and P> means that starting in a configuration satisfying P, the
system will reach a configuration which satisfies a particular predicate Py, in a
bounded number of computation steps with positive probability. Formally the local
convergence property is defined as follows :

DEFINITION 3 (Local Convergence). Let st be a strategy, P and P, be two
predicates on configurations, where P; is a closed predicate. Let § be a positive
probability and N a positive integer. Let Cp, be a st-cone with last(h) F P; and
let M be the set of sub-cones Cp of the cone Cj such that for every sub-cone
Cy : last(h') b Py and length(h') — length(h) < N. The cone C, satisfies LC
(Pr, P, 0,N) if and only if Pra(Uc,, car Crr) > 6.

Now, if in strategy st, there exist d5; > 0 and Ng > 1 such that any st-cone,
Cy, with last(h) & Py, satisfies LC'(Py, Py, dst, Ngt), then the main theorem of the
framework presented in [?] states that the probability of the set of computations of
st reaching configurations satisfying both P; and P, is 1. Formally :

THEOREM 1. [?] Let st be a strategy. Let Py and Py be closed predicates on
configurations such that Prg(EP1) = 1. If 305 > 0 and INg > 1 such that
any st-cone Cp, with last(h) & Py, satisfies the LC (Py, Py, 05, Ngt) property, then
Pry(EP) =1, where P = P, A\ Ps.

Remark 1. If any strategy, st, of a distributed system satisfies LC(PR1, PR2, §4,

with PR1 the true predicate (verified by any configuration) and PR2 being the le-
gitimacy predicate then the system satisfies the probabilistic convergence as defined
in Definition 2.

3. TOKEN MANAGEMENT AND TOKEN ROUTING POLICY

The notions of token management and token routing policies were introduced
for self-stabilizing systems in [?]. In order to implement a token management, one
needs to design a pattern that (i) allows a processor to decide if it has a token
through its local information (its state, and the out-registers of its out-neighbors).
But also, the pattern should ensure that there is always at least one token in the
network. In [?] it is suggested to use “the magic” number (the smallest non divisor
of the network size) for solving this problem. [?] deals with undirected general
graphs and directed rings. In this section, we present a token management and
token routing policies for general directed graphs.

3.1. Token management policy

A “token” is represented by a predicate. A processor with the “token” predi-
cate true is said to be “privileged”. The self-stabilizing systems achieving mutual
exclusion or leader election needs to guarantee that in the system there is always
a privileged processor. Descriptions of such predicates can be found in [?] for di-
rected rings and [?] for undirected networks. In the following, we define the token
predicate for directed networks.

3.1.1. Token definition

We define tokens for directed networks and then, prove that there is at least
one token in any system configuration.

NoTATION 2. Let snd(n) be the smallest non divisor of n (the number of pro-
cessors). Let AT, be the difference (modulo snd(n)) between the sum of in-register

values and the sum of out-register values of a processor p. Formally :

AT, = Z R? [q] - Z R? .lg] | mod snd(n) . (1)

q€In(p) q€0ut(p)

DEFINITION 4. A processor p holds a token if and only if AT, # 1. A processor
holding a token is a privileged processor.

Using the same reasoning as in [?] or [?], we find out that this convention is
sufficient to guarantee the presence of at least one token in any configuration.

LeEMMA 1. Let DS be a distributed system. In any DS configuration there is at
least one privileged processor.

Proof. Suppose that there is no privileged processor, hence AT, = 1 for any
processor p in the network. By summing the AT, for all p, we get :

Y| X Ehld-) Riuld) =0=nmodsndn) . (2)

peEV \g€In(p) g€Out(p)

Equation (2) means that snd(n) divides n which is impossible from the definition
of snd(n). 1

3.1.2. Switch technique

Passing a token from a processor p to one of its out-neighbors is made according
to the switch technique ([?]). Suppose without loss of generality, that the outgoing
edges of a processor are labeled 0,1,...D%(p) — 1. A processor passes the tokens
that it receives according to this labeling : if the last token has been passed on the
edge i then the next one will be passed on the edge (i + 1) mod DT (p).

Token passing. A processor p passes a token to an adjacent processor q €
Out(p) by modifying the value of R,,¢[q] in the following way : R? .[q] = R ,.[q] +
AT, — 1. Hence the new value of AT} is increased by AT, — 1 and the new value

of AT, is set to 1 : the token is passed from p to q.

Tokens meeting. When two tokens are passed to the same processor g, then
ATy, is increased twice. Either the tokens annihilate each other, or they merge into
a single token. The same phenomenon happens when a processor ¢ having a token
receives another token.

Remark 2. The number of tokens in a network does not increase.

3.2. Fair token routing policy

The fair token routing policy is provided by Algorithm 3.1 which performs token
circulation in deterministic networks. Due to the particular encoding of a token
one or more tokens are always present. A processor holding a token sends it deter-
ministically to one of its out-neighbors. The interesting property of the algorithm
is that, even if the scheduler is unfair, in any computation each processor receives
infinitely many often a token. Algorithm 3.1 will be used later, in a hierarchical
composition for ensure fairness from an unfair scheduler.

Algorithm 3.1 Fair token routing algorithm for processor p

Shared registers with the in-neighbors :
RET[1..D~ (p)] where RET[i]€ [0, snd(n) — 1]

Shared registers with out neighbors :

RET1..D*(p)] where RET[4] € [0, snd(n) — 1]

out out

Variables on p :
direction™ € [0, D (p) — 1] (the outgoing direction of the last sent fair token)

Functions ;

AFT = (3 e rnp) BE 0 = S geoui) Rhblal) mod snd(n)

Macros :
New_Dir_Fair Token :: direction™™ := (direction™™ + 1) mod D+
Pass_Fair_Token :: REL|direction™ ™) := (RET[direction™] +
AFT — 1) mod snd(n)
Predicates :

Fair Token = [AFT # 1]

Action :

FA:: Fair_Token — New_Dir_Fair_Token; Pass_Fair_Token

Algorithm 3.1 description. Description is very simple. In any system config-
uration there is a processor holding a token according to the Definition 4. It can
pass this token according to the switch technique. The switch technique in encoded
in the macro New_Dir_Fair_Token(p) where the new destination for the token is
computed.

Algorithm 8.1 analysis. The switch technique guarantees that in any compu-
tation, any processor holds a token infinitely many times (fairness of the token
circulation). Moreover, the number of steps taken by the other processors between
two successive actions of a given processor is bounded.

LEMMA 2. Let e be an arbitrary computation of Algorithm 3.1 starting in a
configuration ¢ with m tokens (1 < m < n). Let p be a processor holding a token
in c¢. Any in-neighbor p; of p, p; € In(p), executes at most m - DT (p;) actions
between two consecutive actions of p in e.

Proof. Let us consider a factor f of computation e such that f starts by a p
action, finishes by a p action too, and along the factor f the processor p does not
execute any action. Let us determine the maximal number of actions which can
be done by p; in f. Every execution of a p; action produces a token passage to
one of the p; out-neighbors chosen according to the switch technique (direction®”
is incremented). Therefore after at most DT (p;) actions of p; a token will be
sent to the processor p. Processor p keeps the token until the end of f since p is
not activated. Assume that the processor p; executes again D (p;) actions hence
another token is sent to the processor p. The processor p may or not execute it

action — in the first case the factor f ends and the number of actions executed by
p; in fis 2- D% (p;). In the second case p keeps another token; thus, there are at
most m — 2 tokens that can freely move.

After at most m- D™ (p;) actions of p; in f the processor p holds the only token
in the network. Thus p is the only processor which can execute an action; the factor
f has to end. The maximal number of actions executed by p; in f is m-D¥(p;).

Let us consider two processors p and g. The distance between p and ¢ (the length
of a shortest directed path between p and ¢) is denoted dist(p, q). Shortest_path(p, q)
denotes the set of processors on a shortest directed path from p to g.

LEMMA 3. Let e be an arbitrary computation of Algorithm 3.1 starting in a
configuration with m tokens. For any two distinct processors, p and q, between
two actions of p the processor q computes at most Hle m - D+(qi) where q; €
Shortest_path(q,p) and dist(q,p) = d.

Proof. We call the i-th processor on the shortest past between ¢ and p is g,
with ¢ = ¢;. From Lemma 2, we know that between two actions of p the processor
qq executes at most m - Dt (qq) actions; and between two actions of g4, the pro-
cessor qq_1 executes at most m - DV (qg_1). Therefore between two actions of p
the processor at distance 2 of p executes its actions m? - D¥(qq) - D7 (gq_1) times.
Repeating the reasoning, between two actions of p the processor g executes at most
H?zl m - DT (q;) actions where ¢; € Shortest_path(q,p).

Let us denote by D the maximal out degree of the network processors and by
Diam the network diameter (Diam = max, ,dist(p, q)).

COROLLARY 1. In any computation of Algorithm 3.1 starting in a configuration
with 1 < m < n tokens, where n is the network size, between two actions of a
4y Diam .
processor any other processor executes at most (m - DT) actions under any
scheduler.

LEMMA 4. Let e be a computation of Algorithm 3.1 starting in a configuration
with 1 < m < n tokens, where n is the network size. In e, any processor executes
it action within
(n—1)(m- D*)Dmm + 1 computation steps.

Proof. Let p be an arbitrary processor. From the Lemma 3 and the Corollary 1,
between two actions of p another processor executes at most (m - D*)Dmm actions.
The system size is n hence the processor p executes it action after at most (n —
1) (m - D*)P™™ computation steps.

COROLLARY 2. A processor computes the actions of Algorithm 3.1 infinitely
often.

The following Corollary provides the bound for Algorithm 3.1 k-fairness defined
as follows :

DEFINITION 5. A distributed algorithm is k-fair if and only if on every com-
putation, the two following properties hold : (i) every processor executes an action
infinitely often and (ii) between any two actions of a processor, at most k actions
are executed by any other processor.

COROLLARY 3. Algorithm 3.1 is an (n - D*)Dmm -fair algorithm.

10

Proof. The proof results from the direct application of the Corollaries 1 and
2.

The lemmas 4 provide also the bound for the length of a round in an arbitrary
computation e of Algorithm 3.1, defined as follows :

DEFINITION 6. Let e be a computation of Algorithm 3.1. A round in e is a
factor of e in which any processor holds a token at least once.

COROLLARY 4. In any computation of Algorithm 3.1 the mazimal bound for a
round length is B = (n —1) - (n- D+¥)?"™ + 1

4. MUTUAL EXCLUSION UNDER A K-BOUNDED SCHEDULER

In the sequel, we present a self-stabilizing mutual exclusion algorithm under a
k-bounded scheduler (Algorithm 4.1). A scheduler is k-bounded iff while a given
processor is enabled, another processor can perform at most k times its actions.
This algorithm uses the routing policy previously presented but the token moves
depend on a coin tossing.

4.1. Algorithm 4.1 description

The main difference with the random walks presented by Israeli and Jalfon in
[?] is the fact that randomization is used here to decide whether or not the token
will be sent (it is not used to decide to which of the neighbors it will be sent). The
destination out-neighbor is still determined by the switch technique. The random
walks method copes only with the undirected networks. Our method also copes
with directed, strongly connected networks.

4.2. Algorithm 4.1 analysis

We prove Algorithm 4.1 weak self-stabilizing under a k-bounded scheduler for
the mutual exclusion specification defined as follows :

DEFINITION 7. [Token circulation specification - St¢] In the network “there
is only one token” and any processor in the network holds the token infinitely often.

Let us denote by Lr¢ the following predicate over configurations : there is
exactly one token. All the configurations of Algorithm 4.1 which satisfy Predicate
Lrc are called legitimate configurations.

According to Remark 2, we have :

LEMMA 5. The predicate Lpc is closed for Algorithm 4.1.
Convergence proof. In the following we prove Algorithm 4.1 convergence for
Lr1c under a k-bounded scheduler. In order to show the system convergence we

prove that any system strategy st under a k-bounded scheduler verifies the local
convergence property of Definition 3 for Lp¢.

DEFINITION 8. Let e be a computation of Algorithm 4.1. A round in e is a
factor in which a token visits all processors.

11

Algorithm 4.1 Routing protocol for the probabilistic token for processor p

Shared registers with the in-neighbors :
RET[1..D~ (p)] where RET[i] € [0, snd(n) — 1]

Shared registers with the out neighbors :
RPT1..D*(p)] where RET[4] € [0, snd(n) — 1]

out

Variables :
direction™T € [0, D (p) — 1] (the previous direction of the probabilistic token)

Functions ;

APT = (5 e np) BET 0] = 0wt Rhblal) mod snd(n)

Macros :
New_Dir_Probabilistic.Token :: direction™T := (direction™” + 1) mod D*(p)
Pass_Probabilistic Token :: REE[direction™T) := (REL[direction™T] +
APT — 1) mod snd(n)
Predicates :

ProbabilisticToken = [APT # 1]

Actions :
A:: ProbabilisticToken —»
if (random(0, 1) = 0) then { New_Dir_Probabilistic_Token;
Pass_Probabilistic_Token }

LEMMA 6. Let st be a strategy of Algorithm J.1 under a k-bounded sched-
uler. There exist € > 0 and N > 1 such that any st-cone verifies the property
LC(true, L1c, €, N).

Proof. Let Cp, be an arbitrary st-cone with last(h;) = ¢;. Assume that the
number of tokens in ¢; is m. Denote by (pi)i=1,...,m the processors holding these
tokens. Consider the following scenario : the token held by processor p; (called
token t;) merges with the token held by the processor pa (called token ¢5). We
prove that : (i) the scenario holds with positive probability and (ii) the scenario
is repeated until there is only one token in the network.

e We call hy the computation from last(h;) having the following properties :
(1) when the scheduler chooses the processor holding the token ¢; the result of
coin tossing is 1 (hence the token circulates); (2) when the scheduler chooses
another token the result of coin tossing is 0 (the token is frozen) (3) the
moving token reaches po in the last configuration of he. In last(hyhs) the
number of tokens is lesser than m — 1.

The ¢; token circulates “pseudo-deterministically” : when a process holding
the t; token, performs an action it releases the token. Therefore within B
computation steps of ¢y, the ¢; token has reached all processors.

In the worst case, the scheduler chooses t; when it cannot do another choice :
the other privileged processors have performed k actions (the scheduler is k-

12

bounded). Therefore, within &k - (m — 1) 4+ 1) - B computation steps, the t;
token reached all processors (i.e. has merged with another token). We have :
Pro(Chyny) < Pro(Ch,)-(5)*m=D+1-B and length(hs) < (k-(m—1)+1)-B.

e By successive applications of the previous scenario we built some sub-cone
Ch,,. Inlast(hy,), the number of tokens is 1, Prg; (hy,) > Prst(hl).(%)[(m—lHk
and length(h,,) < [(m —1) + W] ‘B

(k:n242.n) B

Therefore the property LC(true, Lrc, €, N) where € > (%) 2 and N <
(en42n)B g verified.

Remark 3. The previous result holds only under a k-bounded scheduler. Under
an unfair scheduler, the Algorithm 5.1 does not converge to Lrc. For example,
on a directional ring, an unfair scheduler may have the following strategy : selects
the same privileged processor till it passes its token; then selects another privileged
processor till it passes its token, and so on. With this strategy, all the tokens move
at the same speed in the ring; they will never merge.

LEMMA 7. Algorithm 4.1 has a finite expected stabilization time.

Proof. In order to establish the expected stabilisation time we use the technique

(k-n242.n).B .
2 (B provided
(kn242.n) B

by Corollary 4). The expected stabilisation times is bounded by % <2 P |

presented in [?] and the € value showed in Lemma 6, € > (3)

Remark 4. Note that majorations used in proving Lemma 6 are brutal, hence
the provided exponential bound for the stabilisation time.

LEMMA 8. Let st be a strateqy of Algorithm 4.1 under a k-bounded scheduler.
There exist RT > 0 and € > 0 such that any st-cone Cp, with last(h) is a legitimate
configuration has a sub-cone Cpp with lenght(h') < RT such that h' is a round and
Pry(Chnt) > Prsi(Ch) - €.

Proof. Let h' be the computation from last(h) where the only token moves at
each computation step until the token has visited all processors. The probability
of Cppr is €1 > Prst(Ch)(%)B. As this scenario is “pseudo-deterministic” the token
reaches all processors in at most B computations steps, The length(h') < B.

From Lemmas 8 and Theorem 1, we get :

COROLLARY 5. In any strategy of Algorithm 4.1 under a k-bounded scheduler
the probability of the set of computations satisfying : (1) a legitimate configuration
is reached and (2) after reaching a legitimate configuration there are an infinite
number of rounds, is 1.

COROLLARY 6 (Correctness proof). In any strategy of Algorithm 4.1 the prob-
ability of the set of computations reaching a legitimate configuration and satisfying
STC is 1.

THEOREM 2. Algorithm 4.1 is weak self-stabilizing for the specification Stc¢ .

Proof. The weak correctness is provided by the Corollary 6, the convergence is
provided by the Lemma 6 and the Theorem 1. 1

Remark 5. Algorithm 4.1 satisfies only the weak correctness. It could be easily
transformed in a strong self-stabilizing algorithm using the technique reported in
[?]. Clearly, the expected steps of stabilisation is exponential.

13

m(m—1
(2)]-B

5. LEADER ELECTION UNDER A K-BOUNDED SCHEDULER

Informally, a self-stabilizing distributed system which solves the leader election
problem must satisfy the property that once the system is stabilized there is only
one, unchanged leader. Formally, this specification is defined as follows :

DEFINITION 9 (Leader election specification - Sgg). Let Leader M ark be a pred-
icate over the local configurations. Any computation, e, of a self-stabilizing system
verifies the leader election specification if and only if the two following properties
holds : (1) e reaches a configuration, where the Leader_Mark predicate is true
for one and only one processor, p (also called leader), and (2) in any configuration
occurring afterward in e, p is always the unique leader.

In the following, we present an algorithm for leader election which stabilizes
under a k-bounded scheduler.

5.1. Algorithm 5.1 description

Algorithm 5.1 has two distinct layers of tokens. The first (respectively second)
layer ensures the circulation of Leader_Mark (respectively Colored_Token) tokens
following the routing policy of Section 4. Once the algorithm is stabilized, the
Leader_M ark is frozen and the Colored_Token keeps circulating.

Colored_Token and Leader_Mark have a virtual “color” attribute. Each token
has a different role and then colors are managed independently.

A processor holding a Leader_M ark token is considered as a leader. The color
of the Leader_Mark token is the color of the processor holding it.

A Colored_Token is used in order to detect the presence of some other leaders.
The value of the color attribute for Colored_Token is the color of the processor
having passed the token (an in-neighbor of the processor holding the colored token).
A processor, p, keeps a copy of the previous values of its in-registers (in the variable
OLdST), in order to find the sender of the colored token (only the sender changed
the value of the corresponding out-register). When several colored tokens meet on
the same processor, the color of the resulting colored token is the color of the first
processor (according to the local switching order) that has sent a color token.

During its circulation a Colored_T oken colors all the non leader processors with
its color (As). A leader which has sent a Colored_Token waits until it returns. At
that time, if the color of Colored_Token is the same as its color, then it stays a
leader but goes on checking by randomly selecting a new color and starting a new
circulation of the colored token (Action Ay). In this case, it has no information
telling it that it is not the single leader.

Since color is randomly selected, if there are several leaders in the network, a
leader will eventually get a colored token that does not have its color. In this case,
the leader passes its leadership and Colored_-Token with a new randomly chosen
color (Action A;). In this case it supposes that there are several leaders.

Once the algorithm is stabilized, there remains only one frozen leader and only
one colored token which may circulate.

5.2. Algorithm 5.1 analysis
Let us define the following predicates over configurations :

e Lor = there is exactly one colored token;

14

Declaration 1 Registers, variables, predicates and macros for p executing Algo-
rithm 5.1

Shared registers with the in-neighbors :
REM[1..D~(p)] where REMIi] € [0, snd(n) — 1] (for leader mark)
RSTI1..D~ (p)] where RS T[i] € [0, snd(n) — 1] (for colored token)
Rolr[1..D~ (p)] where R¢27[i] € {0, 1} (for the color)

Shared registers with out-neighbors :
REMI1..D*(p)] where REM[4] € [0, snd(n) — 1] (for leader mark)

out out

RCT1..D*(p)] where RCE[4] € [0, snd(n) — 1] (for color token)

out out

RS [1..D* (p)] where RST[5] € {0, 1} (for the color)

Variables :
direction™™ € [0, D (p) — 1] (the previous direction of a probabilistic token)
OldST[1..D~(p)] (the old values from the registers RST)
color is a boolean : 0 = red and 1 = green (the color of the processor p)

Functions :
ALM = (ZqEIn(p) RZ[;zM[q] - ZqEOut(p) R%\f[q]) mod snd(n)

ACT = (zqe,n(p) RETIq) ~ X ycoup) RS [q]) mod snd(n)

Macros :
New_Dir_Probabilistic.Token :: direction™ := (direction™™ + 1) mod D*(p)
Pass_Leader _Mark :: REM[directiont™] := (RLM [directiont™] +
ALM — 1) mod snd(n)
Pass_Colored_Token :: RSY[direction™T] := (RS L direction™T] +

ACT — 1) mod snd(n)
Update_Old :: Vi € [1..D~(p)]O1d$T[i] := RS TTi]
Randomly_Change_Color :: color := random(red, green);
Vj € [L.D*(p)], B33 [j] := color;

Change_Color :: color := R$!°"[i], where i € [1..D~(p)] such that

OLdSTTi] # RS T[i]; V4 € [1..D*(p)], R[] := color;

Predicates :

Leader Mark = [ALM # 1]
Colored Token = [ACT # 1]
Same_Color = [color = R$°"[j] where j € [1..D~(p)] such that

OLST[j] # RETL] |

15

Algorithm 5.1 Randomized leader election algorithm under a k-bounded scheduler

Actions :
Ai:: Leader _Mark N Colored_Token N =Same_Color —
if (random(0, 1) = 0) then
{ Randomly_Change_Color; Update(Old);
New_Dir_Probabilistic_Token; Pass_Leader_Mark;
Pass_Colored_Token }

As:: Leader_Mark N Colored_Token N Same_Color —
if (random(0,1) = 0) then
{ Randomly_Change_Color; Update(Old);
New_Dir_Probabilistic_Token; Pass_Colored_Token }

Az:: Colored_Token A —Leader_Mark —
if (random/(0,1) = 0) then
{ Change_Color; Update(Old);
New_Dir_Probabilistic_Token; Pass-Colored_Token }

e Lcoor = (i) on any processor, for any value j € [1..D7(p)], we have :
RS [§] = color and (ii) on any processor, except the processor having the

colored token p, we have Old§.T = RS T; and on p, for any value j € [1..D~(p)]

m)
except one, we have : Old$ T [j] = RST[j].

e L1 = there is exactly one leader mark;

e Same_Color = the unique leader mark and the unique colored token have the
same color.

DEFINITION 10. Let us denote by L1 g the predicate which is true when the
following four predicates hold : (1) Lo, (2) Lcoior, (8) L, and (4) Same_Color.

A legitimate configuration for Algorithm 5.1 is a configuration satisfying the
predicate L1, 5.

Remark 6. Predicates Lot and L are closed.

LEMMA 9. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.
We have Prg(Lor) = 1.

Proof. The colored token follows the routing policy as it was defined in the
section 4. According to the Lemma 6 : 35 > 0 and Ing > 1 such that any st-cone
satisfies the LC (true, Lo, dst,nst) property. We get Prg(Lor) = 1 by Theorem
1.

LEMMA 10. Let st be a strategy of Algorithm 5.1; Pry(Lor A Leotor) = 1.

Proof. Let Cp, be an arbitrary cone of the strategy st such as last(h) satisfies
the predicate Lor. Let Cpp be an arbitrary sub-cone of Cp. Let p be a processor
that has performed an action in h'. After the p’s action, p satisfies (i) for any value
i € [1..D*(p)], we have : RS2Y7[j] = color and (ii) OldS,T = RS until one of its in-
neighbor gives it the colored token. In this case, on p, for any index j € [1..D¥(p)],
but one (called 1), Old$T[j] = R$T[j]. RS T[1] is the in-register of p corresponding
to the processor that has given the colored token to p.

16

We call " the computation from last(h) where the colored token moves at each
computation step until all processors have got the colored token. The configuration
last(xh") verifies the predicate Lo A Looror- The probability to obtain the cone
Chi is €1 > Pryy(Cp)(5)B. The length(h'") < B.

LeMMA 11. Predicates Lo A Lootor AN Loy and Lo A Looior are closed for
Algorithm 5.1.

Proof. Let e be an arbitrary execution of Algorithm 5.1. Let ¢ be a configuration
satisfying the predicate Lo A Lcooior in e. In ¢, only the processor p that has the
colored token has an index I such that Old$T[l] # RS T[l]. Only p may perform an
action. In all cases, after the action of p, the color out-register of p has the same
value as its color variable. After this action, either no variable value is changed :
the predicate Lor A Looor 18 still verified. Or p updates the variable Old and
gives the colored token to a neighbor ¢ : now only the processor ¢ has an index I’
such that OldST[I'] # RS T[] (RST[I'] being the out-register of p shared with g).
Therefore, the next configuration in e is a configuration verifying Lo and Lpp. n

Remark 7. On a configuration ¢ verifying the predicate Lo A Looior, only Ac-
tion A1 or 42 may change the color of the colored token.

NoOTATION 3. Let us denote by N Lead(c) the number of leader marks in the
configuration c.

LEMMA 12. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.
There exist € > 0 and N > 1 such that any cone of st, Cp, with last(h) = Lor A
Lcotor, satisfies Local_Convergence (Lor Alcotors Loy, €, N).

Proof. Assume that last(h) does not satisfy the predicate £z 5. Hence N Lead(last(h)) =
m with m > 1 and there is only one colored token in last(h). The proof has the
following informal steps : (1) we prove that with positive probability the colored
token meets for the first time a processor holding a leader mark, let us denote this
leader mark by Im;q, (2) with positive probability the leader mark, Im; circulates
in the network until it merges with another leader mark. And we repeat the steps
(1) and (2) until there is exactly one leader mark in the network.

Assume that in last(h) the colored token is not on a leader. We call h' the
computation from last(h) where the colored token moves at each computation step
until it reaches a leader (Action A3). According to this scenario, the colored to-
ken is “pseudo-deterministic” : it moves at each computation step. The steps
number to reach a leader is at most the length of a round of Algorithm 3.1. The
probability of each computation step is (%)B. The probability of the cone Cpp is
€1 > Pry(Ch)(3)P. The length(h') < B where B is the bound stated in Corollary
4. Once the colored token and the leader mark are on the same processor, there
are two cases : (a) the colored token and the leader token have the same color, or
(b) they have different colors (hh' is now called H).

e a case - Only Action As can be performed (by the leader having the color
token - p). Let us called ¢ the next leader that the colored token will meet. We
study the history h" where (1) p does not “choose” the color of ¢ and (2) the
colored token moves at each computation step until it reaches ¢q. At the end,
of this history, the case b is reached : the colored token and the leader mark
are on the same processor, and they have different colors. The probability of
the cone Cpp is €2 > Prg(Ch)(3)?P*!. The length(h'h") < 2B. Now, HbL"
is called H.

17

e b case - Only Action A; can be performed (by the processor having the color
token - p). The probability that the processor p passes the both tokens to
an out-neighbor ¢ (having the color col) and colors the colored token with

a color different of col is i. q is the same state as the p state before the

move. ¢ has the both tokens, but the color of the leader mark is not the

color of the colored token. We call hl the computation from last(H) where
the colored token and the leader mark move together until they meet another
leader mark. The probability of the sub-cone Cgpq of the cone Cx where

N Lead(last(Hh1)) = m — 1is e3 > Pry(Cr)(3)*? and length(hl) < B.

The probability of the cone Cpp, where N Lead(last(hH;)) = m —11is €] >
Prg(Cp)(5)*BF. The length(H,) < 3B.

The probability of the cone Cppr,,_, where N Lead(last(hHy,—1)) =1is €., | >
Pry(Cp)(3)m=DEBH) N, = length(Hy,—1) < 3(m — 1)B. Therefore, the

property Local_Convergence(Lcor A Lcoiors Loy €m—1, Nm—1) is satisfied. 1

m—1

According to the Theorem 1, we have :

COROLLARY 7. Let st be a strategy of Algorithm 5.1 under a k-bounded sched-
uler. We have Prg(Lor A Leooior N L) = 1.

LeEMMA 13. The predicate Lo A Lcooior N L1, A Same_Color is a closed pred-
icate for Algorithm 5.1.

Proof. Let ¢ be a configuration satisfying the predicate Lo A Looior A Loy A
Same_ Color. In ¢, there is a unique leader mark and only one colored token. Both
have the same color. Only Action A2 may change the color of the colored token.
After that action, the both tokens have the same color.

LEMMA 14. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.
There ezist € > 0 and N > 1 such that any cone of st, Cj, such that last(h) b Ler
ALcotor AL 10, satisfies Local_Convergence(Lor ALcojor AL1 M, Same_Color, e, N).

Proof. Assume that last(h) does not satisfies the predicate Same_Color. There
are two cases; in the first case the leader mark and the colored token are on different
processors, while in the second one the colored token and the leader mark are on
the same processor.

In the first case, let h' be the computation from last(h) where the colored
token circulates until it reaches the leader. The probability of the cone Cpp is € >
Prg(Cp)(3)P. The length(h') < B. Now both tokens are on the same processor.
Agsume now that the processors have different colors. The probability that p gives
the both tokens to an out-neighbor ¢ and colors the colored token with the ¢’s color
is %. After that, ¢ is a leader, g has the colored token; and the colored token has
the ¢’s color.

Therefore the probability of cone Cpp» with last(hh") FLor A Looior AN L A
Same_Color is € > Pry(Cp)(1)P*? and length(h") < B+ 1.

LEMMA 15. Algorithm 5.1 has a finite stabilisation time.

Proof. Using Lemmas 6, 10, 12 and 14 the expected stabilisation time is bounded

712 n n
by 1 where e < (%)M(B provided by Corollary 4). Therefore the
expected stabilization time of Algorithme 5.1 is finite. 1

18

LEMMA 16. Any computation of Algorithm 5.1 starting in a legitimate config-
uration satisfies the specification Spg.

Proof. Let e be a computation starting in a legitimate configuration ¢ — the
predicate L, g is satisfied by ¢. The only applicable rules are those where the leader
mark is not moved (As and Ajz), hence the problem specification is satisfied.

THEOREM 3. Algorithm 5.1 is self-stabilizing for the specification Spg.

Proof. The convergence is given by Corollary 7, Lemmas 13 and 14 and Theorem
1. The correctness is given by Lemma 16. 1

6. TOKEN BASED ALGORITHMS UNDER AN UNFAIR SCHEDULER

In this section, we extend Algorithms 4.1 and 5.1 to cope up with unfair sched-
uler. For this purpose, the idea of cross-over composition (introduced in [?]) is
used to compose Algorithms 4.1 and 6.2 with a k-fair algorithm (see Definition 5).
Algorithm 3.1 is an (n - DT)P™_fair algorithm under any unfair scheduler. The
cross-over composition guarantees that a stabilizing algorithm for specification SP,
that works under the k-bounded scheduler composed with a k-fair algorithm under
an arbitrary scheduler, is stabilizing under any unfair scheduler for specification
SP.

The cross-over composition combines two algorithms —the weaker and the
stronger— to get a new algorithm. The algorithms are considered stronger or
weaker according to their properties toward the scheduler. When an algorithm
needs a special scheduler then it is considered “weaker”. By contrary, when the
algorithm is preserving its properties even under an unfair scheduler then it plays
the “stronger” role.

In this paper, the stronger (Algorithm 3.1) supports the stronger adversary
(unfair scheduler), while the weaker (Algorithms 4.1 or 5.1) provides its specification
(token circulation or leader election) under a weaker adversary (the k-bounded
scheduler).

Algorithm 6.1, the result of cross-over composition between Algorithm 3.1 and
Algorithm 4.1, has the following actions [A is the label of Algorithm 4.1 rule and
FA is the label of Algorithm 3.1 rule] :

Bi::< guard A > N < guard FA > — < statement A >; < statement FA >
Byiim < guard A > A < guard FA > — < statement FA >

Algorithm 6.1 Randomized token circulation algorithm under unfair scheduler

Actions :
Bi:: Fair_Token A Probabilistic_Token —
New_Dir_Fair_Token; Pass_Fair_Token;
if (random(0, 1) = 0) then { New_Dir_Probabilistic_Token;
Pass_Probabilistic_Token }

Bs:: Fair_Token A —Probabilistic_.T oken —»
New_Dir_Fair_Token; Pass_Fair_Token;

Algorithm 6.2, the result of cross-over composition between Algorithm 3.1 and
Algorithm 5.1, has the following actions [(A;);=1.4 are the labels of the rules of

19

Algorithm 5.1] :

Ci::< guard Ay > N < guard FA > — < statement A, >; < statement FA >
Cau:< guard As > A < guard FA > — < statement As >; < statement FA >
C3:< guard As > A < guard FA > — < statement Az >; < statement FA >
Cqiim < guard Ay > A— < guard As > A— < guard Az > A < guard FA > — <
statement FA >

Algorithm 6.2 Randomized leader election algorithm under unfair scheduler

Actions :
Ci:: Fair_Token N Leader_Mark N Colored_Token N =Same_Color —
New_Dir_Fair_Token; Pass_Fair_Token;
if (random(0, 1) = 0) then
{ Randomly_Change_Color; Update(Old);
New_Dir_Probabilistic_Token; Pass_Leader_M ark;
Pass_Colored_Token }

Cy:: Fair_Token N Leader_Mark N Colored_Token N Same_Color —
New_Dir_Fair_Token; Pass_Fair_Token;
if (random(0, 1) = 0) then
{ Randomly_Change_Color; Update(Old);
New_Dir_Probabilistic_Token; Pass_Colored_Token }

Cs:: Fair_Token N —Leader_Mark A Colored_Token —
New_Dir_Fair_Token; Pass_Fair_Token,;
if (random(0, 1) = 0) then
{ Change_Color; Update(Old); New_Dir_Probabilistic_Token;
Pass_Colored_Token }

Cy:: Fair_Token N =Colored_Token N —~Leader_Mark —
New_Dir_Fair_Token; Pass_Fair_Token,;

Algorithms 6.1 and 6.2 description. Algorithms 6.1 and 6.2 are the result of
cross-over composition between Algorithms 5.1 (the weaker) and 3.1 (the stronger).
The composed algorithm containes an extra layer which ensures the algorithm con-
vergence under any unfair scheduler.

Algorithm 6.1 and 6.2 analysis. In [?], it is proven that the cross-over com-
position between a probabilistic algorithm self-stabilizing for a specification SP
under a k-bounded scheduler, playing the weaker role, and a deterministic algorith-
m satisfying the k-fairness property, playing the stronger role, is a self-stabilizing
algorithm for SP under any unfair scheduler.

THEOREM 4. Algorithms 6.1 and 6.2 are self-stabilizing for the specifications
Stco and Spg respectively under an unfair scheduler.

LEMMA 17. The stabilization time for Algorithms 6.1 and 6.2 is finite.

Proof. The expected stabilization time for Algorithms 6.1 and 6.2 is bounded
by the values provided by Lemmas 7 and 15 with k& = (n- DHYP™ and B =
(n—1)- (n- D)™™ 41 (corollaries 3 and 4).

20

7. CONCLUSION

This work focuses on token based self-stabilizing algorithms. The considered

networks are anonymous and directed. We present for this type of networks, a
token management and routing policy as solutions to the open problem proposed
by Israeli and Jalfon in [?]. Note that the current paper propose the first gener-

al s

olution for this problem. Moreover, we present self-stabilizing algorithms for

mutual exclusion and leader election on anonymous, directed networks based on

this

policies. In order to break the symmetry we use randomization. One of the

proposed algorithms is weak self-stabilizing for the mutual exclusion specification,

ano
dist

ther one is self-stabilizing for the leader election specification under any unfair
ributed scheduler. Finally, we present a probabilistic analysis for the proposed

algorithms.

All the results are summarized in the following table :

Specification Alg. | Scheduler Correctness | Space Complexity (states)
Fair token circ. 3.1 unfair deterministic | n- Dt - snd” "

Mutual exclusion | 4.1 k-bounded weak prob. n-D* . snd®"

Leader election 5.1 k-bounded strong prob. n.Dt.2PTH . gpg2 DT+
Mutual exclusion | 6.1 distrib. unfair | weak prob. n- D+ . snd®P”"

Leader election 6.2 distrib. unfair | strong prob. n. Dt 9P HL . gpgd Dt +DT

per

The space complexity of our algorithms is O((D* + D) - (log(snd(n)) +2)) bits
processor. Note that snd(n) (the smallest non divisor of n) is constant in the

average and equals 2 for odd size networks.

Notice that our algorithms are space optimal for the ring topology as it was

proven in [?].

1]

[4]

REFERENCES

R. Aleliunas, R.M.Karp, R. Lipton, L. Lovasz, and C. Rackoff, Random walks,
universal traversal sequences and the complexity of the maze problem, in
“FOCS’79, Proceedings of the 20st Annual IEEE Symp. on Foundation of
Computer Science,” pp. 218-223, 1979.

D. Alstein, J.H. Hoepman, B. Olivier, and P. Put, Self-stabilizing mutual
exclusion on directed graphs, Technical Report 9513, CWI Amsterdam, 1995.

D. Angluin, Local and global properties in networks of processors, in “S-
TOC’80, Proceedings of the 12th Annual ACM Symp. on Theory of Comput-
ing,” pp. 82-93, 1980.

B. Awerbuch and R. Ostrovsky, Memory-efficient and self-stabilizing network
reset, in “PODC’94, Proceedings of the 13th Annual ACM Symp. on Principles
of Distributed Computing,” pp. 254-263, 1994.

J. Beauquier, S. Cordier, and S. Delaét, Optimum probabilistic self-
stabilization on uniform rings, in “WSS’95, Proceedings of the Second Work-
shop on Self-Stabilizing Systems”, pp. 15.1-15.15, 1995.

21

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. Beauquier, M. Gradinariu, and C. Johnen, Memory space requirements for
self-stabilizing leader election protocols, in “PODC’99, Proceedings of the 18th
Annual ACM Symp. on Principles of Distributed Computing,” pp. 199-208,
1999.

J. Beauquier, M. Gradinariu, and C. Johnen, Randomized self-stabilizing opti-
mal leader election under arbitrary scheduler on rings, Technical Report 1225,
Laboratoire de Recherche en Informatique, September 1999.

J. Beauquier, S. Kutten, and S. Tixeuil, Self-stabilization in eulerian net-
works with cut-through constraints, Technical Report 1200, Laboratoire de
Recherche en Informatique, January 1999.

K. Chandy and J. Misra, “Parallel Programs Design: A Foundation,” Addison-
Wesley, New York, 1988.

A K. Datta, M. Gradinariu, and S. Tixeuil, Self-stabilizing mutual exclusion
using unfair distributed scheduler, in “IPDPS’00, Proceedings of the Int. Par-
allel and Distributed Processing Symp.,” pp. 465-470, 2000.

E. Dijkstra, Self stabilizing systems in spite of distributed control, Communi-
cations of the ACM, 17, 11 (Nov. 1974), 643-644.

S. Dolev, A. Israeli, and S. Moran, Self-stabilizing of dynamic systems assum-
ing only read/write atomicity, Distributed Computing, 7, 1 (1993), 3-16.

S. Dolev, A. Israeli, and S. Moran, Analyzing expected time by scheduler-luck
games, IEEE Trans. on Software Engineering, 21, 5 (May 1995), 429-439.

S. Dolev, A. Israeli, and S. Moran, Uniform dynamic self-stabilizing leader
election, IEEE Trans. Parallel Distrib. Systems, 8, 4 (April 1997), 424-440.

J. Durand-Lose, Randomized uniform self-stabilizing mutual exclusion Inform.
Process. Lett., 74, 5-6 (June 2000), 203-207.

T. Herman, Probabilistic self-stabilization, Inform. Process. Lett., 35 2 (June
1990), 63-67.

A. Tsraeli and M. Jalfon, Token management schemes and random walks yield
self-stabilizing mutual exclusion, in ”PODC’90, Proceedings of the 9th Annual
ACM Symp. on Principles of Distributed Computing,” pp. 119-131, 1990.

G. Ttkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols,
in “FOCS’94, Proceedings of the 35th Annual IEEE Symp. on Foundations of
Computer Science,” pp. 226-239, 1994.

H. Kakugawa and M. Yamashita, Uniform and self-stabilizing token rings
allowing unfair daemon, IEEE Trans. Parallel Distrib. Systems, 8, 2 (Feb.
1997), 154-162.

A. Mayer, Y. Ofek, R. Ostrovsky, and M Yung, Self-stabilizing symmetry
breaking in constant-space, in “STOC’92, Proceedings of the 24th Annual
ACM Symp. on Theory of Computing,” pp. 667-678, 1992.

22

[21] L. Rosaz, Self-stabilizing token circulation on an asynchronous unidirectional
ring, in “PODC’00, Proceedings of the 19th Annual ACM Symp. on Principles
of Distributed Computing,” pp. 249-258, 2000.

[22] R. Segala, Modeling and Verification of Randomized Distributed Real-Time
Systems, Ph.D. thesis, MIT, Department of Electrical Engineering and Com-
puter Science, 1995.

[23] R. Segala and N. Lynch, Probabilistic simulations for probabilistic processes,
in “CONCUR’94, Concurrency Theory, 5th International Conference,” Lecture
Notes in Computer Science, Vol 836, Springer-Verlag, 1994.

[24] S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of proba-
bilistic i/o automata. in “CONCUR’94, Concurrency Theory, 5th Internation-
al Conference,” Lecture Notes in Computer Science, Vol 836, Springer-Verlag,
1994.

23

