Abstract geometrical computation: Turing-computing ability and undecidability

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

CiE 2005: New Computational Paradigms Amsterdam, June 8th, 2005

Introduction

Definitions

Signal machines

Computability

2-counter automata simulation

Undecidability

Conclusion

Starting from discrete model...

FIG. 7. Rule 54. (a) Annihilation of the radiating particle. (b) The same as (a) with the mapping defined in Fig. 6. [BNR91, Fig. 7]

FIG. 7. The four different (out of 14 possible) interaction products for the $\alpha + \beta$ interaction. [HSC01, Fig. 7]

Figure 5. Two collisions of filtrons, and five free filtrons supported by the FPS model; ST diagram applies q = 1.

[Siw01, Fig. 5]

Figure 3: A simulation of the k = 7, r = 1 universal CA of table 3 for an uncorrelated initial state (with a density of blanks equal to 0.76). Symbols y, 0, 1, A, B, \Box , and T are represented by

[LN90, Fig. 4]

Figure 4: The k = 4, r = 2 universal cellular automaton of table 4 simulated starting from a random initial state. The symbols 0, 1, 11, and + are represented by

[LN90, Fig. 3]

図 3·6 一斉射撃解 (n=6) [Got66, Fig. 6]

Continuous space-time,

$$\mathbb{R}\times\mathbb{R}^+$$
 (or $\mathbb{Q}\times\mathbb{Q}^+)$

Continuous space-time, signals

Continuous space-time, signals and collisions

Continuous space-time diagrams

Continuous space-time diagrams

2-counter automata (or 2-register machine)

```
beg: B++
     A--
     A!=0 beg1
     B!=0 \text{ imp}
beg1: A--
     A!=0 beg
 pair: B--
     A++
     B!=0 pair
     A != 0 beg
 imp: B--
     A++
     A++
     B!=0 imp1
     A!=0 beg
imp1: B--
     A++
      A++
     A++
     B!=0 imp1
      A != 0 beg
```

Turing-universal

A, B counters (values in \mathbb{N})

Operations

$$A != 0 \ m$$
 $B != 0 \ m$

a configuration \rightsquigarrow (n, a, b)

Encoding (n, a, b) into a space-time diagram

Unary encoding of a and b

A set of signals for each line of instruction

Implementing "n B++"

Other instructions are implemented similarly

Examples

Theorem

Signal machines can simulate any 2-counter automaton

Theorem

Signal machines can carry out any Turing computation

Turing-universal model of computation

Theorem

Signal machines can simulate any 2-counter automaton

Theorem

Signal machines can carry out any Turing computation

Turing-universal model of computation

All is done with rational positions

→ manipulable by classical Turing machines

Undecidable - 1

Instance Finite number of collisions

A rational signal machine, and an initial configuration

Question

Does the computation of the machine on the initial configuration stop?

Instance Appearance of a given meta-signal

A rational signal machine, an initial configuration, and a meta-signal

Question

Does the computation of the machine on the initial configuration ever generates a signal of this meta-signal?

Undecidable - 2

Instance Collision with a given signal

A rational signal machine, an initial configuration, and a signal in the initial configuration

Question

Is there any collision involving the given signal on the computation of the machine on the initial configuration?

Instance Disappearance of all signals

A rational signal machine, and an initial configuration

Question

Does the computation of the machine on the initial configuration stop on an empty configuration?

Results

▶ New model of computation

► Turing-universality

Undecidable problems

Work in progress

- Super Turing-computability
 - through accumulation
- Super Turing-computability
 - through real positions
- Analog computation
 - through real positions

