Reversible conservative rational abstract geometrical computation is Turing-universal

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

CiE 2006 - Swansea, Wales UK - 30 June - 5 July, 2006

- Reversibility
- 2 Abstract Geometrical Computation
- Universality
- 4 Conclusion

- Reversibility
- 2 Abstract Geometrical Computation
- 3 Universality
- 4 Conclusion

Problematics of reversibility

Interest

- Backtracking a phenomenon to its origin
- Physics is reversible at some level (e.g. quantum level)
- Irreversible means
 - heat to dissipate
 - energy to provide

Challenge

- Build reversible computing devices
- Compute with them

History of reversibility / inversibility

Known universal reversible...

- [Lecerf, 1963, Bennett, 1973] Turing machines
- [Fredkin and Toffoli, 1982] logical gates
- [Morita, 1996] two-counter machines
- [Jacopini and Sontacchi, 1990] model on continuous space

On cellular automata

- [Toffoli, 1977] universal reversible CA for dimension 2+
- [Morita and Harao, 1989] universal dim 1 reversible CA
- [Kari, 1990] undecidability of reversibility
- [Toffoli and Margolus, 1990] survey on reversible CA

- Reversibility
- 2 Abstract Geometrical Computation
- Universality
- 4 Conclusion

Continuous space-time

$$\mathbb{R} imes\mathbb{R}^+$$
 (or $\mathbb{Q} imes\mathbb{Q}^+$)

Continuous space-time, signals

Continuous space-time, signals and collisions

Continuous space-time, signals

Reversible signal machines

Going backward possible and unique

- away from any collision... automatic
- at a collision...
 - impossible to guess if no or just one signal has left (reverse of at least 2 signals for a collision)

Necessary and sufficient condition

Rules form a bijection over sets of 2 or more signals

- easy to check
- easy to complete any 1-to-1 set of rules

Link with the black hole model of computation

Zeno's paradox

- Infinitely many steps in finite time
- Infinite computation in finite time?
- Halting problem solvable in finite time [Durand-Lose, 2005]

(infinite-time Turing machine, computation on ordinals...)

Unwanted diagrams

Unwanted because

- Difficulty (if not impossibility) to define continuation there

Conservativeness condition on rules (not presented here)

What is known

- Can compute any recursive function
 with conservativeness constrain
 [Durand-Lose, 2005, MCU]
 together with reversibility constrain... this talk!
- Forecasting accumulation is Σ_2^0 -complete (arithmetical hier.) (even with conservativeness constrain) [Durand-Lose, 2006, TAMC]

- Reversibility
- 2 Abstract Geometrical Computation
- Universality
- 4 Conclusion

Simulating 2-counter automata

2 non-negative counters × 3 operations

Code

notZ A--B++

fin stop

A != 0 notZ A++ glob B != 0 loop A != 0 fin loop B--A++

A != 0 glob

Two-counter automata simulations

Two-counter automata + stack for reversibility

Two-counter automata intrinsically irreversible

- Previous counter value 0--=0=1--
- Previous line number conditional jumps

Memory trick

- Record the previous values
 - of a counter reaching 0
 - of the line number
- Use a stack
 - push onward
 - pop backward
- (Invertible as long as the stack is not empty)

Reversible stack implementation

All together

- Reversibility
- 2 Abstract Geometrical Computation
- Universality
- 4 Conclusion

Results

Theorem

Rational reversible conservative signal machine can compute any recursive function

Theorem

As long as there are finitely many signals and no accumulation they can be simulated by Turing machines

Black hole effect is still available