Forecasting black holes in Abstract geometrical computation is highly unpredictable

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, ORLÉANS, FRANCE

TAMC, Beijing, 2006

- Introduction
- 2 Definitions
- $\ \ \ \Sigma_2^0$ -Membership
- Φ Σ_2^0 -Hardness
- Conclusion

- Introduction
- 2 Definitions
- 4 Σ_2^0 -Hardness
- Conclusion

Discrete lines in cellular automata

[Lindgren and Nordahl, 1990, Fig. 3]

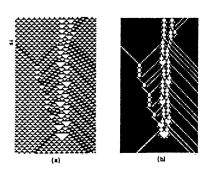


FIG. 7. Rule 54. (a) Annihilation of the radiating particle. (b) The same as (a) with the mapping defined in Fig. 6.

[Boccara et al., 1991, Fig. 7]

Discrete lines in cellular automata

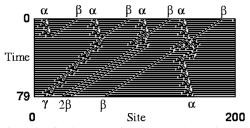


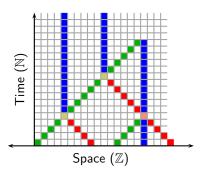
FIG. 7. The four different (out of 14 possible) interaction products for the $\alpha + \beta$ interaction.

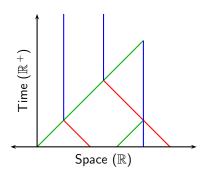
[Hordijk et al., 2001, Fig. 7]

Figure 5. Two collisions of filtrons, and five free filtrons supported by the FPS model; ST diagram applies q=1.

[Siwak, 2001, Fig. 5]

Abstracting signal machines

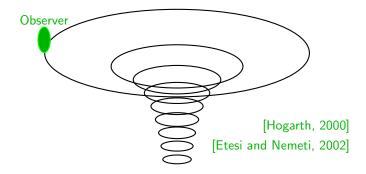




Accumulating is now possible

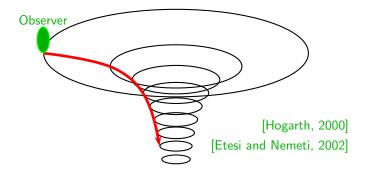
- Infinitely many steps in finite time
- Infinite computation in finite time?

Black hole model



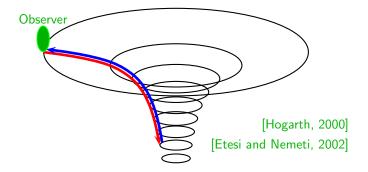
① Observer at the "edge"

Black hole model



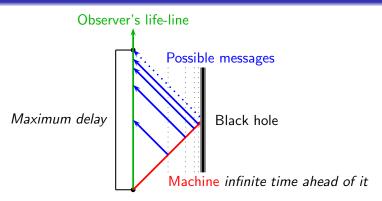
- ① Observer at the "edge"
- Machine sent into the black hole infinitely accelerated

Black hole model



- ① Observer at the "edge"
- Machine sent into the black hole infinitely accelerated
- Message sent by the machine received by the observer within a bounded delay

Malament-Hogarth space-time



Message indicates the result of the computation

After the delay, the observer knows whether the computation stops

Any recursively enumerable problem can be decided!

In the abstract geometrical computation context...

• Can accumulations be used as black hole?

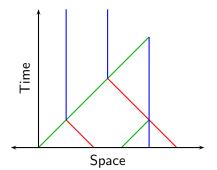
YES! [Durand-Lose, 2005]

• Are accumulations predictable?

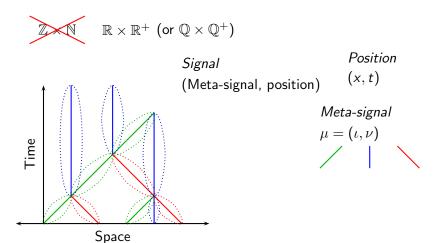
this communication...

- Introduction
- 2 Definitions
- 4 Σ_2^0 -Hardness
- Conclusion

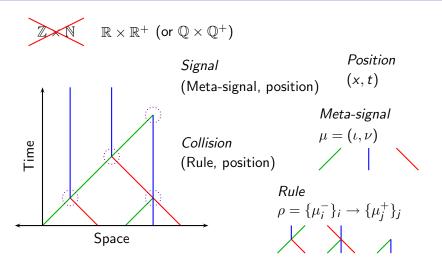
Continuous space-time



Continuous space-time, signals



Continuous space-time, signals and collisions



Problem definition

Rational signal machine

All speeds and initial positions are rational numbers

- \rightsquigarrow computations remain in $\mathbb Q$
- → exact encoding and manipulation in classical theory

AGC-accumulation-Forecasting

Instance

 \mathcal{M} : rational signal machine, and

c: (rational) configuration for \mathcal{M} .

Question

Is there any accumulation in the space-time generated by \mathcal{M} from c?

 Σ_2^0 -Membership

- $\Im \Sigma_2^0$ -Membership
- Φ Σ_2^0 -Hardness

Arithmetical hierarchy

Hierarchy of undecidable problems

Logical definition

by an alternation of \forall and \exists on \mathbb{N} quantifying a recursive total predicate

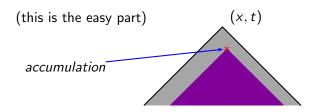
Examples

- Σ_0^0 corresponds to recursive sets
- Σ_1^0 corresponds to recursively enumerable sets
- Σ_2^0 corresponds to sets definable by

$$\{ x \mid \exists n_1, \forall n_2, \ \phi(x, n_1, n_2) \}$$

where ϕ is total and recursive

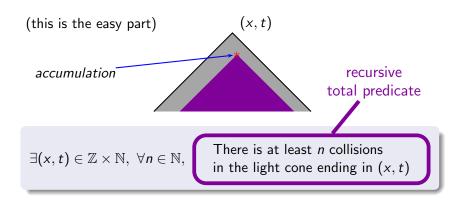
Σ_2^0 -membership



$$\exists (x,t) \in \mathbb{Z} \times \mathbb{N}, \ \forall n \in \mathbb{N},$$

There is at least n collisions in the light cone ending in (x, t)

Σ_2^0 -membership



 \rightsquigarrow in Σ_2^0

 Σ_2^0 -Hardness

- 3 Σ_2^0 -Membership
- Φ Σ_2^0 -Hardness

Problems to be reduced

Σ_1^0 -complete

The Halting problem

(M,x) s.t. $\exists n$, Turing machine M stops on x in n iterations

Σ_2^0 -complete

Non total recursive function

(M) s.t. $\exists x, \forall n, TM \ M$ does not stop on x in n iterations

Turing equivalent model

Turing machine can be replaced by 2-counter automaton

2-counter automata

```
beg: B++
     A--
     IF A != 0 beg1
     IF B!=0 imp
beg1: A--
     IF A != 0 beg
 pair: B--
     A++
     IF B!=0 pair
     IF A != 0 beg
 imp: B--
     A++
     A++
     IF B != 0 imp1
     IF A!=0 beg
imp1: B--
     A++
     A++
     A++
     IF B != 0 imp1
     IF A!=0 beg
```

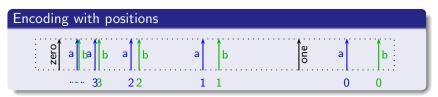
Turing-universal

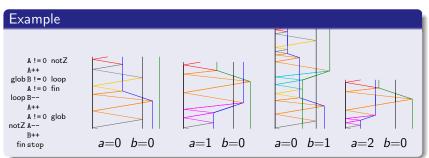
A, B counters (values in \mathbb{N})

Operations

a configuration \rightsquigarrow (n, a, b)

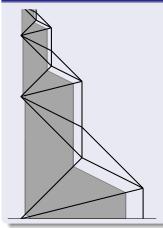
Encoding and simulation





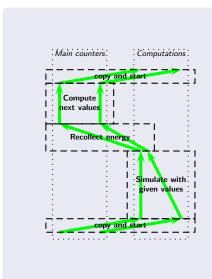
$co-\Sigma_1^0$ -Hardness

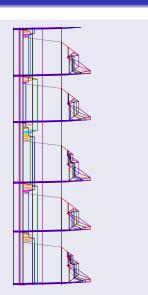
Embedding inside an accumulating structure



- The structure iteratively shrinks the computation
- An accumulation is produced
- Rules are modified so that: computation stops
 - \Rightarrow structure is stopped
- This reduction shows the co-Σ₁⁰-Hardness

Σ_2^0 -Hardness: Try all entries for not total





- Introduction
- 2 Definitions
- 4 Σ_2^0 -Hardness
- Conclusion

Results

Theorem

Forecasting an accumulation is Σ^0_2 -complete