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Abstract. Abstract geometrical computation naturally arises as a con-
tinuous counterpart of cellular automata. It relies on signals (dimension-
less points) traveling at constant speed in a continuous space in continu-
ous time. When signals collide, they are replaced by new signals according
to some collision rules. This simple dynamics relies on real numbers with
exact precision and is already known to be able to carry out any (dis-
crete) Turing-computation. The Blum, Shub and Smale (BSS) model is
famous for computing over R (considered here as a R unlimited register
machine) by performing algebraic computations.

We prove that signal machines (set of signals and corresponding rules)
and the infinite-dimension linear (multiplications are only by constants)
BSS machines can simulate one another.
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1 Introduction

There is no agreed analog counterpart of the Church-Turing thesis; relating the
models is crucial to understand the differences between the various computing
capabilities. For example, Bournez et al. related Moore’s recursion theory on
R [Mo096], computable analysis [Wei00] and the general purpose analog com-
puter [BH04,BCGHO06]. The aim of this paper is to link two analog models
of computation. One, abstract geometrical computation deals with regular and
automatic drawing on the euclidean plane, while the second, the Blum, Shub
and Smale model [BCSS98] relies on algebraic computations over R™. Let us
note that Bournez [Bou99] already provide some relations between linear BSS
and Piecewise Constant Derivative systems. The latter also generate Euclidean
drawings.

Abstract geometrical computation (ACG) arises from the common use in
cellular automata (CA) literature of Euclidean settings to explain an observed
dynamics or to design a CA for a particular purpose. But CA operate in discrete
time over discrete space, while Euclidean geometry deals with both continuous
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time and space. This switch of context is justified by the scaling invariance of
CA and comes for our preference and ability for thinking in classical continuous
terms rather than in discrete terms (for example just think how recent and com-
plex is discrete geometry compared to the Euclidean one). Abstract geometrical
computation works in a continuous setting: discrete signals/particles become
dimensionless points; the local function of CA, computing the next state of a
cell according to the states of neighbouring cells, is replaced by collision rules:
which signals emerges from a collision of signals. Signals and rules define sig-
nal machines (SM). This recent model, even restricted to rational numbers, is
able to carry out any (discrete) Turing-computation [DL06¢c]. With continuous
time, Zeno paradox arises: not only are accumulations possible, but they can be
used to decide recursively enumerable problems by using the black-hole principle
[DL05,DL06a]. Let us note that if accumulations can be generated at will, they
can hardly be foreseen [DLO6b]. In this paper, we are not interested by accu-
mulations and the super-Turing capability that they bring forth in the discrete
computability. We are interested on considering AGC as an analog model, thus
there is no rational number restriction and accumulations are not encompassed
(they are considered as divergent computations).

In the Blum, Shub and Smale model (BSS), machines computes over any
ring. Roughly speaking, polynomial functions can be performed on variables as
well as test (according to some order) for branching. Linear BSS [MMO97] is the
restriction where it is forbidden to multiply two variables, but it is still allowed
to multiply by constants. In the case where the dimension of the input is not
bounded or the number of registers needed to compute is not bounded, a shift
operator is provided on order to access any register (finitely many registers hold
non zero values since only finitely many registers can be accessed in finite time).
We prove the equivalence of AGC and linear BSS over R in infinite dimension. For
the sake of simplicity, we consider that there is no shift operator but indirect
addressing through addresses (natural counters, the term address is used to
distinguish from real registers) and that all operations are carried out on an
accumulator; this corresponds to the real number unlimited register machine
(R-URM) [Nov95] (the arguments for the full BSS translate to the linear case).

To simulate a lin-R-URM with a SM, the value of each register is encoded
as the distance between two signals. A 1in-R-URM is considered as an assembly
language program and we show how to translate each instruction. Since the
reader might not be familiar with ACG, the first and simplest constructions are
more detailed to provide examples.

To simulate a SM with a lin-R-URM, a configuration is encoded as a finite
sequence of, alternatively, signal value and distance to the next one. Although
signal machines work with continuous time, the only important discrete dates
are when a collision occurs. The simulation goes from a collision date to the next.
This is achieved in three steps: compute the next collision time, then update the
distances between the signals and finally carry out the collision(s).



Section 2 gives the definition of both models. Section 3 provides the simulation
of any lin-R-URM by a SM while Sect.4 carries the simulation the other way
round. Conclusion, remarks and perspective are gathered in Sect. 5.

2 Definitions

Abstract geometrical computations. In this model, dimensionless objects
are moving on the real axis. When a collision occurs they are replaces by others.
This is defined by the following machines:

Definition 1 A signal machine is defined by (M, S, R) where M (meta-signals)
is a finite set, S (speeds) a mapping from M to R and R (collision rules) a
partial mapping from the subsets of M of cardinality at least two into subsets
of M (speeds must differ in both domain and range).

The elements of M are called meta-signals. Each instance of a meta-signal
is a signal. The mapping S assigns speeds to meta-signals. They correspond to
the inverse slopes of the segments in space-time diagrams. The collision rules,
denoted p~—p*, define what emerges (p*) from the collision of two or more
signals (p~). Since R is a mapping, signal machines are deterministic. The ez-
tended value set, V', is the union of M and R plus two symbols: one for void, @,
and one for an accumulation (which is not addressed here). A configuration, c,
is a total mapping from R to V such that the set {z € R|c(z) # © } is finite.

A signal corresponding to a meta-signal pu at a position z, i.e. c(x) = p,
is moving uniformly with constant speed S(u). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. These correspond to
condition 2 in Def. 2. At a p~—p™ collision signals corresponding to the meta-
signals in p~ (resp. p*) must end (resp. start) and no other signal should be
present (condition 3).

Definition 2 The space-time diagram issued from an initial configuration cg
and lasting for T', is a mapping ¢ from [0,7] to configurations (i.e. a mapping
from R x [0,T] to V') such that, ¥(z,t) € R x [0,T] :
1. Vte[0,T], {z € R|c(z) # @} is finite,
2. if ¢;(z)=p then 3t;, ty€[0, T with ¢;<t<t; or 0=t;=t<t; or t;<t=t;=T s.t.:
=Vt € (ti,ty), co(x+S(w)(t' —t) =pn ,
—t;=00r ¢, (x;) € Rand p € (¢, (z;))T where x; = 2+ S(u)(t; —t) ,
—ty=Torcs(ry) € Rand pu € (cs;(xy))” where 2y = 2+ S(u)(ty —1t) ;
3. if ci(z)=p~—pT € R then J¢, 0<e, Vt'€[t—e, t+e]N[0,T], Va'E[x — e,z +£],
— cv(z’) € p~UpT U{D}, / / /
“weat et =y {0 ST S ML I SG )



On space-time diagrams, the traces of signals represent line segments whose
directions are defined by (5(.),1) (1 is the temporal coordinate). Collisions cor-
respond to the extremities of these segments. In the space-time diagrams, time
increases upwards.

A configuration is composed of the identities and positions of all the present
signals. Since the origin is not relevant (because of the shift invariance), if is
enough to have the identities and the distances between signals from left to
right. At any time, there are finitely, although unbounded, many signals.

As a computing device, the input is the initial configuration and the output
is the final configuration (e.g. when no collision can happen).

Linear real number unlimited register machines. We do not use the def-
inition of [BCSS98] (graph with input, output, computation and branch nodes
plus a shift node to deal with infinite dimension). Instead, we use the more
assembly language like definition of linear R-URM. Each register holds a real
number (with exact precision). Inputs as well as outputs are stored in the reg-
isters. The machine can add, multiply (by a constant) and copy values. To cope
with infinite dimension, address (natural integers) registers are used for indirect
addressing. To simplify our constructions we suppose that all real computations
are done with one accumulator (which corresponds to a constant slowdown).

Definition 3 A linear real number unlimited register machine (lin-R-URM) is
described by a sequence of instructions among the following ones:

— inc A;, dec A; and if 0<A; goton for the addresses, and

— load R; (load R(;)), store R; (store R(;), add R; (add R(;)), mul o, and

if 0<X goton for the registers,

where i is a natural integer, « is a constant real number, n is a line number, A;
is an address, R; is a register and X is the accumulator. The indirect addressing,
Ry, corresponds to Ry,.

The first register has number 0 to avoid any addressing problem. All the
operations are done on the accumulator; thus there is no second argument. There
is no mul R; since multiplication is only by constant (otherwise it would not be
linear). To simplify, there is no add «, additive constants are supposed to be
stored in some registers.

A configuration consists of the line number, the values of the addresses and
of the registers. There are finitely many addresses (their number is directly given
by the code) and, at any instant, finitely many registers used (but their number
is not bounded).

3 Linear R-URM simulation by signal machines

3.1 Encoding a configuration

A 1in-R-URM configuration is composed of a line number, n, and values for
addresses, {A;}icr, and registers, {R;}icx (I and K are finite initial segments



of N). The set I is a constant of the machine while K may be enlarged during
the computation. Since there are finitely many line numbers, each one can be
identified by a meta-signal. The rest of the configuration is encoded with speed 0
signals ensuring its stability (parallel signals never interact). Since addresses are
only used for indicating registers, they are added as markers on the corresponding
registers (again the number of addresses is bounded and as many as needed meta-
signals are available from the start).

Registers. A register is encoded as the distance from a base signal to the pairing
val signal. There is no absolute scale since signal machines are scale invariant.
Two scale signals whose distance amounts for a scale are provided as depicted
on Fig. 1. All registers use the same scale. For the value 0, the superposition of
base and val is encoded as a single signal nul. This value is never considered in
the rest of the paper; the reader is invited to check that it can be easily covered.

- o e |

scale scale val val base val val
or nul(0)

Fig. 1. Encoding: scale and positions of val for values —m, —1.5, 0, v/2 and e.

The registers are always encoded with the same meta-signals, base and val.
They are regularly displayed as depicted on Fig.2. The signals base are at a
distance, say d, one from the next, such that each val is at distance strictly less
than d/2 from its corresponding base. Not to tangle one register encoding with
another one during the computation, each pair is kept away from the others; if a
value becomes too large (which is simple to check since sums and multiplications
are done on the accumulator), each distance from val to base is scaled down as
well as the scale pair to keep the same values.

The accumulator is encoded like a register and is displayed on the left of
the registers. An end marker indicates the right limit of the configuration. It is
used in order both to prevent signal from drifting forever on the right and to
help enlarging the configuration when needed. The line number is encoded as a
signal, line,,, of negative speed which is about to hit the right scale and start the
next iteration. A complete encoding is given on Fig. 2.

N -

scale line, val accum  val base base val base val base val end

Fig. 2. Scale, line number, accumulator (—2), registers (—2.1, v/2, %, ) and end.

Addresses. Since they are used to designate registers, they are encoded by marks
on the corresponding base’s. This is done by replacing base by any value in



{base;}scr (there are finitely many such meta-signals). Each ¢ of I must appear
in exactly one base;. If needed, dummy null registers are added to cover all the
values of the addresses and all registers directly addressed in the code.

3.2 Updating the configuration

The simulation is as follows: line,, bounces on scale and changes to whatever
signal is used to carry out the instruction at line n. After the instruction is carried
out, extra signals are disposed of and one signal with the new line number is sent
to the scale. It remains to deal independently with each possible instruction.

Address manipulations. These are: increasing or decreasing by one and branch if
non null. Decreasing corresponds to getting to the base; holding ¢ and move the
element 7 to the base on the left except when this register is number 0. To achieve
this, signal ,dec}” is send to the right. The left subscript n is used to record the
line number; it is changed when the operation is performed. The superscript 0?
indicates that, as far the computation has gone, the value of the address could
still be zero. This signal moves to the right leaving every signal as it is until it
reaches the first base;. If ¢ belongs to J then the address is 0 and the signal
goes back on the left as line,,+1 (lower part of Fig. 3); otherwise it turns to ,dec;
and keep &ing right until it meets the base; such that ¢ belongs to J. It then
turns to ,dec; and goes on the left; as soon as it reaches a base;, it replaces it
by base ; ;3 and turns to line, ;1 (upper part of Fig.3).
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Increasing A; corresponds to getting to the base; holding ¢ and move i to
the next base on the right (lower part of Fig.4). When there is no more register
on the right, end is reached and used to create a new nul register instead of end
and to reposition end one step on the right (upper part of Fig.4). This time, the



meta-signals used are: ninc; (searching) and ,inc; plus two extra signals, end and
—

end to regenerate end. The last two meta-signals must be three times faster than
ninc; in order to ensure the positioning of the new end at the same distance.
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Fig. 4. Example of updating: n—&—TlL 122 i7 .
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Branching is very easy, the signal goes on the right, passes the accumulator
and get to the first base;. Depending on whether ¢ belongs to .J, it comes back

as the following line or the branch line number.

Registers operations. We first present how to move a value from the accumulator
to a given register (load R; is similar). The register can be indicated directly
or indirectly. In the first case its number is know directly from the code, it is
thus possible to make as many as needed meta-signals to count down from ¢ to
0 (meta-signals are used as a finite unary counter). At each base; crossing, it is
decremented until it reaches 0, the designated register is reached. In the second
case, a signal is issued that looks for the base; such that ¢ belongs to J (as in
address manipulation).

The first column of Fig. 5 presents how the copy starts from the accumulator
and is stored on the corresponding register. The second column shows the erasing
of the previous value of the register. The first row deals with negative values and
the second row with positive ones (handling 0 is trivial). What happens on the
target register is the superposition of the right of left column and right column.
There is no risk of collision with the new val since del and del are below set™



and set™. The value stored is exactly the same since set and ,sto are parallel as
well as the pair of set™ (or of set™).
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Fig. 5. Various cases to achieve store Rs.

To handle multiplication, the scale invariance of AGC is used: if starting
from two signals at distance 1, they end up at distance «, then starting from
two signals at distance d, they end up at distance ad. There are two cases to
consider: <1 and 1<« (multiplication by 1 is not very interesting). The space-
time diagrams and (pre-computed) speeds are given on Fig. 6.

o <1 (here a = —1) 1 < a (here a = 2)
R
accum  val accum
Speed of ,Mul: 4 4
Speed of nMqu: -1 1
Speed of ,Mul: sf‘za 4;1‘i3

Fig. 6. Multiplication scheme.

Let us note that multiplication can produce an overflow: a value so large
that it might provoke some entanglement between two registers. This is easy



to detect: two dummy bounding signals are added around accum, whenever the
multiplication crosses any of them an overflow flag is raised (i.e. some signal
switches to a given meta-signal). The multiplication is carried out normally, but
the val is replaced by over (to distinguish it from any other val). When an overflow
occurs, a special subroutine is launched. It scales down by 1/« (for mul o with
1<a) all the registers, the accumulator and the scale. This way, all encoded real
values are preserved. All the val and accum remain at their positions, only the
left scale, over and all val are moved. The above multiplication scheme is used,
this time no overflow can happen.

Addition is not presented, let us just say that it works exactly like load except
that val (of the accumulator) is used as origin instead of accum, and deletion of
the old val is slightly different. Let us note that addition as an overflow detection
like multiplication, in such a case, all is scaled by one half.

4 Signal machines simulation by linear R-URM

This construction is less detailed since it relies on classical construction on regis-
ter machines and the reader should have now a rather clear picture of what both
models are (and also because of the lack of room). A SM configuration consists
of an alternating sequence of meta-signals and distances, starting and ending
with a meta-signal. This is straight forwardly be translated into a sequence of
registers (meta-signals are encoded by integers starting at 1) followed by 0’s.

Updating is done in three steps: first find the delay to the next collision,
then update the distances and finally process the collision(s) (there might be
synchronous ones). Finding the delay is just to go through the sequence and
consider signals two by two: compute the delay before next collision (if any)
and store the minimum. To achieve this, it loops through the configuration en-
coding (this is easy with indirect addressing; the loop stops at the first 0 for a
meta-signal) and computes the collision delay. For the latter, there is a formula
depending on the distance and speeds of meta-signals but it is not linear. Nev-
ertheless, there are finitely many meta-signals and their speeds are known from
the signal machine; each case is linear. It only remains to branch to the correct
case with a big switch/if then else.

If no collision happens then the machine halts. Otherwise, it “advances” the
time by the given duration (i.e. the distances are updated) then it goes through
the configuration again and process each collision, i.e. signals at distance 0. There
could be more than two signals involved in a collision (but no more than the
number of meta-signals). Again, there are finitely many possible collision rules
and they are all given by the signal machine. So to find one, a huge switch has
to be provided (there is a case for each rule): first consider how many signals
are involved then find the corresponding rule. In-coming signals are replaced by
out-going. If their numbers are different, a procedure to compress or enlarge the
configuration (exactly like one would do inside any array) is used.



5 Conclusion

We have proved that signal machines are equivalent to lin-R-URM and infinite
dimensional linear R-BSS. Let us note that SM restricted to rational speeds and
positions are equivalent to lin-Q-URM with the same constructions. The number
of rules of the simulating SM is up bounded by an exponential in the number of
lines of the lin-R-URM while the number of line of the simulating lin-R-URM is
linear in the numbers of collisions and rules.

Considering the number of collisions as a complexity measure on SM, in each
case, the slowdown is of the order of the number of signals/register, i.e. of space.
Let us remember that all is constructed with lin-R-URM, not linear BSS and full
BSS has also a weak model of complexity [Ko0i93] so we do not go any further
on complexity issues here.

Let us note that reversible and conservative signal machines on rational have
full Turing-computability. Would reversible and conservative restrictions already
be equivalent to linear BSS? In a rational setting, accumulation was used to climb
up the arithmetical hierarchy. We believe that in the real setting, they could be
used to provide inner multiplication and thus proved that signal machine could
simulate the full BSS model. We believe that in such a case BSS would be a
strictly less powerful model (unless some limit operator is provided).
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