
Black hole computation: implementations with signal

machines

Jérôme Durand-Lose

Laboratoire d’Informatique Fondamentale d’Orléans,

Université d’Orléans,

B.P. 6759,

F-45067 ORLÉANS Cedex 2.

1. Introduction

No position is taken on the theoretical and practical feasibility of using any
potentially existing particular black hole for hyper-computing. The reader
is referred to other contributions in this issue as well as Etesi and Németi
(2002); Németi and Dávid (2006); Németi and Andréka (2006) for clear
introductions and surveys on this topic. All the work presented here in done
the context of so-called “Malament-Hogarth” space-times and not slowly
rotating Kerr black hole. The main differences are that, one, the observer
remains out of the black hole and second, nested black holes are considered.

A black hole computation works in the following way. At some location ⋆

one observer starts a computing device which he sends on a different world-
line such that: at some point, after a finite time on his own world-line the
observer has the whole future of the device infinite world-line in its causal
past and the device can send some limited information to the observer.
The device has an infinite time for computing ahead of it and can send
a single piece of information to the observer. Not only can the observer
perceive this piece of information, but after a finite duration which he is
aware of, the observer knows for certain that if he has not received anything
then the machine never sends anything during its whole, possibly infinite,
computation. So that, for example, if the piece of information is sent only

⋆ Throughout the article location is to be understood as a position in space and time and position as
only spatial.

1

when the computation stops, at some point, the observer knows for certain
whether the computation ever stops.

From the computer scientist point of view, this allows to have some piece
of information on a whole, potentially infinite, computation. This way the
Halting problem or the consistency of many first order logic theory (e.g.
Set theory or Arithmetic theory) can be decided. This clearly falls out of
the classical recursion/computability theory since it allows to decide semi-
decidable subsets (Σ0

1 in the arithmetic hierarchy).
Malament-Hogarth space-times allow to have nested black holes and so-

called arithmetical sentence deciding (SAD) space-times (Hogarth, 1994,
2004). With each infinite level of nested black-holes, the computing power
climbs up a level of the arithmetic hierarchy (and even the hyper-arithmetic
hierarchy in second order number theory (Welch, 2006)). The arithmetic hi-
erarchy is formed by recursive predicates preceded by alternating quantifiers
on natural numbers. The level in the hierarchy is defined by the first quan-
tifier and the number of alternations.

In computer science, considering and continuing a computation after its
potential infinite span exist in various form. Infinite time Turing machines
(Copeland, 2002; Hamkins and Lewis, 2000; Hamkins, 2002, 2007) consider
ordinal times (and values); the main difference is that the limit of the tape
is available, whilst with black holes only a finite and bounded piece of infor-
mation is available. Infinite computations also provide limits, for example
computable analysis (Weihrauch, 2000) (type-2 Turing machines) manipu-
lates infinite inputs and generates infinite outputs, each one representing a
real number. In analog computations, limit operators (as limits of sequences
of real numbers) are also considered (Chadzelek and Hotz, 1999; Kawamura,
2005; Mycka, 2003b,a, 2006; Mycka and Costa, 2007; Bournez and Hainry,
2007).

The setting in which the black hole effect is simulated here is not the so-
lution to any relativity equations. It is rather something that is constructed
inside a Newtonian space-time and provide the desired effect whereas black
holes involves non-Euclidean geometry (like the Schwarzschild one). Any
initially spatially bounded computation can be embedded in a shrinking
structure resulting in the same computation happening in a spatially and
temporally bounded room, even if it was not the case before. This structure
provide the black hole, outside of it, some information may be received to
gain some insight on what happen inside.

Abstract geometrical computation (AGC) deals with dimensionless signals
with rectilinear and uniform movement in a (finite dimension) Euclidean

2

space. It is both a continuous and an analog model. The way it is analog is
quite unusual because there are finitely many values but continuum many
variables. Time is evolving equally everywhere. What brings forth the ac-
celerating power is that space and time are continuous so that Zeno effect
can happen and indeed, everything heavily relies on it. Throughout the ar-
ticle, only dimension 1 spaces are considered, thus space-time diagrams are
2 dimensional.

Signals are defined as instances of meta-signals which are of finite num-
ber. They move with constant speeds uniquely defined by their meta-signals.
When two or more signals meet, a collision happen and they are replaced
other signals according to collision rules. A signal machine defines the avail-
able meta-signals, their speeds and the collisions rules.

A configuration at a given time is a mapping from R to a finite set (con-
taining the meta-signals) defining signals and their positions. Signals are
supposed to be away one from another. The void positions (i.e. position with
nothing) are supposed to form an open set. The rest of the configuration
contains only singularities. They are many ways to continue a space-time
diagram after an isolated singularity, the ones used here are: let it disappear
or turn it into signals.

This model originates in discrete signals in Cellular Automata (Durand-
Lose, 2008b). This explains the choice of finitely many meta-signals and
constant speeds. There are other models of computation dealing with Eu-
clidean spaces.

Huckenbeck (1989, 1991) developed a model based on finite automata
able to draw lines and circles and to compute intersections. Not only are
the primitives different, but also it is sequential and depends on an external
operator to perform the construction whereas in signals in AGC operate on
their own.

Jacopini and Sontacchi (1990) developed an approach where a computa-
tion results in a polyhedron. They only encompass finite polyhedron (i.e.
bounded with finitely many vertices) and allow surfaces and volumes of any
dimensions while AGC has only lines.

Another model worth mentioning is the Piecewise Constant Derivative
(PCD) system (Bournez, 1999b). There is only one signal, but its speed
changes each time it enters a different polygonal region. Not only is AGC
parallel but also there is no such things as boundaries. Nevertheless, PCD
are able to hyper-compute and climb up the hyper-arithmetic hierarchy
(Bournez, 1999a) while the other two cannot.

In AGC, since signals dwell in a continuous space (R) and time (R+) and

3

there is no absolute scale, it is possible to rescale a configuration. Rescaling
a configuration rescales the rest of the space-time. An automatic procedure
to freeze the computation, scale it down and unfreeze it, is provided. When
this construction is made to restart it-self forever, a singularity is reached.
Any AGC-computation starting with only finitely many signals can be em-
bedded in this structure so that the corresponding computation is cut in
countably many bounded pieces geometrically shrunk and inserted. This
brings a general scheme to transform any AGC-computation into one that
can do the same computation but in a piece of the space-time diagram
bounded in both space and time. This is the desired black hole effect. An-
other shrinking scheme is presented in Durand-Lose (2006a), but it works
only for spatially bounded AGC-computations while the one presented here
does not impose this condition. The construction is detailed since AGC is
not so well-known and it is the cornerstone of the results in the article.

Simulating a Turing machine (TM) is easy using one signal to encode each
cell of the tape and an extra signal for the location of head and the state of
the finite automaton. Any Turing machine simulation can be embedded in
the shrinking structure making it possible to decide semi-recursive problems
in finite time.

As long as speeds and initial positions are rational and there is no singu-
larity, the location of each collision is rational (as the intersection of lines
with rational coefficients). This can be computed in classical discrete com-
putability (and have been implemented to generate figures). The model is
also perfectly defined with irrational speeds and positions and can thus be
also considered as an analog model. It has recently been connected to the
Blum, Shub and Smale model of computation (which can perform algebraic
operations as well as test the sign on real numbers with exact precision)
(Durand-Lose, 2007, 2008a). In the present paper, it is only recalled how
real numbers are encoded and how a singularity is used to provide the mul-
tiplication. Our shrinking scheme can be used in this analog context to
answer analog decision problems.

The way a signal machine is transformed to have shrinking capability
can be iterated so that singularities/accumulations of any order can be
generated. This allows to decide a formula formed by a total (resp. BSS)
recursive predicate preceded by a finite alternation of quantifiers on N (i.e.
to climb the corresponding arithmetical hierarchies). For the analog case,
this remains a quantification over a countable set ⋆⋆ .

⋆⋆This is why we do not talk about an analytic hierarchy.

4

In Section 2, the model and the shrinking structure are presented. In Sec-
tion 3, the way discrete computation can be done and shrunk is presented.
In Section 4, analog computation is considered. Section 5 explains how to
have nested black holes so as to climb the arithmetic hierarchies. Section 6
gathers some concluding remarks.

2. Model and Mechanics

The underlying time is R+; there is no such thing as a next configuration.
The underlying space is R. A configuration is a mapping from R to a finite
set (yet to be defined). A space-time diagram is a function from R×R+ to
the same finite set.

What lies on R are signals, collisions between signals or singularities (cre-
ated by accumulations). Signals are moving with constant speed depending
only on their nature. When they meet, an instantaneous collision happens
and the signals are replaced by others according to some collision rules.
A singularity happens when and where infinitely many collisions, signals
and/or singularities accumulate. Ways to continue a space-time diagram
beyond an isolated singularity are proposed at the end of this section.

2.1. Signal machines and space-time diagrams

Definition 1 A signal machine (SM) is defined by (M, S, R) where M

(meta-signals) is a finite set, S (speeds) a function from M to R, and R

(collision rules) a partial function from the subsets of M of cardinality at
least two into subsets of M (all these sets are composed of signals of distinct
speeds).

Each signal is an instance of a meta-signal. Its speed is constant and only
depends on its meta-signal (given by S). When two or more signals meet,
R indicates the signals to replace them. Meeting signals must have distinct
speeds otherwise they are parallel and never meet. Signals are not allowed
to be superposed, so that all signals emitted by a collision must also have
distinct speeds.

Definition 2 The extended value set, V , is the union of M and R plus
two special values: one for void, ⊘, and one for singularity ❊. An (valid)
configuration is a total function from R to V such that all the accumulation
points of its support (the set of non void location, supp(c) = { x ∈ R | c(x) 6=
⊘}) have the value ❊. A configuration is finite if its support is finite. It is
simple if it is finite and ❊ is not reached. It is rational if it is simple and

5

its support is included in Q. A SM is rational if all the speeds are rational
numbers and only rational configurations are used.

As long as there is no singularity, a finite configuration is only followed
by finite ones.

To be rational is robust. Signals at rational positions with rational speeds
can only meet at rational location. All collisions happen at rational dates
and at these dates the positions of signals are all rational. Since rational
numbers can be encoded and manipulated exactly with any computer, ra-
tional SM can be handled inside classical computability theory.

Two results limit the interest and extend of rational SM. First, predicting
whether a singularity ever happens is Σ0

2-complete (in the arithmetical hi-
erarchy, which means not even semi-decidable) (Durand-Lose, 2006b) and
second, a singularity can happen at an irrational position (Durand-Lose,
2008a). On the other hand, as long as Turing-computability is involved, ra-
tional SM are enough (as shown in Sect. 3). But if analog computations are
to be considered, then it is not the case anymore as in Sect. 4.

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or backward light-cone, arriving at position x and time t, I−(x, t), is defined
by all the positions that might influence the information at (x, t) through
signals, formally:

I−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .

Definition 3 The space-time diagram issued from an initial configuration
c0 and lasting for T , is a function c from [0, T] to configurations (i.e. a
function from R× [0, T] to V) such that, ∀(x, t) ∈ R× [0, T] :
(i) ∀t∈[0, T], ct(.) is valid, and c0(.) = c0;
(ii) if ct(x)=µ ∈M then ∃ti, tf∈[0, T] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T

s.t.:
(a) ∀t′ ∈ (ti, tf), ct′(x + S(µ)(t′ − t)) = µ ,
(b) (ti=0 and c0(xi) = µ) or (cti(xi) = ρ−→ρ+∈R and µ ∈ ρ+)

where xi=x + S(µ)(ti − t) ,
(c) (tf=T and ctf (T) = µ) or (ctf (xf) = ρ−→ρ+∈R and µ ∈ ρ−) or

ctf (xf)=❊ where xf=x + S(µ)(tf − t) ;
(iii) if ct(x)=ρ−→ρ+ ∈ R then ∃ε, 0<ε, ∀t′∈[t−ε, t+ε] ∩ [0, T], ∀x′∈[x −

ε, x + ε],
(a) (x′, t′) 6= (x, t) ⇒ ct′(x

′) ∈ ρ−∪ρ+ ∪ {⊘},

(b) ∀µ∈M , ct′(x
′)=µ⇔ ∨

µ ∈ ρ− and t′ < t and x′ = x + S(µ)(t′ − t)

µ ∈ ρ+ and t < t′ and x′ = x + S(µ)(t′ − t)
;

and

6

(iv) if ct(x) = ❊ then ∀ε>0, there are infinitely many collisions in I−(x, t)∩
R× [t−ε, t) or infinitely many signals in [x− ε, x + ε]× [t−ε, t) .

The definition naturally extends to the case T = +∞. A space-time di-
agram is rational if it is correspond to the one of a rational SM. As long
as no singularity is reached, the evolution is deterministic; the space-time
diagram only depends on c0 and the SM.

2.1.1. Encompassing singularities.

When a singularity is reached isolated (i.e. there is nothing round it),
there are various ways to continue the space-time diagram beyond it.

Definition 4 (Schemes to handle isolated singularities) A singular-
ity at (x, t) is isolated if there is nothing but void around it in the configu-
ration (i.e. ∃ε, ∀x′ ∈ [x − ε, x + ε], x′ 6= x⇒ ct(x

′) = ⊘). There are various
schemes to continue a space-time diagram at an isolated singularity.
(i) Wall. It remains there forever;
(ii) Vanish. It disappears as if it where on another dimension;
(iii) Simple trace. It disappears but sends a µs signal; or
(iv) Conditional traces. It disappears but sends signals according to which

signals join in (i.e. signals that are not interrupted by any collision –not
an infinite succession of signals).

In the two last schemes, µs or the singularity rules have to be added to
the definition of the SM. In such a case, one talks about an extended SM
(ESM). Next sections consider ESM and the schemes used are indicated.

The first scheme is not considered here; although it makes sense since sin-
gularities generally do not just disappear, in dimension one, it unfortunately
produces an unbreakable frontier definitively splitting the configuration in
two. The second one is considered in the section on discrete computation
while the third is considered in the section on analog computation. The
reason in the analog case is that its position is an important piece of in-
formation. The last case is also used to consider the case of a singularity
happening exactly on a higher level structure (as the one presented below)
with nested structures in Sect. 5.

The last two schemes impose a modification of the rules of space-time
diagrams. One is to allow a signal to start from a singularity to add to
b “or (cti(xi)=❊ ∧ µ = µs)” and to iv something amounting for signals
emitted like the rules for collisions (iii) which is not given since it depends
on the scheme and for the last scheme of the singularity rules.

7

In case of non-isolated singularities, the fist two schemes remain possible
while the two last ones would make it necessary to define signals with a
dimension (which might be not an integer since the accumulation set can
be a Cantor set).

Accumulations of second (or more) order can be considered, as long as
all the singularities are isolated. In the last case, more distinction could be
made according to the level of singularity. As long as finitely many levels
are considered or distinguished, the description remains finite.

2.2. Shrinking and space and time bounding

All the constructions work in the following way: starting from a SM, new
meta-signals and rules are added in order to generate another SM that
works identically with original meta-signals but the new ones provide an
extra layer with some kind of meta instructions. For a computation to be
altered, extra signals have to be added to the initial configuration.

2.2.1. Freezing and unfreezing.

A new meta-signal, toggle, with a speed strictly greater than any present
speed, say s0 is added. If one instance of toggle is set on the left, and is
re-generated by every collision, then a succession of toggle (signals) crosses
the entire computation. It is the freezing signal. Freezing is done in the
following way: each time it meet some signal µ, it replaces it by some frozen
counterpart Fµ. All these new frozen meta-signals have the same speed, say
f0 (which should be less that s0 to ensure that they are above the freezing
line on the space-time diagram). It might happen that the freezing signal
passes exactly on a collision, say ρ. Then the collision is frozen too, i.e. it is
replaced by a frozen signal amounting for it, Fρ. The signals resulting from
the collision are generated when the collision is unfrozen.

The unfreezing scheme is the same, in reverse: signals and collisions replace
their frozen counterparts at the passing of another toggle signal.

This scheme is illustrated on Fig. 1. In all the figures, time is elapsing
upwards. On the left, one computation is showed unaltered but the intended
trace of toggle is indicated with dotted lines. On the right, the computation
is frozen, the frozen signals (the F.) are left to move for some time and then
they are unfrozen by a second toggle. Signal are shifted on one side, they
could be shifted on the other side by symmetry, or shifted anywhere (as
long as it is in the future) by moving the toggling signals and changing the
inner slope.

8

start of the

computation

rest of the

computation

(a) Regular evolution.

start of the

computation

rest of the

computation

Tran
sla

tio
n

tog
gle

tog
gle

(b) Frozen, translated and unfrozen.

Fig. 1. Freezing principle.

The algorithm to modify a SM is given on Fig. 2 where object oriented
notations are used. Each time new identities are created, renaming is used
if necessary. There is nothing particular about it and every modification
works on the same pattern.

Input:

M : signal machine
β: real number { speed of the toggle }
θ: real number { speed of frozen signals }

Assert: (Smax < β) ∧ (θ < β)
Do:

{ Create the toggle }
1: toggle ← M .add new meta-signal of speed(β)
{ For the meta-signals }

2: for each µ original meta-signal from M do

3: Fµ ← M .add new meta-signal of speed(θ)
4: M .add rule({ toggle, µ } → { toggle, Fµ })
5: M .add rule({ toggle, Fµ } → { toggle, µ })

6: end for

{ For the rules }
7: for each ρ =ρ− → ρ+ original rule from M do

8: Fρ ← M .add new meta-signal of speed(θ)
9: M .add rule({ toggle } ∪ ρ− → { toggle, Fρ })

10: M .add rule({ toggle, Fρ } → { toggle } ∪ ρ+)
11: end for

Output: toggle: meta-signal { the freezing/unfreezing one }
Side effect: New signals and rules added to M

Fig. 2. Algorithm to add the freezing capability.

2.2.2. Scaling parallel signals and any computation.

When signals are parallel, they remain so and do not interact, their struc-
ture is quite loose. So that a group of parallel signals can be manipulated
quite easily as long as they remain parallel they remain synchronized. They
just have to be unfrozen with the same slope.

9

Using a Thales based construction, or prismatic if thought of as light
beams, it is easy to scale parallel signals as depicted on Fig. 3(a). The idea is
to change the direction twice to be scaled and recover the original direction.
The speed of the signals crossing the triangle is carefully selected in order
to insure the wanted ratio.

(a) Scaling parallel signals.

start of the

computation

Contraction

rest of the

computation

(b) Freeze, Scale and unfreeze.

Fig. 3. Scaling.

This construction can be set inside the freezing/unfreezing construction.
This leads to the scheme of Fig. 3(b). The specially added signal for the
structure are only a part of the ones in the next subsection. The algorithms
to modify SM are so plain that they are not presented anymore.

2.2.3. Iterating forever.

The idea is to iterate ad infinitum above construction. More signals have
to be added in order to restart the freeze, scale down and unfreeze process
on and on. The structure and some basic properties are presented before
the embedding of computations.

The structure is presented on Fig. 4. The collision rules are not given
because they can be read directly from the figure; for example

{toggleUnfr, axis} → {boundRi, axis, toggle} .
The dashed axis signals are part of the construction, while the dotted lines
do not correspond to any signal and are only there to delimit some regions.
Signal axis is dashed because it does not delimit any region.

The toggleUnfr and toggleFree signals are used to start the freezing and
unfreezing toggle. The scale signals are used both to change the direction of
parallel signals (and achieve scaling down the embedded configuration) and
also to start boundRi. The signals boundLe and boundRi are used to bound
the potential room used by the embedded computation when active. The

10

a
x
is

a
x
is

togg
le

bo
un

dR
i

to
gg

le
U
n
fr

to
g
g
le
F
re

e

togg
le

sc
al
e

boundLe

bo
un

dR
i

togg
leto

g
g
le
F
re

e
togg

le

boundLe

to
gg

le
U
n
fr

togg
le

sc
al
e

bo
un

dR
i

A1

F1

F′
1

A2

F2

F′

2

A3

F3

Meta-signal Speed

boundLe −ν0

boundRi ν0

scale 8

9
ν0

toggle 4ν0

toggleUnfr 1

2
ν0

toggleFree 1

5
ν0

axis 0

Fig. 4. iterated scaling.

initial position of axis is at one third of the distance between the four on
the left and boundRi.

The construction works because the speed parameter ν0 used to compute
the various speeds is equal to the maximum absolute value of the speeds in
the original SM. The speeds given on Fig. 4 are computed such that:
– at each iteration, the structure is scaled by half; and
– the length of the unfreezing toggle signal is one fourth of the preceding

freezing one.
The structure is twice as small and twice as fast each time but the initial
computation is scaled by one fourth. Relatively to the structure the com-
putation is two times faster each time. This is wanted because not only
should the structure collapse in finite time, but meanwhile the embedded
computation should have infinite time ahead of it. This is to be understood
considering the regions.

The Ai regions (on Fig. 4) are the ones where the embedded computation
is active. The first one is triangular while all the other ones are trapezoidal.
The other two regions are triangular. The Fi regions are the ones where
the embedded computation is frozen and signals follow the direction of the
dotted line. The F′

i
regions are the ones where the embedded computation

11

is also frozen but signals follow the direction of toggleUnfr. The frontiers
between Ai and Fi (as well as F′

i
and Ai+1) are toggle signals thus the

correct freeze (and unfreeze). The frontiers between Fi and F′
i

are scale
signals which correspond to a change of direction of frozen signals.

On the frozen regions Fi, all frozen signals have to be parallel to the
dotted line in order that the lower toggle is “mapped bijectively” onto scale.
So that their speed is −8

5
ν0. On F′

i
all frozen signals have to be parallel to

the scaleLo signal in order that scale is “mapped bijectively” onto the upper
toggle. So that their speed is 1

2
ν0 (toggleUnfr).

The embedded configuration is scaled by one fourth but the piece is only
one half in size of the previous one. Each time the duration, relatively to the
original computation, is halved by 2 (for the structure size) but multiplied
by 4 for the scale. Altogether, the ratio is 2. So that each time, the elapsing
time for the original computation is doubled. This ensures that the original
computation is entirely embedded, i.e. has infinite time ahead of it.

Figure 5 shows a simple space-time diagram that is growing on both side
on the left and its embedded version on the right. The active part is where
the lattice is visible, otherwise it is frozen, shift and scaled.

The location of the singularity can be computed easily as the intersection
of two lines (but also as a geometrical sum) and is rational as long as it is
stated with rational positions.

(a) Unaltered (b) Shrunk

Fig. 5. Iterated scaling example.

The shrinking structure serves as a black hole. The configuration em-
bedded inside is trapped. In the following sections, small modifications of
already modified SM show how to let some information leave.

12

3. Discrete computations

Definition 5 A Turing machine (TM) is defined by (Q, qi, Γ, ^, #, δ) where
Q is a finite set of states, qi is the initial state, Γ is a finite set of symbols,
^, tape head, and #, blank, are two distinguished symbols, and δ : Q× Γ→
Q× Γ× {←,→} is the transition function.

A TM-configuration is defined by (q, w, i) such that q is a state, w is a
finite sequence of symbols –or word over Γ– and i is a natural number. The
automaton is in state q, w (completed by #’s) is written on the tape and
the head is over the ith cell of the tape. The TM is self-delimiting when
there is only one ^ on the tape which is written on the first cell, and there
is nothing but # right of the first #. If it is not the case, the TM is in an
illegal configuration.

The next configuration is defined by the transition function as follows. If
δ(q, wi) = (r, a,→) then the next configuration is defined by (r, w′, i + 1)
where w′ is obtained from w by replacing the ith symbol by a. If δ(q, wi) =
(r, a,←) then, if i = 0 then the TM stops otherwise the next configuration
is defined by (r, w′, i− 1).

The TM computes in the following way: some input (without ^ and #)
is written on the tape preceded by ^ and followed by potentially infinitely
many #. The result of the computation, if any, is what is written on the
tape (^ and all # are discarded) when the TM stops.

The TM halts normally when the head tries to leave the tape. For example,
the machine defined on Fig. 6(b), computes on Fig. 6(a) with the entry ab.
The output is bbab. If the computation does not halt or enters an illegal
configuration, the output is undefined.

When a TM is used for a decision (yes/no output), the states are par-
titioned into accepting and refusing one. The answer is then given by the
state in which it halts.

3.1. Turing-machine simulation

The simulation goes as follows: there are finitely many parallel signals en-
coding the content of the tape in-between which zigzags a signal mimicking
the movement of the head and encoding the state. This is depicted with an
example on Fig. 6(d).

The simulating SM is defined by the following meta-signals:
– one symbol signals for each value in Γ, with null speed, to encode the cells

of the tape;

13

^

qf

b b a b #

^

qf

b b a b #

^

qf

b b a b #

^

qf

b b a b #

^

q2

b b a # #

^

q1

b b # # #

^

q1

b a # # #

^

q1

a a # # #

^

qi

a b # # #

^

qi

a b # # #

^

qi

a b # # #

(a) Transitions of
the TM.

δ ^ a b #

qi qi,^,→ qi,a,→ q1,a,← -

q1 - q1,b,→ - q2,a,→
q2 - - - qf ,b,←

qf qf ,^,← qf ,a,← qf ,b,← -

(b) Transition table of the TM.

General case

δ(q, c) = (r,d,→)

d

c

−→r
−→q

d

c

−→r
←−q

δ(q, c) = (r,d,←)

d

c

←−r
−→q

d

c

←−r
←−q

Special rules

δ(q, #)= (r, d,→)δ(q, #)= (r, d,←)

d

#

−→r
−→q

←−
d

#

←−r
−→q

←−
−→

#

d

−→
−→q

−→r←−
d

−→
−→q

←−r←−# −→
#

e ∈ Γ

e

e

−→
#

←−
#

#

−→
#
−→
#

(c) Generation of Rules.

^

^

^

a

a

b

b

b

a

b

b

#

a

a

b

−→qi

−→qi

−→qi

←−q1

−→q1

−→q1

−→q2←−
#

−→
#

←−qf

←−
#

−→
#

←−qf

←−
#

−→
#
−→
#

#←−qf

←−qf

←−qf

(d) Simulating space-time
diagram.

Fig. 6. Example of a TM computation and its simulation by a SM.

– −→q (of speed 1) and ←−q (of speed −1) head signals for each state q, to
encode the state and the location and movement of the head;

– # (of null speed),
←−
(of speed −3),

−→
(of speed 3), and

−→
(of speed 1)

which are used to denote the end of the tape and manage the enlargement
of the tape.
The initial SM-configuration for a TM-computation on the entry w =

w1w2 . . . wk is generated by putting one −→qi -signal at position −1, one ^-
signal at position 0, one wi-signal at position i (1 ≤ i ≤ k), and one #-signal
at position k + 1,

A SM-configuration encodes a TM configuration if it corresponds to the
same sequence of symbols (up to extra #’s at the end) closed by a # with an
extra signal encoding the state and moving to meet the signal corresponding
to the position of the head.

14

The collisions rules ensure that the evolution of the SM corresponds to
the computation of the TM. When the head encounters a symbol signal, it
performs the update and move to its next position on the tape. When it
meets the right special signal, the configuration is automatically enlarge.

The generated collision rules are given on Fig. 6(c). When a rule is not
defined, the signal just cross unaffected. From top to bottom, they corre-
spond to the following cases. For each TM-transition, two collision rules are
generated, they correspond to the cases where the head would come from
the left or from the right. The special rules are made in order to ensure a
correct enlargement of the configuration in the case a head signal meet #,
the signal marking the last cell. In such a case, two things have to be done:
normally do the TM-transition (as if it were a # signal) and enlarge the con-
figuration. The latter means generate one # one position on the right if the
head goes left (left side rules). If the head goes right (right side rules), then
it should be taken care that the head meets something on the right (lower
row rules). This is illustrated in the middle of Fig. 6(d). In each first case, a←−
is sent on the left. It bounces on the symbol signal on the left (bottom

rule of Fig. 6(c)) and is replaced by
−→
, cross whatever signal present to get

where would be the head if it would have gone right. If indeed the head
went right, it is met and the TM-transition is done and the configuration
enlargement starts again. If it is not the case (left rules of Fig. 6(c)), then−→
is sent in order to meet

−→
and place the new #. Signals

←−
and

−→
are

three time faster in order to ensure that the meeting happens exactly where
the next symbol signal should have been.

At the end of the TM-computation simulation, the signal encoding the
state goes out on the left. The process is robust, the positions does not
have to be exact as long as the order of the signals is preserved. It can be
implemented with a rational SM.

3.2. Infinite Turing computation in bounded time

The construction described in Sect. 2 rightfully apply to the above con-
struction. It is considered that the singularity vanishes leaving no signal
(scheme ii of Def. 4). The infinite acceleration is granted. But the infor-
mation leaving the black hole is missing. The ESM has to undergo some
modifications. The first one is to generate the escaping signal, the second
to retrieve it.

The result of a deciding TM is given by the new state whenever it performs
a transition on ^ and sends the head on the left. These transitions are
clearly identified in the transition table of the TM. So there are also clearly

15

identified in the rules of the simulating ESM.
Once the shrinking mechanics have been added, the rules can be changed

so that to generate new signals amounting for accept and refuse. These
signals are unaffected by other signals including the structure ones. Their
speed is −1 so that they exit on the left.

The last thing is to add two signals orizonLe and orizonRi of speed (1
5
ν0

and −16
15

ν0) on the left and right of the shrinking structure. Their speeds
ensure that they remain at constant distance from the structure. The way
these signals are intended to work is displayed on Fig. 7

or
iz
on

L
e orizon

R
ishrunk

computation

Y

Accepts

ac
ce

p
t

or
iz
on

L
e orizon

R
ishrunk

computation

N

Refuses

re
fu

se

or
iz
on

L
e orizon

R
ishrunk

computation

Does not halt

Fig. 7. Encapsulating the shrinking structure to retrieve any leaving signal.

The desired effect is achieved. Recursively enumerable problems (Σ0
1) can

be decided and computation can carry on after the answer is known.

4. Analog computations

In this section, analog computations in the understanding of the Blum,
Shub and Smale model (Blum et al., 1989, 1998) (BSS for short) are consid-
ered. After briefly presenting the BSS model on R and its linear restriction,
results on its simulation in AGC are recalled before the shrinking construc-
tion is applied.

4.1. BSS Model

BSS machines (BM) operate like TM on unbounded arrays/tapes. Each
cell of the array hold a real number and all the computations are made
with exact precision. The BM has a head allowing to access a finite portion
of the tape called a window. It has finitely many states and to each one
corresponds an instruction among the following:
(i) compute a polynomial function of the window and place the result in

it;

16

(ii) test for the sign of a given cell in the window and branch accordingly;
(iii) shift the window one cell on the left or on the right; and
(iv) halt.

The window is shifted by one cell so that consecutive windows overlaps.
This is used to carry information around, since the BM has no real value
storage on its own.

A BSS machine is linear if instruction i is replaced by “compute a linear
function [. . .]”. Thus multiplication is allowed only if it is by a constant.

Like for TM, the input (resp. output) is the content of the array when
the BM is started (resp. halts). Comparing to TM, trying to leave the array
on the left is an error but halting states are provided. If BM are used for
decision, then there are distinct halting states for acceptance and refusal.

The simulation is not presented since details are not relevant to the fol-
lowing. Only the encoding of real values and two main results are given.

A real number is encoded as the distance between two signals. But as it
has already been guessed by the reader, time and distance are very relative
concepts. The distance between two scale signals is thus used as a scale. The
same scale is used for all the real numbers so that each one can be encoded
by a just pair base and value (or just nul for 0 since superposition of signals
is not allowed). This is illustrated for various values on Fig. 8.

scale scale

1

value base

−π

nul(0) base value

√
2

Fig. 8. Encoding: scale and values −π, 0 and
√

2.

Theorem 6 ((Durand-Lose, 2007)) AGC with finitely many signals and
no singularity is equivalent to the linear BSS model.

Simulations have been established in both directions. In the constructions
for SM simulation, the encoding pairs are manipulated so that they are
clearly identified and everything is scaled down whenever they might mess
up.

Theorem 7 ((Durand-Lose, 2008a)) With the Simple trace scheme (iii
of Def. 4) for singularities, AGC is able to carry out any multiplication
achieving the simulation of the whole BSS.

In this case AGC is strictly more powerful than classical BSS since square
root can be computed.

17

4.2. Infinite analog computations

The meaning of the shrinking structure on a BM simulation is considered
before entering into technical issues.

4.2.1. Interpretation.

Assuming that everything works well as expected, the ESM can be made
so that if the computation stops then some information leaves the singular-
ity. But what kind of information? Usually it is considered that only finitely
many values can be used ⋆ ⋆ ⋆ , not countably many, not continuum many!
Mechanisms as in Subsect. 3.2 can be used to send a few bits, but it is not
clear how to send four signals (to encode a real number) ensuring that they
are all at the same scale (i.e. are emitted from the same active region).

With the same construction as previously, using a universal BM, the BSS
halting problem, can be decided.
Instance HaltBSS

-
−→
X ,
−→
Y : vectors of real numbers

Question

Does the BM represented by
−→
X stop on entry

−→
Y ?

Let us consider another example. BSS machines can simulate any TM
and any recursive function. There is a BM with one entry that tries all
the rational numbers sequentially and stops if it is equal to the entry. Since
halting can be decided, the characteristic function of Q is computable (which
is not usually the case).

The general form of decision problems that can be solved is of the form

∃n ∈ N, φ(n,
−→
X) where φ is decision BM that stops for all entries. This

definition is the same as the one for classical recursion except that total
recursive predicate is replaced by total BSS predicate. The quantification is
on N (that can encode Q or many other countable sets) but not on R. This
does not correspond to the first and second level of an analytical hierarchy
but an arithmetical one. It corresponds to BCSS-Σ1 in Ziegler (2007). Please
note that this is only a lower bound on the computing capability.

If one wants the analog output if the computation stops and just the infor-
mation that is does not stop otherwise, it uses a singularity to know whether
the computation stops and if it is the case, then it starts the computation
normally to get the result in finite time.

⋆ ⋆ ⋆For example think about the so-called blue-shift effect and how it might be countered (Németi and
Dávid, 2006, Sub. 5.3.1).

18

If one would like to have the limit of say first cell of the array if any,
not only does the shrinking might turn the scale and the distance between
encoding signals to zero but moreover, if the BM-computation uses bigger
and bigger real numbers, its accumulated re-scaling also turns them to zero.
So that one would have to find how to generate the value in a way that does
not lead to zero divided by zero and neither prevents the shrinking.

This has been achieved to get internal multiplication out of linear BSS:
three of the four real numbers encoding signals are constant outside of the
singularity and the singularity happens at the correct position for the last
signal. A general scheme still have to be found.

4.2.2. Technical issues.

In each active region, the configuration only undergoes a regular scaling.
Up to scaling, the active regions perfectly assemble. The computation is
exact and the real values are preserved even though the encoding can be
split between various active regions (retrieving the value is not obvious).

The difference from the discrete case is that singularities are already used
for multiplication. These are handled with the simple trace scheme (iii of
Def. 4).

With the structure, both type of singularity should be distinguished par-
ticularly because the singularity for multiplication could happen exactly on
toggle so that with the simple trace scheme, the structure would be dam-
aged. In this case, one extra frozen meta-signal must exist to encode the
singularity as well as a toggle for the structure. The case iv –which is more
general– is used. Since the speed of toggle is greater than the any of the
other signal present for the multiplication, it gets straight into the singular-
ity without getting involved in any collision and thus distinguishes between
the singularities.

If there are infinitely many multiplications, then the singularity is of sec-
ond order. This is not a problem for the structure nor the definition of
space-time diagrams. Rule iv of Def. 3 only asks for infinitely many colli-
sions or signals which is also ensured by the accumulating multiplications.

5. Nested singularities

Previous Section ends with a second order singularity. It is possible to
built higher order singularities.

Section 2.2 explains how to shrink any space-time diagram that has no
singularity. It is quite easy to set signals to automatically start a singularity
(in the spirit of what is done in Durand-Lose (2006b)) and according to the

19

result to start another. There can be finitely or countably many isolated
singularities (there is a rational location in each open).

The interesting part is when singularities are nested inside another one.
In Sect. 4.2.2, it is explained how, with the conditional traces scheme (iv
of Def. 4), to handle sub-singularities. The second order structure works
because it is built on top of the previous one (after renaming the meta-
signals to avoid any conflict). So that the outer one can handle the inner
ones while the latter proceed on their own.

It is thus natural to reiterate the construction. This can be done safely
a finite number of times (more would yield an infinite number of signals).
Inside any structure, it is only possible to start a lesser level structure so
that the first one is the topmost and that the number of nested levels inside
is bounded by construction of the ESM.

For discrete computations, in the setting presented in Subsect. 3.2, singu-
larities are only used to decide and leave no trace (ii of Def. 4). But since a
singularity could happen on a toggle of a higher level structure, for the same
reason as before, the conditional traces scheme has to be used. For analog
computations, this scheme is already used. It is thus the natural scheme to
use in both cases.

In the discrete case, like for the SAD computers of Hogarth (1994, 2004),
each order brings the capability to decide an extra level of the arithmetical
hierarchy by deciding an extra alternating quantifier (on N). As shown, first
order decides Σ0

1. If nth order singularity allow to decided Σ0
n, then it can

be used as oracles inside the top level of a n + 1th order singularity.
In the analog case, each level of singularity identically allows to decide an

extra alternation of quantifiers (on N) and to climb the BSS arithmetical
hierarchy. This is not a quantification on R, this is not an algebraic hierarchy.

6. Conclusion

Abstract geometrical computation provides a setting where Black hole-like
computation can be implemented: a finite portion is infinitely accelerated
while a computation can continue outside and get a finite insight on what
happens inside. For SAD computers, the (nested) black holes have to be
found while in AGC the computation construct them (signals are the “fab-
ric” of space and time) but the maximum level of nesting is limited by the
construction of the ESM.

In our constructions, there are two levels of space-time: one absolute of the
SM and one due to the embedding inside a shrinking structure; singularities
are created by the fabric of signals. The following have been proved.

20

Theorem 8 With proper handling of accumulation, for any level of the
arithmetic hierarchy, a rational ESM can be built to decide it and for any
level of the BSS arithmetic hierarchy, an ESM can be built to decide it.

These are just decisions, but they can be used as sub-computations in any
computation.

In the discrete case, the ESM and space-time-diagrams remain rational
(irrational coordinate can only be generated as singularity location, but, by
construction, the singularities built happen only at rational position).

A general construction that would allow all orders with the same ESM
is still lacking. One important achievement would be to provide a system
for transfinite order singularity together with the possibility to nest inside
recursive computations. Considering spaces with more dimensions, could
help getting hyper-arithmetic (Bournez, 1999a,b). But our scheme is only
in one dimension, signals with dimension 1 or more could be used to shrunk
in such spaces.

Comparing to infinite time Turing machine (Hamkins and Lewis, 2000;
Hamkins, 2002, 2007), the content of the tape is lost since it all accumulates
in one point. So a way to preserve the resulting tape and a limit mechanism
still have to be found to relate to infinite time Turing machines and recur-
sive analysis (Weihrauch, 2000). The same problem arise with the analog
counterpart; providing limits would link to the hierarchy of Chadzelek and
Hotz (1999).

References

Lenore Blum, Michael Shub, and Steve Smale. On a theory of computa-
tion and complexity over the real numbers: NP-completeness, recursive
functions and universal machines. Bull. Amer. Math. Soc., 21(1):1–46,
1989.

Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity
and real computation. Springer, New York, 1998.

Olivier Bournez. Achilles and the Tortoise climbing up the hyper-
arithmetical hierarchy. Theoret. Comp. Sci., 210(1):21–71, 1999a.

Olivier Bournez. Some bounds on the computational power of piecewise
constant derivative systems. Theory Comput. Syst., 32(1):35–67, 1999b.

Olivier Bournez and Emmanuel Hainry. On the computational capabilities
of several models. In Jérôme Durand-Lose and Maurice Margenstern, ed-
itors, Machines, Computations, and Universality, MCU ’07, volume 4664
of LNCS, pages 12–23. Springer, 2007.

21

Thomas Chadzelek and Günter Hotz. Analytic machines. Theoret. Comp.
Sci., 219(1-2):151–167, 1999.

B. Jack Copeland. Hypercomputation. Minds & Machines, 12(4):461–502,
2002.

Jérôme Durand-Lose. Abstract geometrical computation 1: embedding
black hole computations with rational numbers. Fund. Inf., 74(4):491–
510, 2006a.

Jérôme Durand-Lose. Forcasting black holes in abstract geometrical compu-
tation is highly unpredictable. In J.-Y. Cai, S. B. Cooper, and A. Li, edi-
tors, Theory and Appliacations of Models of Computations (TAMC ’06),
number 3959 in LNCS, pages 644–653. Springer, 2006b.

Jérôme Durand-Lose. Abstract geometrical computation and the linear
Blum, Shub and Smale model. In S.B. Cooper, B. Löwe, and A. Sorbi,
editors, Computation and Logic in the Real World, 3rd Conf. Computabil-
ity in Europe (CiE ’07), number 4497 in LNCS, pages 238–247. Springer,
2007.

Jérôme Durand-Lose. Abstract geometrical computation with accumula-
tions: beyond the Blum, Shub and Smale model. In Arnold Beckmann,
Costas Dimitracopoulos, and Benedikt Löwe, editors, Logic adn Theory
of Algorithms, CiE 2008 (abstracts and extended abstracts of unpublished
papers), pages 107–116. University of Athens, 2008a.

Jérôme Durand-Lose. The signal point of view: from cellular au-
tomata to signal machines. In Bruno Durand, editor, Journées
Automates cellulaires (JAC ’08), pages 238–249, 2008b. URL
http://www.lif.univ-mrs.fr/jac/.

Gábor Etesi and Istvan Németi. Non-Turing computations via Malament-
Hogarth space-times. Int. J. Theor. Phys., 41(2):341–370, 2002. gr-
qc/0104023.

Joel David Hamkins. Infinite time Turing machines: supertask computation.
Minds & Machines, 12(4):521–539, 2002. arXiv:math.LO/0212047.

Joel David Hamkins. A survey of infinite time Turing machines. In
J. Durand-Lose and M. Margenstern, editors, Machines, Computations
and Universality (MCA ’07), number 4664 in LNCS, pages 62–71.
Springer, 2007.

Joel David Hamkins and Andy Lewis. Infinite time Turing machines. J.
Symb. Log., 65(2):567–604, 2000. arXiv:math.LO/9808093.

Mark L. Hogarth. Deciding arithmetic using SAD computers. Brit. J.
Philos. Sci., 55:681–691, 2004.

Mark L. Hogarth. Non-Turing computers and non-Turing computability. In
Biennial Meeting of the Philosophy of Science Association, pages 126–138,

22

1994.
Ulrich Huckenbeck. Euclidian geometry in terms of automata theory. The-

oret. Comp. Sci., 68(1):71–87, 1989.
Ulrich Huckenbeck. A result about the power of geometric oracle machines.

Theoret. Comp. Sci., 88(2):231–251, 1991.
G. Jacopini and G. Sontacchi. Reversible parallel computation: an evolving

space-model. Theoret. Comp. Sci., 73(1):1–46, 1990.
Akitoshi Kawamura. Type-2 computability and Moore’s recursive functions.

Electr. Notes Theor. Comput. Sci., 120:83–95, 2005.
Jerzy Mycka. Infinite limits and R-recursive functions. Acta Cybern., 16

(1):83–91, 2003a.
Jerzy Mycka. µ-recursion and infinite limits. Theoret. Comp. Sci., 302(1-3):

123–133, 2003b.
Jerzy Mycka. Analog computation beyond the Turing limit. Appl. Math.

Comput., 178(1):103–117, 2006.
Jerzy Mycka and José Félix Costa. A new conceptual framework for analog

computation. Theoret. Comp. Sci., 374(1-3):277–290, 2007.
István Németi and Hajnal Andréka. Can general relativistic computers

break the Turing barrier? In Arnold Beckmann, Ulrich Berger, Benedikt
Löwe, and John V. Tucker, editors, Logical Approaches to Computational
Barriers, 2nd Conf. on Computability in Europe, CiE ’06, volume 3988
of LNCS, pages 398–412. Springer, 2006.

István Németi and Gyula Dávid. Relativistic computers and the Turing
barrier. Appl. Math. Comput., 178(1):118–142, 2006.

Klaus Weihrauch. Introduction to computable analysis. Texts in Theoretical
computer science. Springer, Berlin, 2000.

Philip D. Welch. The extentent of computation in malament-hogarth space-
time. Brit. J. Philos. Sci., 2006. to appear.

Martin Ziegler. (Short) Survey of real hypercomputation. In S. Barry
Cooper, Benedikt Löwe, and Andrea Sorbi, editors, Computation and
Logic in the Real World, 3rd Conf. Computability in Europe, CiE ’07,
volume 4497 of LNCS, pages 809–824. Springer, 2007.

23

