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Jérôme Durand-Lose∗

November 7, 2007

Laboratoire d’Informatique Fondamentale d’Orléans,
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Glossary

Cellular automata

They are dynamical systems that are continuous, local, parallel, synchronous and space
and time uniform. Cellular automata are used to model phenomena where the space
can be regularly partitioned and where the same rules are used everywhere, for example:
flow dynamics or percolation in physics, systolic arrays in computer science, epidemics in
biology. . .

The configurations are infinite arrays of cells. Each cell has a state chosen inside a
finite set. The dynamics is given by replacing the state of each cell according to it and
the states of the cells at a bounded distance. Since there are finitely many neighboring
cells, there are finitely many state patterns / inputs. The mapping to the new state is

∗http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose, Jerome.Durand-Lose@univ-orleans.fr

1



called the local function. The same local function is used for all the cells. They are all
updated simultaneously.

Computational universality

Computability is defined by Turing machine, µ-recursive functions or λ-calculus. All
these approaches (and many more) end up defining the same set of functions over N (or
on words, i.e. finite sequences over a finite alphabet): the computable functions. They
defined, according to the Church-Turing thesis, what can be computed by any reasonable
device.

A machine is computation universal if it is able to compute any computable function
(indicated as a part of the entry). This corresponds also to the common approach of com-
puter, the hardware is universal and the program to be executed is stored in main memory
(like the data to process) and is part of the input as far as the hardware / operating system
is concerned.

Intrinsic universality

It is the capability to simulate any machine in a class of machine. If one think of Turing
machines or an equivalent model of computation, this folds back to the classical computa-
tional universality. The interest of this notion lays with machines that are not equivalent
to Turing machines. This is the case of cellular automata: they update infinite configu-
rations, there are uncountably many possible configurations thus they cannot be encoded
in a countable set, say N.

An intrinsically universal CA “represents” all the CA since it can exhibit any phe-
nomenon any other one can.

1 Definition

Cellular automata (CA) and the subject are briefly defined before two kinds of universality
are considered: computational universality and intrinsic universality. A more involving
section on advanced topics ends this chapter.

Computational universality deals with the capability to carry out any computation as
defined by Turing machines (in computability Theory) while intrinsic universality deals
with the capability to simulate any other machine of the same class (here cellular au-
tomata). This distinction is fundamental here because while computational universality
refers to finite inputs and relates to our understanding of computing with computers,
intrinsic universality encompasses infinite configurations and relates to our understand-
ing of the physical world. These universalities are presented as simply as possible and
an example of universal CA is presented in each case. The last section is devoted to
the history and advanced topics such as various definitions of simulation between CA,
restriction to reversible CA and different underlying lattices.
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2 Introduction

A cellular automaton is a discrete dynamical system composed of regularly displayed cells
which satisfies the following properties:

1. local finiteness : the set of states available for any cell is finite and there is finitely
many cells in any bounded region of space;

2. locality of computation: the next state of a cell only depends on the cells around it.
There is no global data nor unbounded effect;

3. uniformity in both space and time: the dynamics of the cells are identical (space)
and never change (time);

4. parallelism: all cells are updated at each iteration; and
5. synchrony : all cells are iterated at the same instant.

Local finiteness and locality of computation ensure that the next state of any cell can
be computed with finite information. This and uniformity ensure that a finite description
exists. Parallelism and synchrony ensure that the system is deterministic.

Locality of computation also means that a finite part of a configuration can be isolated
in order to see how its central part evolves. It also means that the system is continuous
according to the product topology [Hedlund, 1969, Richardson, 1972]. Uniformity also
means that the date is not relevant and that if, starting from some local pattern, a
phenomenon appends, when the same pattern appears again, the same phenomenon
appends, whatever the iteration and location.

Universality. Being universal is somehow to represent all, to be capable to achieve
anything possible. This notion is twofold: on the one hand it can be absolute, not related
to anything in particular, and on the other hand, it can be relative to a specific domain.
In the case of cellular automata, these two cases are: computational universality and
intrinsic universality.

The first one deals with the capability to compute any computable function and relates
to simulating Turing machines. Computability Theory and the Church-Turing thesis tell
that the set of computable functions does not rely on one specific computing system. On
the many textbooks on the subject, [Sipser, 1997, Part 2] is among the best ones for a
computer scientist approach.

The second one deals with the capability to simulate any other CA starting from
any initial configuration. The distinction is real because since CA do not halt, the
notion of the result of a computation is quite meaningless and because CA handle infinite
configurations. Even if Turing machines with infinite entries are considered, they only
update a limited part of the tape in finite time while CA update the whole (infinite)
configuration at each iteration! Since there are computation universal CA in dimension
one and simulation is expected to preserve this property, all intrinsically universal CA
are also computation universal.

For more information on cellular automata and universality, the reader might be inter-
ested in the following surveys and books: [Kari, 2005], [Wolfram, 2002], [Ilachinski, 2001],
[Čulik II et al., 1990], [Gutowitz, 1991] and [Toffoli and Margolus, 1987].
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Outline of this chapter

Section 3 deals with computational universality and Section 4 deals with intrinsic univer-
sality. In each of these sections, definition and results as well as the construction of an
example of a universal CA are provided.

Section 5 starts with some history on the subject and then presents advanced and more
involving results on existing definitions of simulations between CA, results on the restric-
tion to the reversible CA and on variations on different underlying lattices. Section 6
presents some insight on future researches.

Formal definition of a cellular automaton

A configuration is a made of cells regularly displayed on Zd; d is called the dimension.
Each cell is in a state chosen among a finite set of state Q. A configuration is then an
element of the set:

C = QZd

which is referred to as the set of configuration. The computation is local, each cell evolves
according to the states of the cells whose coordinates differ by at most r (radius) on any
coordinate. The local evolution is given by a local transition function f that maps the
states of the cell and the neighboring ones to the new state of the cell. The global transition
function, G, maps configurations into configurations; each state is replaced by the image
of the states of the cell and the neighboring ones by the local transition function. The
subset of Zd, N = [−r, r℄d is called the (complete) neighborhood. It represents the relative
positions of neighboring cells. The neighborhood is not necessarily of this form, in fact
it can be any finite subset of Zd. The local and global functions are defined by:

f G
QN → Q C → C

c 7→ G(c) s.t. ∀x ∈ Zd, (G(c))x = f (c|x+N )
(1)

where c|x+N denotes the restriction of the configuration c to the positions in x+N .

Definition 1 A cellular automaton (CA) is designed by: (d, Q, r, f). When the (finite)
neighborhood does not correspond to some [−r, r℄d, this is emphasized by usingN instead
of r. The space-time diagram, D : Zd×N→ Q, or orbit of a CA is just the infinite sequence
of the configurations as the CA is iterated.

Examples of space-time diagrams are provided on figures 2 (left) and 4. For 1-
dimensional CA, the space-time diagram can be seen as a tiling of the plane. In dimension
2, each configuration can be considered as a tiling. This approach leads to many unde-
cidability results. It is developed in the Chapter The Tiling Problem and Undecidability
is Cellular Automata.

Definition 2 If any, the quiescent state of a CA, q#, is a distinguished state such that the
uniform configuration q# is map onto itself (which is equivalent to f(q#, q#, . . . q#) = q#).
A configuration is finite if only finitely many cells are not in the quiescent state.

4



3 Computational Universality

In this section, cellular automaton are proved to be able to perform any computation in
the acceptation of computability Theory and thus that there exist computation universal
CA. Only useful concepts and definitions are presented.

The computable functions can be defined by µ-recursion, λ-calculus, Turing machines
or any other equivalent model. The Church-Turing thesis asserts that one gets the same
functions up to some encoding / representation with any reasonable mean of computation.
This is important since, for example, recursive functions address functions over natural
integers while Turing machines deal with computations over words (finite sequences over
a finite set of symbols).A model of computation is computation universal if any com-
putable function can be computed by an instance /machine of the model. A machine is
computation universal if it can compute any computable function as long as it is pro-
vided with the description of the function to compute along with the corresponding input.
Computability Theory guaranties that such a universal machine exists.

The typical techniques to prove that a model of computation, here cellular automata,
is computation universal are by:

induction like recursion Theory. This would be proving that some functions over integer
(e.g. n 7→ n+1) are computable and then that the functions computable in the
model are closed under some operations (e.g. composition);

simulation of a generic instance of a computation universal model of computation.
This would be to prove that any, say, Turing machine could be simulated by a
cellular automata; and

simulation of a computation universal instance of a computation universal model
of computation.

These approaches are very different. The first one relies on defining functions but
is not concerned by the way they are computed. The second one deals with effective
means of computation (allowing the implementation of algorithms and the measure of
complexity). The third one is the modern vision of the all-purposes computer: a laptop
can do anything from picture manipulation to music playing going through text edition
and programming. There is only one hardware and according to the need, one uses a
program or another. This is the duality of data and code in modern computers.

Generally, the second case is more simple to tackle. There are mainly two cases when
a specific universal machine is transformed:
• when the situation is so complex that using a specific machine with few instructions

becomes easier; and
• to get a computation universal CA with specific properties or qualities, typically as

few states as possible.
The latter is done by designing a special simulation with a good property and then
applying it to a particularly well chosen instance.

The term “computation universal” is not synonymous of “Turing equivalent” which
means that whatever computes the model can be computed by, say, a Turing machine.
In the case of cellular automata, this is meaningless for two reasons:
• the output is not defined since as a dynamical system, a CA never stops;
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• when considering infinite configurations, there is just no way to manipulate them
with Turing machines (uncountably many configurations for countably many words).

The first reason leads to a notion of simulation in an not-ending computation rather than
an input-output function definition approach. The second reason can be bypassed when
considering restrictions of configurations: finite or periodic. Another canonical thing is
to consider models of computation able to handle uncountably many different inputs. . .
like cellular automata. This idea leads to intrinsic universality presented in Sect. 4.

3.1 A computation universal cellular automaton

Here Turing machines and their executions are defined and a simulation by cellular au-
tomata is provided.

A Turing machine is a very simple device: a finite automaton that can read and
write on an unbounded memory (indexed by N). The memory is organized as an infinite
sequence of cells called the tape. Each cell has a value from a finite set of symbols (the
alphabet). Only a finite part of the tape is not empty at any step of the computation.
The automaton is equipped with a head that can read or write a single cell of the tape
and move the head one position forward of backward on the tape.

Definition 3 A Turing machine is defined by (Σ, #, Q, qi, δ), where
• Σ is a finite alphabet ;
• # ∈ Σ is a special symbol use to indicate empty part of the tape;
• Q is the set of states of the automaton;
• qi ∈ Q is the initial state and
• δ : Q× Σ→ Q× Σ× {←,→} is the transition function.

The transition function works as follows: in a state q, reading a symbol a, if δ(q, a) =
(r, b,→) then the new state is r, the symbol b is written instead of a and the head moves
one step on the right / forward.

Definition 4 A computation of a TM starts with the input written on the tape (com-
pleted by infinitely many #) and the automaton in state qi. The computation goes on as
defined by the transition function δ. The computation ends when the head tries to leave
the tape on the left. The result is what is written on the tape.

This is not the usual definition which involves an halting state, although it is correct.
This formalisation stresses that stopping is somehow an incident from the dynamical
system point of view. As far as cellular automata are concerned, they do not stop; an
operator might stop a CA when some condition is fulfilled but this is external to the CA.

The Turing machine considered as an example is very simple: starting on a word on
{a, b}, it replaces each a by a b and vice-versa. The only symbols on the tape are a, b
and #. There are only two states: qi and r. The transition function is given on the left
of Fig. 1.

This Turing machine is simulated by a CA of radius 1 (i.e. only cells at distance at
most 1 are taken into account for computing the next state of a cell). The set of states
of the CA is Σ ∪ Σ × Q, that is, a tape symbol alone or together with a state of the
TM. The CA has 9 states, the table of its local function has 729 (=93) entries! In the
table on the right of Fig. 1 only the cases where the central cell does not change its value
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δ a b #

qi qi, b, → qi, a, → r, #, ←

r r, a, ← r, b, ← r, #, ←

x y z f(x, y, z)

α qi, a β b

α qi, b β a

qi, a α β qi, α

qi, b α β qi, α

α qi, # β #

α β qi, # r, β

α r, β γ β

α β r, γ r, β

α, β, γ ∈ {a, b, #}

α qi, a β

b

Figure 1: Transition function of a Turing machine and the simulating CA.

are indicated. On the far right, the first transition rule is represented as it appears on
space-time diagrams: the bottom line represents the cell and its two closest neighbors and
on top the next state of the cell (at the next iteration). In all the space-time diagrams,
time is evolving upward.

The dynamics is presented on Figure 2. On the left the whole computation of the
Turing machine on the entry aab is given; the output of the function is bba as written
on the tape when the machine stops. On the right, the corresponding iterations of the
simulating CA are displayed. Since the CA works on a bi-infinite lattice, the configuration
is completed with # on the left. As mentioned, a CA never stops so that at some point
the computation has been carried out but the system goes on.

Stop!

Start!

b b a # # #

r

b b a # # #

r

b b a # # #

r

b b a # # #

r

b b a # # #

qi

b b b # # #

qi

b a b # # #

qi

a a b # # #

qi

Never stops!

. . . r,# # # # b b a # # . . .

. . . # r,# # # b b a # # . . .

. . . # # r,# # b b a # # . . .

. . . # # # r,# b b a # # . . .

. . . # # # # r,b b a # # . . .

. . . # # # # b r,b a # # . . .

. . . # # # # b b r,a # # . . .

. . . # # # # b b a qi,# # . . .

. . . # # # # b b qi,b # # . . .

. . . # # # # b qi,a b # # . . .

. . . # # # # qi,a a b # # . . .

Figure 2: Iterations of a Turing machine and of the simulating CA.

A “halting” condition has to be provided, especially when one remembers that the
halting of a Turing machine (the famous Halting problem) is not decidable. Usually,
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something very simple to test is chosen, for example that some state appears somewhere.
Here this would be the first time the closest #-cell on the left is not in state #.

This example can easily be extended to a general method to simulate any Turing ma-
chine or specifically a computation universal one. Starting from a computation universal
TM, a computation universal CA is generated.

3.2 Other ways to achieve computational universality

Among the various systems achieving computational universality that have been used to
prove computational universality of CA, a brief classification can be made.

Machines. (Turing machines, counter automata and random access machines) These
systems are very simple, an automaton together with a memory. In general, the whole
evolution / orbit of the Turing machine is encoded inside the space-time diagram of the
cellular automata like in the example. For counter automata [Minsky, 1967], there are
finitely many counters but they can hold any natural integer, any counter can be accessed
at any time. Random access machines are like counter automata but with infinitely many
register and an indirect access mode which allows to access any register. The random
access machines model is the closest to modern computer architecture, but to simulate it,
one has to consider indirect addressing and infinitely many register. Counter automata are
more simple to simulate: since there exists a computation universal 2-counter automaton,
only 6 instructions have to be implemented.

Boolean circuits. The idea is to encode Boolean logic and then to say that any value
can be encoded in binary and any function can then be computed with the binary en-
coding. For example, the transition function of a TM (resp. 2-counter automata) can be
encoded and the value of the tape (resp. the counters) stored in an infinite memories.
This is generally done by providing a way to encode bits, then logical gates and finally
wiring to connect them. It is usually done in dimension 2, since ensuring a correct wire
crossing is more complicated in dimension 1. A typical example of this is the computa-
tional universality of the Game of Life [Conway, 1970, Berlekamp et al., 1982]. This is
developed in the Chapter Gliders in Cellular Automata.

Rewriting systems. These systems work on words by removing some sub-word and
adding some other sub-word. Starting with a word encoding an entry, the system is
expected to stop with the output encoded in the final word. Here are some examples of
computation universal systems:
• type-0 grammar in Chomsky’s hierarchy: one may replace sub-words by others

according to rewriting rules; and
• tag-systems: a prefix of the word is removed and according to it and some rules, a

suffix is added.
The proof of the universality of the 2-states 3-neighbors 1-dimension CA referred as

the elementary cellular automaton 110 by Cook [Cook, 2004] is done with some tag-
system. The construction relies on an intermediate level of simulation that ensures signal
transmission and updating. It is too involving and lengthy to be presented here. Signals
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and particles / solitons ([Steiglitz et al., 1988] [Adamatzky, 2002]) are often used to carry
bits / information around.

3.3 Consequences of computational universality

To have computation universality provides two things. On the positive side:
• any computation can be carried out, so that if something has to be computed,

whether as a final result or to use in a broader scheme, it can be done;
• since any computation may take place, complex and interesting behaviours may

appear;
and on negative side: many questions one may ask about the system become undecidable.
The second point comes from the undecidability of the Halting problem (whether a given
computation of a TM halts). Here are a few examples of this –many more can be found in,
for example the Chapter The Tiling Problem and Undecidability is Cellular Automata–,
given a CA and a finite initial configuration:
• will some state ever appear?
• will the CA ever enter a stable configuration?
• will the configuration grow infinitely?
• will some given configuration be reached?

3.4 “Quality” of a computation universal Cellular Automata

Computability Theory is rather disappointing: one the one side what is computing and
computable becomes clear but on the other side it mostly provides negative results like
this and that are not computable. In this subsection slight differences on computabil-
ity / simulation are addressed as well as complexity (of computing) issues.

For Turing machines, the written part of the tape is always finite (it is completed by
infinitely many empty state #). The tape is potentially infinite, it can be extended as
much as needed, it is never infinite. For computing with a CA, it can be assumed that
only a finite part of the space is used for computing since otherwise it would take an
infinite time for states to interact (it takes l

2r
for cells at distance l to interact). There

is a definition of finiteness for CA (Def. 2): outside a finite part is it the quiescent state
q# (which plays the same role as #). When an infinite configuration (even it is periodic
after some point) is used to achieve computational universality, one talks about weak
computational universality ; more insights on the weakness notion on Turing machines
can be found in [Woods and Neary, 2007].

Another important criterion is the one of the efficiency of computation. For exam-
ple, the simulating a Turing machine by a 2-counter automaton suffers an exponential
slowdown so that one may not be interested in such a computing device or any device
where computational universality derives from a 2-counter automaton. For example, the
proof of the computational universality of rule 110 by Cook [Cook, 2004] has an exponen-
tial slowdown but Neary and Wood [Neary and Woods, 2006] proved that in fact that it
can be done with a polynomial slowdown. Polynomial slowdown is the classic simulation
mode between reasonable models of computation (and this one of the key to the definition
–and stability– of the complexity class P –polynomial time solvable problems).
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Another thing worth mentioning is that CA are inherently parallel, the universality
proofs more or less directly leads to the Turing machines which is the canonical sequential
model. Various approaches have been made to consider CA as a computing system on
its own, independently of any other model of computation, for example:
• iterative automaton where the input is given symbol by symbol to a distinguished

cell;
• as word recognizers with only one cell per symbol [Terrier, 1996] (this cannot be

computation universal because the memory is bounded);
• if finitely many cells are considered but they are all equipped with a stack, the any

computation can be made [Kutrib, 2001];
• a algorithmic on CA based on signals has been developed [Delorme and Mazoyer, 2002,

Mazoyer, 1996, Mazoyer and Terrier, 1999]; and
• Martin devised an intrinsically universal CA together S−m−n theorem for CA (as

computing devices over infinite configurations) to provide a acceptable programming
system point of view [Martin, 1994].

This directly links to the notion of universality developed in the next section.

4 Intrinsic Universality

4.1 Definition

Previous section deals with universality as the capability to perform any computation as
defined in computability Theory. This theory deals with numbers /words and there exist
only countably many configurations. But there are uncountably many configurations for
any CA (unless, of course, if there is only one state). It is worth inquiring about another
kind of universality that would take this into account and not involve any other model of
computation. (It can thus be used for any class of dynamical systems.) It is some kind
of inner-universality. The idea behind intrinsic universality is somehow the counterpart
of universality for a Turing machine: being able to simulate any other CA (of the same
dimension) on any (infinite) configuration.

Definition 5 A cellular automaton A simulates another CA B if there is an injective
(one-to-one) function, ι, from the configurations of B to the ones of A and an integer, τ ,
such that the following diagram commutes:

CB CA

CB CA

ι

ι
GB Gτ

A

A cellular automaton is intrinsically universal if it can simulate any other CA (of the
same dimension).

The injectivity ensures that B-configurations can be distinguished when mapped into
A-configurations. From this definition, it directly comes that:

∀n ∈ N, ι ◦ Gn
B = Gn.τ

A ◦ ι .
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In an infinite run, A generates one iteration of B every τ iterations. Since the composition
of injective functions is injective, the simulation relation is transitive. The definition is
illustrated by the construction of an example in the rest of this section.

Other definitions of simulation can be found in Subsection 5.2. In every case, a differ-
ent intrinsic universality is generated.

4.2 The way it usually works

It is assumed that the simulated CA has radius 1 and is 1-dimensional (how to deal with
higher dimension is explained at the end of this section). If it is not the case, it is easy
to simulate it by one of radius 1 (and then to use transitivity). Let A = (1, Q, r, f)
be such that the radius is greater than 1. The idea is to group cells r by r and define
B = (1, Qr, 1, fB) such that fB is:

∀(c1, c2, . . . cr), (cr+1, cr+2, . . . c2r), (c2r+1, c2r+2, . . . c3r) ∈ (Qr)3
,

fB ((c1, c2, . . . cr), (cr+1, cr+2, . . . c2r), (c2r+1, c2r+2, . . . c3r))
= (f(c1, c2, . . . c2r+1), f(c2, c3, . . . c2r+2), . . . f(cr, cr+1, . . . c3r)) .

The injection ι is the canonical injection where states are grouped r by r:

∀c ∈ C, ∀i ∈ Z, (ι(c))i = (cir, cir+1, . . . c(i+1)r−1) .

This simulation is just a rescaling of space. From now on, only radius 1 CA are
considered. The construction of an intrinsically universal CA uses two scales:
• meta-cells scale to manipulate the states and the transition function of the simulated

CA; and
• bit scale to implement the meta-cells.
A meta-cell gathers copies of the states of its two closest neighbors. Then it has to use

the transition function to compute the new state. The transition function is tabulated in
the form of a sequence of blocks (a, b, c, f(a, b, c)). (It could also have been be represented
by, e.g., a Boolean circuit with states binary encoded as in [Ollinger, 2002].)

Meta-cells scale

Each meta-cell holds one block / entry of the transition table. The entries are infinitely
repeating on both side and are endlessly shifting on the left so that in one period, the
block corresponding to the update eventually appears. When one period has passed a
new cycle starts. The architecture of meta-cells is presented on Fig. 3.

States (local + neighbors)

Part of the transition table

Starting index in the table

Figure 3: Meta-cell.
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In the upper part of Figure 4, a space-time diagram generated by some CA is given
as well as the transition function of the CA in terms of a relation inside the space-time
diagram between three states (at an iteration) and the state above (at the next iteration).
In the lower part of Figure 4, the simulation, at the meta-cell scale is presented. Each
meta-cell corresponds to the presentation in Fig. 3. The transition table is set inside the
initial configuration. The starting index is used by the meta-cell to detect the end of the
cycle.

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

1 0 1 1 1 1 0 0 1 1 0 1

1 1 1 0 0 1 0 1 1 1 1 1

0 1 1 0 1 1 1 0 1 0 1 1

1 0 1 1 0 1 1 1 1 1 0 1

1 1 0 1 1 0 1 0 1 1 1 0

1 1 1 0 1 1 1 1 0 1 1 1

0 1 1 1 0 1 0 1 1 0 1 1

1 0 1 1 1 1 1 0 1 1 0 1

1 1 0 1 0 1 1 1 0 1 1 0

1 1 1 1 1 0 1 1 1 0 1 1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

1

1 0 0

0

1 0 1

1

1 1 0

1

1 1 1

0

0 0 0

0

0 0 1

1

1 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

Figure 4: Iteration of a CA and simulation at meta-cell scale of the first iteration.
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As it can be seen on Fig. 4, on the upper part of each cell; at start (lowest row) there
are three copies of the state of the simulated cell then, copies are exchanged with the
neighbors (first simulating iteration). Then the transition table starts moving. As soon
as the entry is found in the table, the three states are replaced by three copies of the new
state. The meta-cell then waits for its index to appear again to start this cycle again.
The synchrony and uniformity of CA ensures that all meta-cells stay synchronized.

Bits scale

Since the encoding and simulation must work for any CA, it must be able to handle any
set of states. The set of states of any CA if finite but unbounded, thus it is impossible to
use a common set of states. A state a is thus binary encoded (denoted (a)2). This way
if the set of states is larger, then the meta-cell is larger, composed of more elementary
cells.

On Figure 5, a meta-cell is given and the layers named. The set of states on each layer
for elementary cells are also given. Some layers are added:
• structure: to delimit the different parts of the meta-cell,
• control: to drive the movement, copy and test of bits,
• left and right: to carry bits around (to exchange states and to shift the transition

table).
The left and right layers carry the bits very simply: unless noted the new value in left
(resp. right) is the one that on the left (resp. right) layer of the right (resp. left) cell
ensuring a left (resp. right) shift on the layer. When the simulation starts, s−1 and s1

are equal to s0 and (a, b, c) is equal to (a0, b0, c0).

s−1 s0 s1

a b c
d

a0 b0 c0

0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0

++∗
q0 − · · · −
− · · · − − · · · − − · · · −

− · · · − − · · · −

(s−1)2(s0)2(s1)2
(d)2(d)2(d)2
(c)2(b)2(a)2
(c0)2(b0)2(a0)2 index∈{0, 1}

rule-in∈{0, 1}
rule-out∈{0, 1}

state∈{0, 1}
right∈{0, 1}

left∈{0, 1}
control∈QU ∪ {−}

structure∈{∗,+,−}

Figure 5: Binary encoding of a meta-cell with elementary cells.

The meta-cell implementation works as follows: there is a single value in the control
layer. It moves forth and back on the entire meta-cell like a signal. It manages bits from
various layers and changes its state accordingly. The construction is only sketched; the
states mentioned below are in an intermediate level between meta-cells and elementary
cells. The universal CA is not detailed because although this is not complicated it would
be quite lengthy and not very informative.

Starting in state q0, a meta-cell first carries out the states exchange with the meta-cell
on the left (the meta-cell on the right takes care of the other exchange) bit by bit using
the left and right layers. In state q1, the transition table is shifted by one entry. In state
q2, it moves through the entire meta-cell and checks whether the state and rule-in layers
are identical. If the layers agree, the right transition is found and the state layer can be
updated (the bits are copied) then it enters q3 otherwise it restarts in q1. In state q3, the
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meta-cell has been updated; the transition table is still shifted until a full shift has been
done. This is indicated by identical rule-in and index layers. In this the case it enters q0

and the simulation of a new iteration starts.
Various technical things like delays are added to keep meta-cells synchronized. The

number of iterations needed to simulate an iteration is roughly speaking the length of a
cell multiplied by the length of the transition table:

log(|Q|).|Q|3 .

Higher dimension. It is treated exactly in the same way. One layer gathers the
information, another one deals with the transition function. The transition table shifting
is done on one dimension only. Extra dimensions can be used to accelerate the process
or to design circuitry for a more efficient encoding of the transition function.

Intrinsically universal CA are computation universal by composition (as long as the
definitions are robust enough). There is no notion of semi-weakly simulation since the
whole configuration has to be used to encode an infinite configuration.

5 Advanced topics

This section gathers a brief history of the subject and various results on specific ap-
proaches. It is more involving and targeted to a learned reader.

5.1 A bit of history

Since there is a lot of places where the history of CA is presented (as well as other
chapters of this encyclopedia, the reader might be interested in the following survey:
[Sarkar, 2000]), only the universality part is developed.

Cellular automaton were introduced in the 50’s by Ulam and von Neumann [Ulam, 1952]
to study self-reproduction [Neumann, 1966, Arbib, 1966, Burks, 1970]. Computational
universality was used just to prove that any pattern can be built. Universality was inves-
tigated and proved without any explicit distinction between computational and intrinsic
universality before [Banks, 1970].

The most famous CA is certainly Conway’s Game of Life [Conway, 1970] from the early
70’s. This 2-dimensional CA is both computation universal [Berlekamp et al., 1982] and
intrinsically universal [Durand and Róka, 1998].

Quest for small universal CA

There have been an ongoing search for more than four decades for universal CA as small
as possible. The interest is to know whether “small” CA are more simple and thus
can be handled or there is no gap in complexity. Table 1 sums up results in this quest.
Intrinsically universal CA are also computation universal but the converse is not true.

These results were achieved with various constructions. Some use quite different
definitions of CA for commodity (but there are indeed CA):
• as partitioned CA: [Morita, 1992b],
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Table 1: Historic bounds on computation and intrinsically universal CA.
Year Reference Dimension |N | |Q| Computation Intrinsic
1966 [Neumann, 1966] 2 5 29 ✖ ✖

1968 [Codd, 1968] 2 5 8 ✖ ✖

1970 [Banks, 1970] 2 9 2 ✖ ✖

1 3 18 ✖ ✖

1 5 2 ✖ ✖

1971 [Smith III, 1971] 2 7 7 ✖

1987 [Albert and Čulik II, 1987] 1 3 14 ✖ ✖

1990 [Lindgren and Nordahl, 1990] 1 3 7 ✖

2002 [Ollinger, 2002] 1 3 6 ✖ ✖

2004 [Cook, 2004] 1 3 2 ✖

2006 [Richard, 2006] 1 3 4 ✖ ✖

• as CA with Margolus’s neighborhood (or partitioning CA): [Toffoli and Margolus, 1987]
and [Margolus, 2002] (billiards) and [Cordero et al., 1992] (spin model in Physics).

Computing universality can also be defined by the computational complexity of the
sets of orbits of a CA as well as the reachability relation, relating to the Turing degrees
of undecidability [Sutner, 2005].

5.2 Defining simulation among CA (for intrinsic universality)

The definition used in Sect. 4 is not the only existing one. Many papers prove results
on simulation without providing a formalised definition of it, but by considering the
construction anyone would say that it is a simulation, in an empirical fashion. There is no
absolute definition commonly accepted and none contradicts the intuition of simulation.
In Table 1, no distinction on the simulation is made and most of the time the construction
fits more than one definition.

Most of the presented definitions can be amended in order to cover cases where not
all iterations are covered, say for example only the one out of 3. In the following, A =
(QA, rA, fA) and B = (QB, rB, fB) denote cellular automata of the same dimension d.

Embedding of Hertling

The term embedding is to be understood as simulation. It was introduced in order to
prove that CA that are not onto cannot be simulated by onto (and specially reversible)
ones of the same dimension.

Definition 6 (Embedding [Hertling, 1998]) A mapping µ : QZd

A → QZd

A is said to be
a morphism if and only if for any shift of Zd, σA, there exists a shift of Zd, σB, such that:
µ ◦ σA = σB ◦ µ.
A can be embedded in B if there are mapping µ : QZd

A → QZd

A and ν : QZd

A → QZd

A and
an integer k such that:

∀t ∈ N, Gt
A = ν ◦ Gkt

B ◦ µ . (2)

The embedding is strong if µ is a continuous morphism, weak if it is a just a morphism
and set-theoretic otherwise (i.e. not a morphism).
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The interest of the morphism is to enforce the respect of the structure of Zd. Hertling
proved, using the Axiom of Choice (hence the qualification) that any CA can be set-
theoretically embedded in the one dimensional CA that does nothing but shift the value
on the left. This is of course highly nonconstructive and contradict the intuition of what
simulation could be.

Comparing to Def. 5, using ν to come back allows to have some garbage produced and
discarded by ν.

Grouping relation of Mazoyer and Rappaport

This definition of a grouping relation was introduced to focus on the importance of space
and time structure. It allows to consider iterations once in a while, periodically.

Definition 7 (Grouping [Mazoyer and Rapaport, 1998, Mazoyer and Rapaport, 1999])
A cellular automaton A is a sub-automaton of B (denoted A ⊆ B) if there is an injection
φ : QA → QB such that:

φ ◦ GA = GB ◦ φ ,

where φ is the component-wise extension of φ to A-configurations. The nth grouping
of an automaton is defined by grouping the cells n by n and consider only every nth
iteration, An = (d, Qn

A, rA, f
(n)
A ). The function GAn is the nth iterate of GA. Since the

cells are grouped by n, the radius is not changed. The grouping relation is defined by:

A ≤groupping B ⇐⇒ ∃n, m ∈ N, 0 < n, m, An ⊆ Bm .

This is a stronger form of simulation where the space-time diagrams should be in-
cluded; up to some rescaling on both side, all the space-time diagrams of A should be
exactly (up to an injection) generated. There is no shift involved and the space-time ratio
should be preserved.

This relation is a pre-order. The authors proved that there is a bottom equivalence
class for CA: the CA with only one state (and one configuration). The nilpotent ones
(after a fixed number of iterations any configuration is turned into the same one: only
quiescent state) are just above. They also proved that there is an unbounded infinite
ascending chain, so that there is no top and thus no intrinsically universal CA for this
definition.

Rescaling of Ollinger

The previous definition is on the one hand interesting because it relays on space-time
diagrams and a natural operation, grouping, over them, but on the other hand, there
is no intrinsically universal CA, which have been provided for other definition. The
following definition is a weakening of the first one that allows intrinsically universal CA.

Definition 8 (Rescaling [Ollinger, 2001]) For any k in Zd, let σk denotes the shift
by k over configurations. For any m in Zd, let om denotes the packing of cells into packs of
size m; it is a mapping from QZd

into (Qm)Zd

(o−m is the inverse, the unpacking function).
For n, k ∈ Zd and n ∈ N, 0<n, the <m, n, k>-rescaling of A is the cellular automaton

A<m,n,k> such that:
GA<m,n,k> = σk ◦ om ◦ Gn

A ◦ o−m .
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A cellular automaton A is simulated by B if there exists a rescaling of A which is a
sub-automaton of a rescaling of B. (The sub-automaton relation is defined as in Def. 7.)

This definition allows to include a shift and to treat independently the size of the
blocks of cells and the iteration step. Comparing to the grouping definition (Def. 7),
this allows to have enough time to locally mix information and compute the next state.
Intrinsically universal CA exist (also with a meta-cell approach) and intrinsic univer-
sality of a 1-d CA is undecidable [Ollinger, 2003]. This result is still true on captive
CA (the transition function may only output a state that is in the input) even though
as the number of states grows larger, almost all captive CA is intrinsically universal
[Theyssier, 2004, Theyssier, 2005].

5.3 Reversible case

The reversible subset of cellular automaton (CA such that the global function is in-
vertible, its inverse is then the one of a CA) also contains computation universal CA
[Morita and Harao, 1989, Morita, 1992b, Dubacq, 1995]. This topic is developed in the
Chapter Reversible Cellular Automata.

It also contains intrinsically universal CA among reversible CA [Durand-Lose, 1995,
Durand-Lose, 1997, Durand-Lose, 2002]. This means able to simulate any other reversible
CA (of the same dimension) and not just any CA. It is a strong embedding (Def. 6) and
does not contradict Hertling’s results [Hertling, 1998] that non surjective CA cannot be
simulated by reversible one.

Morita proved the any CA can be simulated over finite configurations by a reversible
in [Morita, 1992a, Morita, 1995] but garbage is produced in order to ensure reversibility
and the simulation time varies as the simulation goes on.

There is also a particular result [Durand-Lose, 2000] including the simulation of the
non-reversible CA, but the simulation goes by a different definition. It is centered (like
the usual topology) and the simulated iterated configurations are placed on parabolas.
This twisting of space yields an infinite space to store the information for reversibility. It
is not possible to recover a simulated iteration from finitely many simulating ones! The
whole simulating space-time diagram is needed.

5.4 Variations on CA

Changing the underlying space

Other 2-dimensional spaces have been considered. There exist reversible computation
universal CA both on triangular lattices [Imai and Morita, 1998] and hexagonal lattice
[Morita et al., 1998].

Róka studied simulation between CA on different lattices in very general way: lattices
are Cayley graph (it corresponds to a group, the arrows corresponds to generators). She
proved the existence of simulations in the case of the existence of an homomorphism with a
finite kernel and that all bi-dimensional planar structure are equivalent to Z2 [Róka, 1999].

There exist computation universal CA [Herrmann and Margenstern, 2003] and intrin-
sically universal CA [Margenstern, 2006] on the hyperbolic plane. This is more developed
in the Chapter Cellular Automata in Hyperbolic Space.
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Intrinsic universality among quantum cellular automaton

In the past decade, quantum computation theory has been tremendously developing. It
relies on unitary gates which are of course reversible. The results on reversible CA has
been “naturally” extended, for example, there is a 1-dimension Quantum CA which is
intrinsically universal (among quantum CA) [Arrighi and Fargetton, 2007]. For more on
the topic, please refer to the Chapter Quantum Cellular Automata.

Variable neighborhood

A new approach is to fix the states and the transition function and to have only the neigh-
borhood (i.e. the relative localisation of the entries of the transition function) varying.
Somehow it can be considered that the neighbourhood is not defined by the CA but by the
configuration. Some simulation results exists [Nishio, 2007, Worsch and Nishio, 2007].
The transition function of simulated CA is not given inside the simulating configuration
but by the simulating neighbourhood.

6 Future Directions

As mentioned just above, understanding the role played by the neighborhood in comput-
ing might be very enlightening.

It is known that 2 states and 2 neighbors is enough for computing with polynomial
slowdown. It might be interesting to find constructions with limited slowdown and very
concise encoding. Since CA are inherently parallel while Turing machines are sequential,
a computing (and complexity) theory and algorithm that incorporate the parallelism of
CA (local, uniform and synchronous) is worth enquiring.

As far as intrinsic universality is concerned, it relies on simulation between CA. The
various definitions have to be linked and investigated.
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