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Introducing fractal computation

Brute force search

easy check

(too) many to check

Physical limitations

classical parallelism

unconventional computation

Fractal parallelism

continuous space and time idealization

using a fractal to broadcast
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Introduction

Hard to �nd but easy to check

Very important in, e.g., asymmetric cryptography

Example: �nd 3 integers a, b, and c such that...

10 < a < b < c < 100

and
a2 + b2 = c2

Easy

302 + 402 = 502

Indeed
900+ 1 600 = 2 500
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Introducing fractal computation

Introduction

Link with NP problems

NP: class of decision problems

YES : easily proved (polynomial time) with the right certi�cate

NO : there is no certi�cate

Trivial algorithm

try all certi�cates

BUT there are too many to try
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Introduction

SAT

Instance

φ : Boolean formula with free variables x1, x2, . . . , xn .

Question

Is there a way to set the free variables such that φ is true?

Example

φ = (x1 ∨ ¬x2) ∧ x3

x1 x2 x3

Complexity according to n, the number of variables

Test a valuation: linear in the length of the formula easy

Number of valuations: 2n exponential growth
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Introduction

Brute force parallelism

Try them all!

A few. . . easy

Polynomially many. . . might take a while

Exponentially many. . . not feasible

...unless

exponentially many computing units
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Physical limitations

Classical computation

Parallelism / grid / cloud

1 microprocessor ⇒ 1 unit of space

≈ d3 processor at distance d

 exponential diameter for exponentially many processors

 exponential communication time
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Physical limitations

Unconventional Computation
and Natural Computation (UCNC)

DNA computation

very small

totally uncentralized computation

still at some (faraway) point the soup will be too big

Quantum computation

superposition of exponentially many states

big decoherence/stability problem

limited set of operations (unitary operators and projections)
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Physical limitations

Idealized model

Wanted properties

no space nor time granularity

can work at any scale

can compute
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Signal machines

T
im

e
(R

)

Space (R)

continuous space

continuous time

Vocabulary

Signal (meta-signal)

dimensionless

Collision (rule)

deterministic
uniform
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Signal machines

Example: �nd the middle

M M

Meta-signals, speed

M, S(M) = 0

div, S(div) = 3
hi, S(hi) = 1
lo, S(lo) = 3
back, S(back) = −3

Collision rules

{ div, M } → { M, hi, lo }
{ lo, M } → { back, M }
{ hi, back } → { M }
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Signal machines

Complex dynamics
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Signal machines

Fractal space-time diagrams
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Introducing fractal computation

Fractal parallelism

Using a fractal to compute

Scheme

Use the structure
to dispatch the computation
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Fractal parallelism

QSat: quanti�ed satisfaction problem

Quanti�ed boolean formula
(without free variable)

Find its logical value

PSPACE-complete problem

Example

φ = ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

20 / 27



Introducing fractal computation

Fractal parallelism

QSat: quanti�ed satisfaction problem

Quanti�ed boolean formula
(without free variable)

Find its logical value

PSPACE-complete problem

Example

φ = ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

20 / 27



Introducing fractal computation

Fractal parallelism

Building the tree / combinatorial comb
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Fractal parallelism

Lens and variables assignment
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Fractal parallelism

Formula evaluation

φ = ∃x1∀x2∀x3 (x1 ∧ ¬x2) ∨ x3

Case here

(true ∧ ¬true) ∨ true

=⇒γ a

=⇒γ

←−γ
+

=⇒γ

a

=⇒t
←−γ
+

=⇒t

←−γ
+

=⇒t

a

=⇒t ←−γ
+

=⇒t
←−γ
+

=⇒¬ ←−γ
+

=⇒¬◦ ←−γ
+

=⇒t ←−T

=⇒t

a

=⇒t ←−γ
+ =⇒¬◦

←−T

=⇒¬ ←−T
=⇒∧ ←−γ

+
=⇒t

←−T

=⇒
f

a

=⇒∧◦

←−T =⇒t

←−F

=⇒t

a

=⇒∨

←−T =⇒∧
←−F

=⇒
f+ ←−T

=⇒
f

a

=⇒
t+

←−F
=⇒t

a

=⇒s

←−T
=⇒
T

a

=⇒c

t

←−t
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Conclusion

Fractal computation

continuous media
(time and space)

structure automaticaly unfold

structure used
to dispatch and to collect

generic machine

modular programming
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Conclusion

Complexities

Time

constant (as a duration)

cubic (as max length of collision chain)

Space

constant (as a width)

exponential (as max number of independant signals, antichain)

NB: Super-Turing Model with accumulations

decide Halt in �nite duration and width. . .

26 / 27



Introducing fractal computation

Conclusion

Complexities

Time

constant (as a duration)

cubic (as max length of collision chain)

Space

constant (as a width)

exponential (as max number of independant signals, antichain)

NB: Super-Turing Model with accumulations

decide Halt in �nite duration and width. . .

26 / 27



Introducing fractal computation

Conclusion

Future work

Fractal computation

non deterministic processes

higher complexity classes

Automatic discretization

into a cellular automata

nice properties are lost

easy way to de�ne a CA

Thank you for your attention
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