Introducing fractal computation

Jérôme Durand-Lose Joint work with Denys Duchier and Maxime Senot

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

COPCOM '11 — Cluj Napoca

Brute force search

- easy check
- (too) many to check

Physical limitations

- classical parallelism
- unconventional computation

Fractal parallelism

- continuous space and time idealization
- using a fractal to broadcast

- Introduction
- 2 Physical limitations
- Signal machines
- 4 Fractal parallelism
- Conclusion

Introduction

- Introduction
- 2 Physical limitations
- Signal machines
- Fractal parallelism
- Conclusion

Hard to find but easy to check

• Very important in, e.g., asymmetric cryptography

Example: find 3 integers a, b, and c such that...

and

$$a^2 + b^2 = c^2$$

Hard to find but easy to check

• Very important in, e.g., asymmetric cryptography

Example: find 3 integers a, b, and c such that...

and

$$a^2 + b^2 = c^2$$

Easy

$$30^2 + 40^2 = 50^2$$

Hard to find but easy to check

• Very important in, e.g., asymmetric cryptography

Example: find 3 integers a, b, and c such that...

and

$$a^2 + b^2 = c^2$$

Easy

$$30^2 + 40^2 = 50^2$$

Indeed

$$900 + 1600 = 2500$$

Link with NP problems

NP: class of *decision* problems

- YES: easily proved (polynomial time) with the right certificate
- NO: there is no certificate

Link with NP problems

NP: class of decision problems

- YES: easily proved (polynomial time) with the right certificate
- NO: there is no certificate

Trivial algorithm

try all certificates

Link with NP problems

NP: class of decision problems

- YES: easily proved (polynomial time) with the right certificate
- NO: there is no certificate

Trivial algorithm

- try all certificates
- BUT there are too many to try

SAT

Instance

 ϕ : Boolean formula with free variables x_1, x_2, \ldots, x_n .

Question

Is there a way to set the free variables such that ϕ is true?

Example

$$\phi = (x_1 \vee \neg x_2) \wedge x_3$$

SAT

Instance

 ϕ : Boolean formula with free variables x_1, x_2, \ldots, x_n .

Question

Is there a way to set the free variables such that ϕ is true?

Example

$$\phi = (x_1 \vee \neg x_2) \wedge x_3$$

$$x_1 \qquad \overline{x_2} \qquad x_3$$

SAT

Instance

 ϕ : Boolean formula with free variables x_1, x_2, \ldots, x_n .

Question

Is there a way to set the free variables such that ϕ is true?

Example

$$\phi = (x_1 \lor \neg x_2) \land x_3$$
$$x_1 \quad \overline{x_2} \quad x_3$$

Complexity according to n, the number of variables

- Test a valuation: linear in the length of the formula easy
- Number of valuations: 2ⁿ exponential growth

Brute force parallelism

• Try them all!

- A few... easy
- Polynomially many... might take a while
- Exponentially many... not feasible

...unless

exponentially many computing units

- Introduction
- 2 Physical limitations
- Signal machines
- 4 Fractal parallelism
- Conclusion

Classical computation

Parallelism / grid / cloud

- 1 microprocessor \Rightarrow 1 unit of space
- $\bullet \approx d^3$ processor at distance d
- \leftrightarrow exponential diameter for exponentially many processors
- ~> exponential communication time

Unconventional Computation and Natural Computation (UCNC)

DNA computation

- very small
- totally uncentralized computation
- still at some (faraway) point the soup will be too big

Unconventional Computation and Natural Computation (UCNC)

DNA computation

- very small
- totally uncentralized computation
- still at some (faraway) point the soup will be too big

Quantum computation

- superposition of exponentially many states
- big decoherence/stability problem
- limited set of operations (unitary operators and projections)

Idealized model

Wanted properties

- no space nor time granularity
- can work at any scale
- can compute

- Introduction
- 2 Physical limitations
- Signal machines
- 4 Fractal parallelism
- Conclusion

- continuous space
- continuous time

Vocabulary

- Signal (meta-signal)
 - dimensionless
- Collision (rule)
 - deterministic
 - uniform

Meta-signals, speed

$$M, S(M) = 0$$

div, $S(div) = 3$

Collision rules

Meta-signals, speed

$$M, S(M) = 0$$

 $div, S(div) = 3$
 $hi, S(hi) = 1$
 $lo, S(lo) = 3$

Collision rules

 $\{ \ \mathsf{div}, \ \mathsf{M} \ \} \ o \ \{ \ \mathsf{M}, \ \mathsf{hi}, \ \mathsf{lo} \ \}$

Meta-signals, speed

M,
$$S(M) = 0$$

div, $S(\text{div}) = 3$
hi, $S(\text{hi}) = 1$
lo, $S(\text{lo}) = 3$
back, $S(\text{back}) = -3$

Collision rules

```
 \{ \ \mathsf{div}, \ \mathsf{M} \ \} \ \rightarrow \ \{ \ \mathsf{M}, \ \mathsf{hi}, \ \mathsf{lo} \ \}   \{ \ \mathsf{lo}, \ \mathsf{M} \ \} \ \rightarrow \ \{ \ \mathsf{back}, \ \mathsf{M} \ \}
```


Meta-signals, speed

M,
$$S(M) = 0$$

div, $S(\text{div}) = 3$
hi, $S(\text{hi}) = 1$
lo, $S(\text{lo}) = 3$
back, $S(\text{back}) = -3$

Collision rules

```
 \left\{ \begin{array}{l} \mathsf{div}, \ \mathsf{M} \ \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{M}, \ \mathsf{hi}, \ \mathsf{lo} \ \right\} \\ \left\{ \begin{array}{l} \mathsf{lo}, \ \mathsf{M} \ \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{back}, \ \mathsf{M} \ \right\} \\ \end{array} \right. \\ \left\{ \begin{array}{l} \mathsf{hi}, \ \mathsf{back} \ \right\} \ \rightarrow \ \left\{ \begin{array}{l} \mathsf{M} \ \right\} \end{array} \right.
```

Complex dynamics

Complex dynamics

Complex dynamics

Fractal space-time diagrams

- Introduction
- 2 Physical limitations
- Signal machines
- 4 Fractal parallelism
- Conclusion

Using a fractal to compute

Scheme

Use the structure to dispatch the computation

QSat: quantified satisfaction problem

- Quantified boolean formula (without free variable)
- Find its logical value
- PSPACE-complete problem

Example

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$$

QSat: quantified satisfaction problem

- Quantified boolean formula (without free variable)
- Find its logical value
- PSPACE-complete problem

Example

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$$

Building the tree / combinatorial comb

Lens and variables assignment

Formula evaluation

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ (x_1 \land \neg x_2) \lor x_3$$

Case here

 $(true \land \neg true) \lor true$

- Introduction
- 2 Physical limitations
- Signal machines
- 4 Fractal parallelism
- Conclusion

Fractal computation

- continuous media (time and space)
- structure automaticaly unfold
- structure used to dispatch and to collect
- generic machine
- modular programming

Complexities

Time

- constant (as a duration)
- cubic (as max length of collision chain)

Space

- constant (as a width)
- exponential (as max number of independant signals, antichain)

Complexities

Time

- constant (as a duration)
- cubic (as max length of collision chain)

Space

- constant (as a width)
- exponential (as max number of independant signals, antichain)

NB: Super-Turing Model with accumulations

• decide Halt in finite duration and width...

Future work

Fractal computation

- non deterministic processes
- higher complexity classes

Automatic discretization

- into a cellular automata
- nice properties are lost
- easy way to define a CA

Future work

Fractal computation

- non deterministic processes
- higher complexity classes

Automatic discretization

- into a cellular automata
- nice properties are lost
- easy way to define a CA

Thank you for your attention