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Brute force search

@ easy check

@ (too) many to check

v

Physical limitations

@ classical parallelism

@ unconventional computation

Fractal parallelism

@ continuous space and time idealization

@ using a fractal to broadcast
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Example: find 3 integers a, b, and ¢ such that...

10<a< b<c<100

and
@+ b =c
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Introduction

Hard to find but easy to check

@ Very important in, e.g., asymmetric cryptography J

Example: find 3 integers a, b, and ¢ such that...

10<a< b<c<100

and
@+ b =c

30° + 40° = 50°

Indeed
900 + 1600 = 2500
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NP: class of decision problems

@ YES: easily proved (polynomial time) with the right certificate

@ NO: there is no certificate




Introducing fractal computation

Introduction

Link with NP problems

NP: class of decision problems
@ YES: easily proved (polynomial time) with the right certificate

@ NO: there is no certificate

Trivial algorithm

@ try all certificates




Introducing fractal computation

Introduction

Link with NP problems

NP: class of decision problems
@ YES: easily proved (polynomial time) with the right certificate

@ NO: there is no certificate

Trivial algorithm

@ try all certificates

@ BUT there are too many to try
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Instance
¢ : Boolean formula with free variables x1, x2, ..., x,

Question
Is there a way to set the free variables such that ¢ is true?

qb = (X1 \/—|X2) N X3
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Instance
¢ : Boolean formula with free variables x1, x2, ..., x5 .

Question
Is there a way to set the free variables such that ¢ is true?

¢ = (X1 \/—|X2) N X3

X1 X2 X3

Complexity according to n, the number of variables

@ Test a valuation: linear in the length of the formula easy

@ Number of valuations: 27" exponential growth
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Brute force parallelism

o Try them alll

o Afew... easy
@ Polynomially many... might take a while
@ Exponentially many... not feasible

@ exponentially many computing units
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Physical limitations

Classical computation

Parallelism / grid / cloud
@ 1 microprocessor = 1 unit of space
o ~ d3 processor at distance d
@ ~~ exponential diameter for exponentially many processors

@ ~» exponential communication time
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Physical limitations

Unconventional Computation

and Natural Computation (UCNC)

DNA computation
@ very small
@ totally uncentralized computation

o still at some (faraway) point the soup will be too big
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Physical limitations

Unconventional Computation

and Natural Computation (UCNC)

DNA computation

@ very small
@ totally uncentralized computation

o still at some (faraway) point the soup will be too big

Quantum computation

@ superposition of exponentially many states

@ big decoherence/stability problem

o limited set of operations (unitary operators and projections)
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Physical limitations

|dealized model

Wanted properties

@ no space nor time granularity
@ can work at any scale

@ can compute
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Signal machines

@ continuous space ’

@ continuous time

Vocabulary

Time (R)

@ Signal (meta-signal)
o dimensionless

o Collision (rule)

o deterministic

Space (R) e uniform
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M, S(M)=0

Collision rules




Introducing fractal computation

Signal machines

Example: find the middle

Meta-signals, speed
M, S(M)=0
div, S(div) =3

Collision rules

o M ‘ M




Introducing fractal computation

Signal machines

Example: find the middle

Meta-signals, speed
M, S(M)=0

div, S(div) =3

hi, S(hi) =1

lo, S(lo) =3

Collision rules
A M {div, M} — {M,hilo}
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Signal machines

Example: find the middle

ba,

Meta-signals, speed

M, S(M) = 0
div, S(div) =3
hi, S(hi) =1
lo, S(lo) =3

back, S(back) = —3

Collision rules

{div, M} — {M, hi, lo}
{lo, M} — {back, M}

15 /27



Introducing fractal computation

Signal machines

Example: find the middle

A M

Meta-signals, speed

M, S(M) = 0
div, S(div) =3
hi, S(hi) =1
lo, S(lo) =3

back, S(back) = —3

Collision rules

{div, M} — {M, hilo}
{lo, M} — {back, M}
{ hi,back} — {M}
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Signal machines
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Signal machines

Complex dynamics
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Signal machines

Fractal space-time diagrams
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Fractal parallelism

@ Fractal parallelism
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Fractal parallelism

Using a fractal to compute

Use the structure
to dispatch the computation
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Fractal parallelism

QSat: quantified satisfaction problem

@ Quantified boolean formula
(without free variable)

o Find its logical value
o PSPACE-complete problem

¢ = I VxoVx3 (X1 A\ —|X2) V X3 \
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Fractal parallelism

QSat: quantified satisfaction problem

@ Quantified boolean formula
(without free variable)

o Find its logical value <
o PSPACE-complete problem &\

¢ = I VxoVx3 (X1 A\ —|X2) V X3 \
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Fractal parallelism

Building the tree / combinatorial comb
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Fractal parallelism

Lens and variables assignment
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Fractal parallelism

Formula evaluation
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Conclusion

© Conclusion
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Conclusion

Fractal computation

@ continuous media
(time and space)

@ structure automaticaly unfold

@ structure used
to dispatch and to collect ;

@ generic machine

@ modular programming
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Conclusion

Complexities

constant (as a duration)

cubic (as max length of collision chain)

constant (as a width)

exponential (as max number of independant signals, antichain)
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Conclusion

Complexities

@ constant (as a duration)

@ cubic (as max length of collision chain)

@ constant (as a width)

@ exponential (as max number of independant signals, antichain)

NB: Super-Turing Model with accumulations

@ decide Halt in finite duration and width. ..
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Conclusion

Future work

Fractal computation

@ non deterministic processes

@ higher complexity classes

Automatic discretization

@ into a cellular automata
@ nice properties are lost

@ easy way to define a CA
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Conclusion

Future work

Fractal computation

@ non deterministic processes

@ higher complexity classes

Automatic discretization

@ into a cellular automata
@ nice properties are lost

@ easy way to define a CA

Thank you for your attention
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