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Abstract. Abstract geometrical computation can solve PSPACE-com-
plete problems e�ciently: any quanti�ed boolean formula, instance of Q-
SAT � the problem of satis�ability of quanti�ed boolean formula � can
be decided in bounded space and time with simple geometrical construc-
tions involving only drawing parallel lines on an Euclidean space-time.
Complexity as the maximal length of a sequence of consecutive segments
is quadratic. We use the continuity of the real line to cover all the possi-
ble boolean valuations by a recursive tree structure relying on a fractal
pattern: an exponential number of cases are explored simultaneously by
a massive parallelism.
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1 Introduction

When de�ning and studying a new model of computation, especially an uncon-
ventionnal one, these questions arise naturally: what can we compute (in terms
of decidability), how can we compute it, and what does it cost (in terms of com-
plexity)? Answers could be found by taking representative problems of classical
complexity classes, e.g. SAT for NP or Q-SAT for PSPACE, and coding them in
the new computation model. This was done for NP-problems with active mem-
branes system [P un, 2001] and with an hyperbolic space of cellular automata
[Margenstern and Morita, 2001]. Similarly, some solutions for Q-SAT were pro-
posed with P-systems and membranes [Alhazov and Pérez-Jiménez, 2007], and
with closed timelike curves in relativistic computation. We showed in [Duchier
et al., 2010] that signal machines, a geometrical and abstract model of computa-
tion, are capable of solving SAT in bounded space and time. In the present paper,
we extend this result to the higher complexity class PSPACE by describing a
geometrical construction solving Q-SAT through fractal parallelization, still in
constant space and time.

We also o�er a more pertinent, model-speci�c, notion of time-complexity,
namely collision depth, which is quadratic for our proposed construction.

The geometrical context proposed here is the following: dimensionless parti-
cles move uniformly on the real axis. When a set of particles collide, they are
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replaced by a new set of particles according to a chosen collection of collision
rules. We consider the temporal evolution of these systems through their space-
time diagram, in which traces of the particles are materialized by lines segment
that we call signals. The space-time diagram of a signal machine constitued a
geometrical computation.

Models of computation, conventional or not, are frequently based on math-
ematical idealizations of physical concepts and investigate the consequences, on
computational power, of such abstractions (quantum, membrane, closed time-
like curves, black holes. . . ). However, oftentimes, the idealization is such that
it must be interpreted either as allowing information to have in�nite density
(e.g. an oracle), or to be transmitted at in�nite speed (global clock, no spatial
extension. . . ). On this issue, the model of signal machines stands in contradis-
tinction with other abstract models of computation: it respects the principle of
causality, density and speed of information are �nite, as are the sets of objects
manipulated. Nonetheless, it remains a resolutely abstract model with no apri-
ori ambition to be physically realizable; it deals with theoretical issues such as
computational power.

It is possible to do Turing-computation with such a system [Durand-Lose,
2005] and even to do analog computation by a systematic use of the continuity of
space and time [Durand-Lose, 2009a,b]. Other geometrical models of computa-
tion exist and allow to compute: colored universes [Jacopini and Sontacchi, 1990],
geometric machines [Huckenbeck, 1989], piece-wise constant derivative systems
[Bournez, 1997], optical machines [Naughton and Woods, 2001]. . .

Most of the work to date in this domain, called abstract geometrical com-

putation (AGC), has dealt with the simulation of sequential computations even
though the model, seen as a continuous extension of cellular automata, is inher-
ently parallel (see Fig. 1). In the present paper, we describe a massively parallel
evaluation of all possible valuations for a given propositional formula and we
provide a way to collect the results. This is the �rst time that parallelism is
really used in AGC.
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Fig. 1. From cellular automata to signal machines.

To achieve massive parallelism, we follow a fractal pattern to a depth of
n (for n propositional variables) in order to partition the space in 2n regions
corresponding to the 2n possible valuations of the unquanti�ed formula. We call
the resulting geometrical construction the combinatorial comb of propositional
assignments. With a signal machine, such an exponential construction �ts in
bounded space and time regardless of the number of variables.



Once the combinatorial comb is in place, it is used to implement a binary
decision tree for evaluating the formula, where all branches are explored in paral-
lel. Finally, all the results are collected and aggregated respecting the quanti�ers
of the Q-SAT formula to yield the �nal answer. Our construction proceeds in
stages: we generate and calibrate a beam of signals encoding the formula, making
sure that it �ts in the combinatorial comb, we propagate it through the binary
decision tree, we compute the truth value when reaching each valuation, and
�nalize the answer at the top of the diagram.

Signal machines are presented in Section 2. Sections 3 to 7 detail step by
step our geometrical solution to Q-SAT: splitting the space, coding the formula,
broadcasting the formula, evaluating it and �nalizing the answer by collecting
the results. Complexities are discussed in Section 8 and conclusion and remarks
are gathered in Section 9.

2 De�nitions

Satis�ability of quanti�ed boolean formulae. Q-SAT is the satis�ability
problem for quanti�ed boolean formulae (QBF). A QBF is a closed formula of
the form: φ = Qx1Qx2 . . . Qxn ψ(x1, x2, . . . , xn) where Q ∈ {∃,∀} and ψ is
a quanti�er-free formula of propositional logic. SAT is the fragment of Q-SAT
using only the existential quanti�er.

Q-SAT is PSPACE-complete [Stockmeyer and Meyer, 1973]: it can be solved
by a polynomial-space algorithm and any PSPACE-problem can be reduced in
polynomial time to Q-SAT. The classical algorithm is recursive: given a formula
Qx φ(x), it recursively determines the satis�ability of φ(true) and φ(false),
then aggregates the results with ∨ if Q = ∃ or with ∧ if Q = ∀.

Signal machines. Signal machines are an extension of cellular automata from
discrete time and space to continuous time and space. Dimensionless signals/par-
ticles move along the real line and rules describe what happens when they collide.

Signals. Each signal is an instance of a meta-signal. The associated meta-signal
de�nes its velocity and what happen when signals meet. Figure 2 presents a very
simple space-time diagram. Time is increasing upwards and the meta-signals are
indicated as labels on the signals. Meta-signals are listed on the left of Fig. 2.

Meta-Signals Speed

w 0
−→
div 3
−→
hi 1
−→
lo 3

←−−
back -3

−→
div w

−→
lo

w

−→hi

←−−backw

w
w

Collision rules

{ w,
−→
div } → { w,

−→
hi ,
−→
lo }

{
−→
lo , w } → {

←−−
back, w }

{
−→
hi ,
←−−
back } → { w }

Fig. 2. Computing the middle



Generally, we use over-line arrows to indicate the direction of propagation of
a meta-signal. For example, ←−a and −→a denote two di�erent meta-signals; but as
can be expected, they have similar uses and behaviors. Similarly br and bl are
di�erent; both are stationary, but one is meant to be the version for right and
the other for left.

Collision rules. When a set of signals collide, they are replaced by a new set of
signals according to a matching collision rule {σ1, . . . , σn} → {σ′1, . . . , σ′p} where
all σi and σ′j are meta-signals. A rule matches a set of colliding signals if its
left-hand side is equal to the set of their meta-signals. By default, if there is no
exactly matching rule for a collision, the behavior is de�ned to regenerate exactly
the same meta-signals. In such a case, the collision is called blank. Collision rules
can be deduced from space-time diagram as on Fig. 2. They are also listed on
the right of this �gure.

Signal machine. A signal machine is de�ned by a set of meta-signals, a set of
collision rules, and an initial con�guration, i.e. a set of particles placed on the
real line. The evolution of a signal machine can be represented geometrically as a
space-time diagram: space is always represented horizontally, and time vertically,
growing upwards. The example of Fig. 2 computes the middle: the new w is
located exactly halfway between the initial two w.

3 Combinatorial comb

In order to determine by brute force whether a unquanti�ed propositional for-
mula with n variables is satis�able, 2n cases must be considered. These cases
can be recursively enumerated using a binary decision tree.

The intuition is that the decision for variable xi will be represented by a
stationary signal: the space on the left should be interpreted as xi = false,
and the space on the right as xi = true. Then we will similarly subdivide the
spaces to the left and to the right, with stationary signals for xi+1, and so on
recursively for all variables as illustrated in Fig. 3(a).

Starting with two bounding signals w and an initiator
−−→
start, space is recur-

sively divided as shown in Fig. 3(b). The �rst step works exactly as in Fig. 2, but
then continues on to a depth of n: the counting is realized by using successively
−→
m0,
−→
m1,
−→
m2 . . . The necessary rules and meta-signals are summarized in Tab.1.

Meta-Signal Speed
−−→
start,

−−−→
startlo,

−→
a 3

−→
m0,
−→
m1,
−→
m2 . . . 1

x1, x2, x3 . . . 0
←−
m0,
←−
m1,
←−
m2 . . . -1
←−
a -3

bl, br 0

Collision rules

{
−−→
start, w } → { w,

−−−→
startlo,

−→
m0 }

{
−−−→
startlo, w } → { ←−a , w }

{ w, ←−a } → { w, −→a }

{ −→a , w } → { ←−a , w }

{ −→mi,
←−
a } → { ←−a , ←−−−mi+1, xi,

−−−→
mi+1,

−→
a }

{ −→a , ←−mi } → { ←−a , ←−−−mi+1, xi,
−−−→
mi+1,

−→
a }

{ −→mn,
←−
a } → { br }

{ −→a , ←−mn } → { bl }

Table 1. Meta-Signals and collision rules to build the comb.
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(a) Cases identi�cation

−−−→
startlo w

−→m0

←−a
w

←−a −→a
w

−→a
←−m1

−→m1

←−a
w

←−a −→a

x1

←−a −→a
w

←−m2
−→m2

←−m2
−→m2

x2 x2

w bl x3
br x2 bl x3

br x1 bl x3
br x2 bl x3

br w

(b) Division process

Fig. 3. Combinatorial comb for 3 variables.

Since each level of the tree is half the height of the previous one, the full tree
can be constructed in bounded time regardless of its size. Also, note that the
bottom level of the tree is not xn but br and bl. These are used both to evaluate
the formula and to aggregate the results as explained later.

4 Formula encoding

In this section, we will explain how to represent the formula as a set of signals.
This is illustrated with a running example:

φ = ∃x1∀x2∀x3 x1 ∧ (¬x2 ∨ x3) .

We consider the quanti�er-free subformula of φ: x1∧(¬x2∨x3) which can be
viewed as a tree whose nodes are labeled by symbols (connectives and variables).
The evaluation of the formula for a given assignment is a bottom-up process
that percolates from the leaves toward the root. In order to model that process,
we shall represent each node of the tree by a signal. In Fig. 4(a), each node is
additionally decorated with a path from the root uniquely identifying its position
in the tree: thus we are able to conveniently distinguish multiple occurrences
of the same symbol. These decorated symbols provide convenient names for
the required meta-signals (see Fig. 4(b)). Thus a formula of size t requires the
de�nition of 2t meta-signals.

The signals for all subformulae are sent along parallel trajectories and form
a beam. They are stacked in the diagram in order of nesting, inner-most subfor-
mulae �rst. This order is important for the process of percolation that will take
place at the end. The width of the beam must be calibrated to have a proper
propagation through the tree: it must be su�ciently narrow to �t in the top level
(see [Duchier et al., 2011, App. A] for a detailled explanation and proofs).



∧

xl
1 ∨r

¬rl
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3

(a) Labeled tree

Meta-Signal Speed

←−∧ ,
←−
∨r,
←−
¬rl -1

←−
x
l
1 ,
←−
x
rlc
2 ,
←−
x
rr
3 -1

−→∧ ,
−→
∨r,
−→
¬rl 1

−→
x
l
1 ,
−→
x
rlc
2 ,
−→
x
rr
3 1

(b) Generated
signals

−→a W1

−→
C5

←−a

−→a
W1

−→
C6

←−a
−→w W1

W2

←−w
−→w W2

W3

←−w
−→w W3

W4

←−w
−→w W4

W5

←−w
−→w W5

W6

←−w
−→w W6

W7

←−w
−→w W7

W7

←−w
−→w W7

W8

←−w
−→w W8

−→a

−→m0

−→
xl1

−→
xrlc2

−→
¬rl

−→
xrr3

−→∨r

−→∧

−−→
store

−−−−→
collectw

(c) Initial displaying (d) Corridors

Fig. 4. Compiling the formula

5 Propagating the beam

The formula's beam is now propagated down the decision tree. For each decision
point, the beam is duplicated: one part goes through, the other is re�ected.
Thus, by construction, every branch of the beam tree encounters a decision
point for every variable at least once. If we make the beam su�ciently narrow,
the guarantee become �exactly once,� as shown in Fig. 4(d).

When the beam encounters a decision point (a stationary signal for a vari-
able xi), then a split occurs producing two branches. Except for the sign of their
velocity, most signals remain identical in both branches; most, except those cor-
responding to occurrences of xi: those become false in the left branch and
true in the right branch. Fig. 5(a) shows the beam intersecting the decision sig-

nal for variable x1. Note how the incident signal
−→
xl1 becomes

←−
fl on the left and

−→
tl on the right; the path decoration is preserved since, as we shall see, it is
essential later for the percolation process. This is achieved by the collision rule:

{
−→
xl1 , x1} → {

←−
fl , x1,

−→
tl }. Since a decision point is encountered exactly once for

each variable on each branch of the lane, at the bottom of the tree, all signals
corresponding to occurrences of variables have been assigned a boolean value.

6 Evaluating the formula

Remember how, at the very bottom of the decision tree, we added an extra
division using signals bl or br: their purpose is to initiate the percolation process.



bl is for starting the percolation process of a left branch, while br is for a right
branch. Figure 5(c) zooms on one case of our example.

−→m0

←−a−→
xl1

−→
xrlc2

−→
¬rl

−→
xrr3

−→∨r

−→∧

−−→
store

←−a

−−−−→
collect

−→a

←−m1

−→m1

←−
fl

−→
tl

←−
xrlc2

−→
xrlc2

←−
¬rl

−→
¬rl

←−
xrr3

−→
xrr3

←−∨r

−→∨r

←−∧

−→∧

←−−
store

−−→
store

←−−−−
collect

−−−−→
collectL∃

(a) Split

{
−→
∨r,
←−
T

rl } → {
−→
t()r }

{
−→
t()r,

←−
T

rr } → {
−→
t
r }

{
−→
idr,
←−
T

rr } → {
−→
t
r }

{
−→
∨r,
←−
F

rl } → {
−→
idr }

{
−→
t()r,

←−
F

rr } → {
−→
t
r }

{
−→
idr,
←−
F

rr } → {
−→
f
r }

(b) Collision rules to evaluate the
disjunction ∨r

−→m3
←−a

−→
tl

br
−→
frlc

←−
Tl−→

¬rl

←−
Tl

−→
frlc

br

−→
trr

←−
Tl

−→
¬rl

←−
Frlc

−→∨r
←−
Tl

−→
trl

br

−→∧
←−
Tl

−→
trr

←−
Trl

−→∨r
←−
Trl −→

trr

br

−→
t()r ←−Trr

−→
tr

br
−→
id

←−
Tr

−→
t
br−−→

store

←−
T

−→
T∅

br
−−−−→
collect

T

←−−−−success

(c) Evaluation at the
bottom of the comb

Fig. 5. Split, evaluation process and rules for a connective.

The invariant is that all signals that reach br have determined boolean val-

ues. When
−→
tl reaches br, it gets re�ected as

←−
Tl . The change from lowercase to

uppercase indicates that the subformula's signal is now able to interact with the
signal of its parent connective. The stacking order ensures that re�ected signals
of subformulae will interact with the incoming signal of their parent connective
before the latter reaches br. This enforces the invariant.

A connective is evaluated by colliding with the (uppercased) boolean signals
of its arguments. For example, the disjunction collides with its �rst argument.
Depending on its value, it becomes the one-argument function identity or the
constant true. This is the way the rules of Fig. 5(b) should be understood.

Note how the path decorations are essential to ensure that the right sub-
formulae interact with the right occurrences of connectives. Conjunctions and
negations can be handled similarly. Finally,

−−→
store projects the truth value of

the formula's root on br where it is temporarilly stored until
−−−−→
collect starts the

aggregation of the results.

7 Collecting the results

At the end of the propagation phase, the results of evaluating the unquanti-
�ed formula for all possible assignments have been stored as stationary signals
replacing the bl and br signals. We must now evaluate the quanti�ed formula.



Remember that each level of the comb corresponds to a variable: level 1 stands
for x1, . . . For aggregating all the results, we will "undo" the construction process
of the binary tree by mixing two by two the results of evaluations with respect
to the initial quanti�ers.

At each split of the beam � i.e. when it meets the stationary signals coding

xi at the i
th level of the tree � the signal

−−−−→
collect (resp.

←−−−−
collect) (at the very top

of the beam) changes the stationary xi into a stationary Li
Qi

(resp. Ri
Qi
), where

Qi denotes the quanti�er for xi in φ, and L (resp. R) indicates the direction in
which to emit the combined result of trying xi = false (coming from the left)
and xi = true (coming from the right). The boolean connective to e�ect the
combination depends on the type of the quanti�er: ∨ for ∃ and ∧ for ∀. This
collection process is illustrated in Fig. 6.

The space-time diagram for the entire construction is shown in Fig. 7.

−→a ←−a

w
←−a

−→a
L∃

←−a −→a
w

−→a ←−a −→a ←−a
w

←−a
−→a

R∀

←−a −→a
L∃

←−a
−→a

L∀

←−a −→a
w

−→a ←−a −→a ←−a −→a ←−a −→a ←−a

−→
Fail

R∀

←−
Fail

−→
Fail

L∀

←−
Fail −−−−→success

R∀

←−−−−success
−→
Fail

L∀

←−−−−success

−→
Fail

R∀

←−
Fail −−−−→success

L∀

←−
Fail

−→
Fail

L∃

←−
Fail

w

←−
Fail

w

Fig. 6. Collecting the results.

8 Complexities

We now turn to a crucial question: what is the complexity of our construction
as a function of the size of the formula? What is a meaningful way to measure
this complexity?

The width of the construction measures the space requirement: it is indepen-
dent of the formula and can be �xed to any value we like. The height measures
the time requirement: it is also independent of the formula because of the fractal
construction and the continuity of space-time. If more variables are involved, the
comb gains extra levels, but its height remains bounded by a fractal, the in�nite
binary tree.

As a consequence, while width (space) and height (time) are the natural
continuous extensions of traditional complexity measures used in the discrete
universe of cellular automata, in the context of abstract geometrical computa-
tions, they loose all pertinence.



Instead we should regard our construction as a computational device trans-
forming inputs into outputs. The inputs are given by the initial state of the
signal machine at the bottom of the diagram. The output is the computed result
that comes out at the top. The transformation is performed in parallel by many
threads: a thread here is an ascending path through the diagram from an input
to the output. The operations that are �performed� by the thread are all the
collisions found along the path.

Thus, if we view the diagram as an

Fig. 7. The whole diagram.

acyclic graph of collisions (vertices) and
signals (arcs), time complexity can then
be de�ned as the maximal size of a chain
of collisions and space complexity as the
maximal size of an anti-chain i.e. a set of
signals pairwise un-related.

Let t be the size of the formula and n
the number of variables. At the bottom
level of the comb, there is an anti-chain
of length approximately t2n, making the
space complexity exponential. Generation
of the comb, initiation, propagation, eval-
uation and aggregation contribute along
any path a number of collisions at most
linear in the size of the formula. However,
intersections of incident and re�ected bran-
ches at every level addO(nt) because there
are O(n) levels and the beam consists of
O(t) parallel signals. Thus the time com-
plexity is O(nt).

It should also be pointed out that the
compilation into a rational signal machine

is done in polynomial time and only �ve distinct speeds are involved. Algorithms
to generate the machine from the formula and all the collision rules can be found
in [Duchier et al., 2011, App. B].

9 Conclusion

In this article, we have shown how to achieve massive parallelism with signal
machines, by means of a fractal pattern. We call this fractal parallelism and it is
a novel contribution in the �eld of abstract geometrical computation. We have
described how this approach is able to solve Q-SAT in bounded space and time.

The complexity is not hidden inside the compilation of the machine (done
in quadratic time) nor in the initial con�guration (which is very simple) and all
the speeds are constant. Since, clearly, time and space are no longer appropri-
ate measures of complexity, we have also proposed to replace them respectively
by the maximum size of a chain and an anti-chain in the space-time diagram
regarded as a directed acyclic graph. According to these new de�nitions, our
construction has exponential space complexity and quadratic time complexity.



It seems natural to draw a connexion between the construction we propose
and Boolean circuits, and we plan to investigate the relation. However, signal
machines address an additional concern, which Boolean circuits do not; namely,
that computations take place not only over time, but also over physical space,
and that, in this respect, they are potentially limited by any bound placed on
the speed at which information may travel.

Any formula can be compiled into a signal machine. The next step is to
provide a single signal machine that is generic for Q-SAT�i.e. it can solve any
instance of Q-SAT�so that the formula would only have to be compiled into
an initial con�guration. Additionally, we will continue our investigations with
complexity classes higher in the hierarchy, such as EXPTIME or EXPSPACE.
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