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Q-SAT

Decision problem Q-SAT

Input : a quantified boolean formula ¢.
Question : Is ¢ true or false?

Example
¢ = dx1VxoVx3 Xxq /\(‘1XQ V’Xg) }

T h €Or€Im [Stockmeyer,1973]

Q-SAT is PSPACE-complete.
On our classical model of computation
with the usual notion of complexity.
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Q-SAT

Brute force solution

Recursive algorithm

o V(dx o) =V(v[x + false])VV(i)[x < true])
o V(Vx ) =V(y|x + false])AV()[x < true])
o V(B) =eval(B) if B is a ground boolean formula.

Polynomial space but exponential time

Example

V(EIX1VX2\V/X3 X1 N\ (—|X2 V X3)):\/ X V(\V/XQ\V/X:g false A (_'XZ \% X3))

|V(Vx2Vx3 true A (—x2 V x3))

( [V(Vx3 false A (—false V x3))
>V(Vx3 false A (—true V x3))
V(Vx3 true A (—false V x3))
|V(Vx3 true A (—true V x3))

AR
=V <
AR

\
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Parallelistation scheme

/ \
SN\

A A A

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)
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Parallelistation scheme

3X1
X1 :M \K:true
VX Vxo

Vx3 Vx3 Vx3

A A A A

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)
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Q-SAT

Parallelistation scheme

E|X1
x1 = fals 1 = true

\V/XQ \V/XQ

X3 = fa/ \X< true X9 = fa/ \X< true
Vx3 Vx3 VX3 Vx3
X3f/ \X3t X3f/ \X3t X3f/ \X3t X3f/ \X3f

Y(f, £, f) (f,f,t) Y(f,t, f) o(f, t,t) Y(t, f,f) (e, f,t) P(t, t,f)  P(t, ¢, t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)
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Q-SAT

Parallelistation scheme

/ \\m
ZANEEVZAN
i N v e ]

P(F, f, f) Y(Ff, f,t) W(F,t, f) P(f,t,t) P(t, f, f) P(t, f,t) w(t, t,f) P(t, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

9/ 41



Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

/ AN

A A

false/ \‘alse false/ \calse true/ \crue false/ \crue

W(f, £, f)  o(f, f, 1) Y(f, e, f) o(f, t,t) Y(t, £, f) (e, f, 1) Y(t, t,f) (e, t, 1)

VXQ/HX1\VXQ
NS

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)
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Q-SAT

Parallelistation scheme

E|X1

VXQ
fa I% Nalse trV Nalse

A

A\
false/ \‘alse false/ \calse true/ \crue false/ \crue

W(f, £, f)  o(f, f, 1) Y(f, e, f) o(f, t,t) Y(t, £, f) (e, f, 1) Y(t, t,f) (e, t, 1)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)
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Q-SAT

Parallelistation scheme

E|X1
fals se
N /N
faV wse try wse
N N\ N N\
false/ \‘alse false/ \calse true/ \crue false/ \crue
P(f, f, f) Y(f,f,t) Y(f, e, F) (F,t, 1) P(t, f, f) (L, f,t) P(e, ¢, f) (e, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)
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Q-SAT

Parallelistation scheme

false
V
fals se
N\ /N
faV wse try wse
N N\ N N\
false/ \‘alse false/ \calse true/ \crue false/ \crue
P(f, f, f) (f,f,t) Y(f, e, F) (F,t, 1) P(t, f, f) (L, f,t) Y(e, ¢, f) (e, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)
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“Nice regular drawings”

SN\V//ANNVI/AN

ANXX ANXX

Solving Q-SAT




Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

“Nice regular drawings”

EIIIXIXN
P

TIPS
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“Nice regular drawings”
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“Nice regular drawings”

Lines: traces of signals

Space-time diagrams of signal machines

Defined by

@ bottom: initial configuration

@ lines: signals ~» meta-signals

@ end-points: collisions ~~ rules
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Signal machines

Example: find the middle

Meta-signals (speed)
M (0)

M Nﬂ

4
Collision rules
Yy
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Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)

4
Collision rules
Yy
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Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)

VIR ’
| M Collision rules
QW M . .
{div, M} — { M, hilo}
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Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)

ba
X A back (-3)
M AN \o y
| M Collision rules
aw M . .
{div, M} — { M, hilo}

{lo, M} — { back, M }
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Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
M hi (1)
lo (3)

bacy

. TR back (-3)

\O ’
M Collision rules

{div, M} — { M, hi lo}
{lo, M} — { back, M }
{ hi, back } — { M}
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Known results

Turing computation
@ [Durand-Lose, 2011]
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Analog computations

o Computable analysis [Weihrauch, 2000]
[Durand-Lose, 2010]

@ Blum, Shub and Smale model [Blum et al., 1989]
[Durand-Lose, 2008]
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Signal machines

Known results

Turing computation
@ [Durand-Lose, 2011]

Analog computations

o Computable analysis [Weihrauch, 2000]
[Durand-Lose, 2010]

@ Blum, Shub and Smale model [Blum et al., 1989]
[Durand-Lose, 2008]

“Black hole” implementation

@ Hyper-computation, deciding the Halting problem
[Durand-Lose, 2009]
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Implantation

Whole picture

Q-formula compiled into a
signal machine

Linear number of
meta-signals

Quadratic number of rules |
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Building the tree with signals

X2 ma X2 ma
<§ 2 2? ? 2 2?
W
£ ) &
1
« mi B
a a
)
W
——
start,
/
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Following the tree
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Implantation

Propagating the beam
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Implantation

Evaluating the formula

case:
@ xj Is true

@ x> is false

@ X3 IS true
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Implantation

Collecting the results
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Implantation

Whole picture with initialization
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/
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Implantation

Generating the formula
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Conclusion

@ QSAT resolution in bounded space and time
@ Quadratic depth

@ Exponential width

_4
Perspectives

@ Generic version
@ Model of the parallel thesis

@ Higher complexity classes

A
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