Solving Q-SAT in bounded space and time by geometrical computation

Solving Q-SAT in bounded space and time by
geometrical computation

Denys Duchier!, Jérome Durand-Lose?, Maxime Senot?

1 Team Constraint & Machine Learning

2 Team Graphs & Algorithms
Laboratoire d’'Informatique Fondamentale d'Orléans,

Université d'Orléans, Orléans, FRANCE

Partially supported by the ANR AGAPE, ANR-09-BLAN-0159-03.

CiE '11, Sofia, Bulgaria — 28th June 2011

1/41

Solving Q-SAT in bounded space and time by geometrical computation

@ Q-SAT

© Signal machines

© Implantation

@ Conclusion

2/41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

@ Q-SAT

3/41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Q-SAT

Decision problem Q-SAT

Input : a quantified boolean formula ¢.
Question : Is ¢ true or false?

Example
¢ = dx1VxoVx3 Xxq /\(‘1XQ V’Xg) }

T h €Or€Im [Stockmeyer,1973]

Q-SAT is PSPACE-complete.
On our classical model of computation
with the usual notion of complexity.

4/41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Brute force solution

Recursive algorithm

o V(dx o) =V(v[x + false])VV(i)[x < true])
o V(Vx) =V(y|x + false])AV()[x < true])
o V(B) =eval(B) if B is a ground boolean formula.

Polynomial space but exponential time

Example

V(EIX1VX2\V/X3 X1 N\ (—|X2 V X3)):\/ X V(\V/XQ\V/X:g false A (_'XZ \% X3))

|V(Vx2Vx3 true A (—x2 V x3))

([V(Vx3 false A (—false V x3))
>V(Vx3 false A (—true V x3))
V(Vx3 true A (—false V x3))
|V(Vx3 true A (—true V x3))

AR
=V <
AR

\

5/41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

/ \
SN\

A A A

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)

6/ 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

3X1
X1 :M \K:true
VX Vxo

Vx3 Vx3 Vx3

A A A A

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)

7/41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

E|X1
x1 = fals 1 = true

\V/XQ \V/XQ

X3 = fa/ \X< true X9 = fa/ \X< true
Vx3 Vx3 VX3 Vx3
X3f/ \X3t X3f/ \X3t X3f/ \X3t X3f/ \X3f

Y(f, £, f) (f,f,t) Y(f,t, f) o(f, t,t) Y(t, f,f) (e, f,t) P(t, t,f) P(t, ¢, t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where b = x1 A (—x2 V x3)

8/ 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

/ \\m
ZANEEVZAN
i N v e]

P(F, f, f) Y(Ff, f,t) W(F,t, f) P(f,t,t) P(t, f, f) P(t, f,t) w(t, t,f) P(t, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

9/ 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

/ AN

A A

false/ \‘alse false/ \calse true/ \crue false/ \crue

W(f, £, f) o(f, f, 1) Y(f, e, f) o(f, t,t) Y(t, £, f) (e, f, 1) Y(t, t,f) (e, t, 1)

VXQ/HX1\VXQ
NS

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

10 / 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

E|X1

VXQ
fa I% Nalse trV Nalse

A

A\
false/ \‘alse false/ \calse true/ \crue false/ \crue

W(f, £, f) o(f, f, 1) Y(f, e, f) o(f, t,t) Y(t, £, f) (e, f, 1) Y(t, t,f) (e, t, 1)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

11/ 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

E|X1
fals se
N /N
faV wse try wse
N N\ N N\
false/ \‘alse false/ \calse true/ \crue false/ \crue
P(f, f, f) Y(f,f,t) Y(f, e, F) (F,t, 1) P(t, f, f) (L, f,t) P(e, ¢, f) (e, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

12 / 41

Solving Q-SAT in bounded space and time by geometrical computation
Q-SAT

Parallelistation scheme

false
V
fals se
N\ /N
faV wse try wse
N N\ N N\
false/ \‘alse false/ \calse true/ \crue false/ \crue
P(f, f, f) (f,f,t) Y(f, e, F) (F,t, 1) P(t, f, f) (L, f,t) Y(e, ¢, f) (e, t,t)

¢ = Ix1VxoVxs Y(x1, X2, x3) where v = x3 A (—x2 V x3)

13 /41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

© Signal machines

14 / 41

\

—
/%Q%m

c
2
]
V]
1
=]
a8
(o]
o
©
o
=
=
(]
o]
(]
o1y
>
()]
e
c
V]
(V]
o
©
Q.
[F2)
(]
c
=]
(o]
0
c

n
v
=
=
o
®
£
©
c
.20
v

“Nice regular drawings”

SN\V//ANNVI/AN

ANXX ANXX

Solving Q-SAT

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

“Nice regular drawings”

EIIIXIXN
P

TIPS

16 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

“Nice regular drawings”

17 / 41

Solving Q-SAT in bounded space an d time by geometr ical computat ion

Signal machines

“Nice regular drawings”

18 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

“Nice regular drawings”

S=—=

19 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

“Nice regular drawings”

Lines: traces of signals

Space-time diagrams of signal machines

Defined by

@ bottom: initial configuration

@ lines: signals ~» meta-signals

@ end-points: collisions ~~ rules

20/ 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Example: find the middle

Meta-signals (speed)
M (0)

M Nﬂ

4
Collision rules
Yy

21/ 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)

4
Collision rules
Yy

22 /41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)

VIR ’
| M Collision rules
QW M . .
{div, M} — { M, hilo}

23 /41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)

ba
X A back (-3)
M AN \o y
| M Collision rules
aw M . .
{div, M} — { M, hilo}

{lo, M} — { back, M }

24 /41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Example: find the middle

Meta-signals (speed)

M (0)
div (3)
M hi (1)
lo (3)

bacy

. TR back (-3)

\O ’
M Collision rules

{div, M} — { M, hi lo}
{lo, M} — { back, M }
{ hi, back } — { M}

25 /41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Known results

Turing computation
@ [Durand-Lose, 2011]

26 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Known results

Turing computation
@ [Durand-Lose, 2011]

Analog computations

o Computable analysis [Weihrauch, 2000]
[Durand-Lose, 2010]

@ Blum, Shub and Smale model [Blum et al., 1989]
[Durand-Lose, 2008]

27 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Signal machines

Known results

Turing computation
@ [Durand-Lose, 2011]

Analog computations

o Computable analysis [Weihrauch, 2000]
[Durand-Lose, 2010]

@ Blum, Shub and Smale model [Blum et al., 1989]
[Durand-Lose, 2008]

“Black hole” implementation

@ Hyper-computation, deciding the Halting problem
[Durand-Lose, 2009]

28 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

© Implantation

29 /41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Whole picture

Q-formula compiled into a
signal machine

Linear number of
meta-signals

Quadratic number of rules |

“
P
.

»
.
.
.
.
.
.
.
P
.

e
N
Y.
L]

4
.
.
N
N
.
.
.
o
.

"«
®
Y.
¥

30 /41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Building the tree with signals

X2 ma X2 ma
<§ 2 2? ? 2 2?
W
£) &
1
« mi B
a a
)
W
——
start,
/

31/ 41

Solving Q-SAT in bounded space and time by geometr ical computation
Implantat ion

Following the tree

'&
gy
N\
'
-
gy
o
}

¢
D

D,
¢
D,

32 /41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Propagating the beam

7
SR

dllect Ls colleét

%

; s
%

rl

9
KL
s

%
o\ N3]

3l
|
|

33/41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Evaluating the formula

case:
@ xj Is true

@ x> is false

@ X3 IS true

34 /41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Collecting the results

35 /41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Whole picture with initialization

/-~ ..
\
/

36 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Implantation

Generating the formula

wcoII;ct
W store
8
Wy W vy
W
< 7
W- Vi
X 7
_>
\/\7 W er
W
6
Ws W _r
= 5
—
\/\5 w XrIc
Z 4
%
\/\4 W XI
W
W 3 —
Ws m
wW
2 3
W5 w
W
1
C—> a
-y
Wi
%
— a
C
ES

37 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Conclusion

@ Conclusion

38 /41

Solving Q-SAT in bounded space and time by geometrical computation

Conclusion

@ QSAT resolution in bounded space and time
@ Quadratic depth

@ Exponential width

_4
Perspectives

@ Generic version
@ Model of the parallel thesis

@ Higher complexity classes

A

39 /41

Solving Q-SAT in bounded space and time by geometrical computation

Conclusion

&

&

Blum, L., Shub, M., and Smale, S. (1989).

On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines.

Bull. Amer. Math. Soc., 21(1):1-46.

Durand-Lose, J. (2008).

Abstract geometrical computation with accumulations: Beyond the
Blum, Shub and Smale model.

In Beckmann, A., Dimitracopoulos, C., and Léwe, B., editors, Logic
and Theory of Algorithms, 4th Conf. Computability in Europe

(CiE '08) (abstracts and extended abstracts of unpublished papers),
pages 107-116. University of Athens.

Durand-Lose, J. (2009).

Abstract geometrical computation 3: Black holes for classical and
analog computing.

Nat. Comput., 8(3):455-472.

Durand-Lose, J. (2010).

40 / 41

Solving Q-SAT in bounded space and time by geometrical computation

Conclusion

Abstract geometrical computation 5: embedding computable
analysis.

Nat. Comput.

Special issue on Unconv. Comp. '09.

W Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal
machines.

Theoret. Comp. Sci., 412:57-67.
1 Weihrauch, K. (2000).

Introduction to computable analysis.

Texts in Theoretical computer science. Springer, Berlin.

41 /41

