Solving Q-SAT in bounded space and time by geometrical computation

Denys Duchier¹, Jérôme Durand-Lose², Maxime Senot²

- ¹ Team Constraint & Machine Learning
- ² Team *Graphs & Algorithms*

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

Partially supported by the ANR AGAPE, ANR-09-BLAN-0159-03.

CiE '11, Sofia, Bulgaria — 28th June 2011

- Q-SAT
- 2 Signal machines
- 3 Implantation
- 4 Conclusion

- Q-SAT
- Signal machines
- 3 Implantation
- 4 Conclusion

Q-SAT

Decision problem Q-SAT

Input: a quantified boolean formula ϕ .

Question : Is ϕ true or false?

Example

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad x_1 \land (\neg x_2 \lor x_3)$$

Theorem [Stockmeyer, 1973]

Q-SAT is PSPACE-complete.

On our classical model of computation with the usual notion of complexity.

Brute force solution

Recursive algorithm

- $V(\exists x \ \psi) = V(\psi[x \leftarrow \mathsf{false}]) \lor V(\psi[x \leftarrow \mathsf{true}])$
- $V(\forall x \ \psi) = V(\psi[x \leftarrow \mathsf{false}]) \land V(\psi[x \leftarrow \mathsf{true}])$
- $V(\beta) = eval(\beta)$ if β is a ground boolean formula.

Polynomial space but exponential time

Example
$$\mathbb{V}(\exists x_1 \forall x_2 \forall x_3 \ x_1 \land (\neg x_2 \lor x_3)) = \bigvee \begin{cases} \mathbb{V}(\forall x_2 \forall x_3 \ \text{false} \land (\neg x_2 \lor x_3)) \\ \mathbb{V}(\forall x_2 \forall x_3 \ \text{true} \land (\neg x_2 \lor x_3)) \end{cases}$$

$$= \bigvee \begin{cases} \bigwedge \begin{cases} \mathbb{V}(\forall x_3 \ \text{false} \land (\neg \text{false} \lor x_3)) \\ \mathbb{V}(\forall x_3 \ \text{false} \land (\neg \text{true} \lor x_3)) \\ \bigwedge \begin{cases} \mathbb{V}(\forall x_3 \ \text{true} \land (\neg \text{false} \lor x_3)) \\ \mathbb{V}(\forall x_3 \ \text{true} \land (\neg \text{true} \lor x_3)) \end{cases}$$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

 $\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

11/41

$$\phi = \exists x_1 \forall x_2 \forall x_3 \ \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

$$\phi = \exists x_1 \forall x_2 \forall x_3 \quad \psi(x_1, x_2, x_3) \text{ where } \psi = x_1 \land (\neg x_2 \lor x_3)$$

- 1 Q-SAT
- 2 Signal machines
- 3 Implantation
- 4 Conclusion

Lines: traces of signals

Space-time diagrams of signal machines

Defined by

- bottom: initial configuration
- lines: signals → meta-signals
- end-points: collisions → rules

М

М

Meta-signals (speed) M(0)Collision rules

М

div

Meta-signals (speed)

M (0) div (3) hi (1) lo (3)

Collision rules

 $\{ div, M \} \rightarrow \{ M, hi, lo \}$

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)
back (-3)

Collision rules

 $\left\{ \begin{array}{l} \mathsf{div}, \, \mathsf{M} \, \right\} \, \to \, \left\{ \begin{array}{l} \mathsf{M}, \, \mathsf{hi}, \, \mathsf{lo} \, \right\} \\ \left\{ \begin{array}{l} \mathsf{lo}, \, \mathsf{M} \, \right\} \, \to \, \left\{ \begin{array}{l} \mathsf{back}, \, \mathsf{M} \, \right\} \end{array} \right.$

Meta-signals (speed)

M (0)
div (3)
hi (1)
lo (3)
back (-3)

Collision rules

Solving Q-SAT in bounded space and time by geometrical computation Signal machines

Known results

Turing computation

• [Durand-Lose, 2011]

Known results

Turing computation

• [Durand-Lose, 2011]

Analog computations

- Computable analysis [Weihrauch, 2000]
 [Durand-Lose, 2010]
- Blum, Shub and Smale model [Blum et al., 1989]
 [Durand-Lose, 2008]

Known results

Turing computation

[Durand-Lose, 2011]

Analog computations

- Computable analysis [Weihrauch, 2000]
 [Durand-Lose, 2010]
- Blum, Shub and Smale model [Blum et al., 1989]
 [Durand-Lose, 2008]

"Black hole" implementation

 Hyper-computation, deciding the Halting problem [Durand-Lose, 2009]

- 1 Q-SAT
- 2 Signal machines
- 3 Implantation
- 4 Conclusion

Whole picture

Q-formula compiled into a signal machine

Linear number of meta-signals

Quadratic number of rules

Building the tree with signals

Following the tree

Propagating the beam

Evaluating the formula

case:

- x_1 is true
- x_2 is false
- x_3 is true

Collecting the results

Whole picture with initialization

Generating the formula

- 1 Q-SAT
- 2 Signal machines
- 3 Implantation
- 4 Conclusion

Results

- QSAT resolution in bounded space and time
- Quadratic depth
- Exponential width

Perspectives

- Generic version
- Model of the parallel thesis
- Higher complexity classes

Blum, L., Shub, M., and Smale, S. (1989).

On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines.

Bull. Amer. Math. Soc., 21(1):1-46.

Durand-Lose, J. (2008).

Abstract geometrical computation with accumulations: Beyond the Blum, Shub and Smale model.

In Beckmann, A., Dimitracopoulos, C., and Löwe, B., editors, *Logic* and *Theory of Algorithms, 4th Conf. Computability in Europe* (CiE '08) (abstracts and extended abstracts of unpublished papers), pages 107–116. University of Athens.

Durand-Lose, J. (2009).

Abstract geometrical computation 3: Black holes for classical and analog computing.

Nat. Comput., 8(3):455-472.

Durand-Lose, J. (2010).

Abstract geometrical computation 5: embedding computable analysis.

Nat. Comput.

Special issue on Unconv. Comp. '09.

Durand-Lose, J. (2011).

Abstract geometrical computation 4: small Turing universal signal machines.

Theoret. Comp. Sci., 412:57-67.

Weihrauch, K. (2000).

Introduction to computable analysis.

Texts in Theoretical computer science. Springer, Berlin.