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Abstract. Space-time diagrams of signal machines on �nite con�gu-
rations are composed of interconnected line segments in the Euclidean
plane. As the system runs, a network emerges. If segments extend only
in one or two directions, the dynamics is �nite and simplistic. With four
directions, it is known that fractal generation, accumulation and any
Turing computation are possible.
This communication deals with the three directions/speeds case. If there
is no irrational ratio (between initial distances between signals or between
speeds) then the network follows a mesh preventing accumulation and
forcing a cyclic behavior. With an irrational ratio (here, the Golden ratio)
between initial distances, it becomes possible to provoke an accumulation
that generates in�nitely many interacting signals in a bounded portion of
the Euclidean plane. This behavior is then controlled and used in order
to simulate a Turing machine and generate a 25-state 3-speed Turing-
universal signal machine.

Key-words. Accumulation; Computability; Fractal; Model of compu-
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1 Introduction

Imagine yourself with some color pencils and a sheet of paper together with
ruler and compass. Some colored line segments are drawn and you are given
rules so as to extend the drawing. According to the rules and the initial draw-
ing/con�guration you might stop soon, have to extend the paper inde�nitely or
draw forever in a bounded part of the paper as on top of Fig. 1(a). Could such
a system compute?

This communication concentrates on the case where the dynamical system
is a signal machine. In this setting, one drawing direction is distinguished and
used as time axis. Line segments are enlarged synchronously until they intersect
one another and get replaced. This goes on until no more collision can happen.

The line segments are the traces of signals and their intersections are colli-

sions. Each signal corresponds to some meta-signal. During a collision, in-coming
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Fig. 1. Basic cases.

signals are removed and new ones are emitted according to the meta-signals as-
sociated to the incoming signals. This is called a collision rule. Signals that
correspond to the same meta-signal must travel at the same speed (or directions
on the drawing) thus the resulting traces are parallel. There are �nitely many
meta-signals so there are �nitely many collision rules.

The signals move on a one dimensional Euclidean space orthogonal to the
temporal axis. Considering the traces leads to two dimensional drawings called
space-time diagrams (as illustrated throughout the communication). Space and
time are continuous (R × R+). Signals as well as collisions are dimensionless
points. Computations are exact, there is no noise nor approximation.

Problematics. Signal machines are very powerful and colorful complex systems
capable of computing in the classical Turing understanding [1]. This communica-
tion is in the line of minimality thresholds in order to have Turing-computability
capability (like [2, 3] for Turing machines and [4, 5] for cellular automata; a more
general picture is presented in [6]). This communication extends [7] on small
Turing-universal signal machines (few meta-signals but 4+ speeds) and [8] that
addresses only accumulation (i.e. not computation) with 3-speed signal machines.

Accumulations are easy to produce and are the cornerstone to hyper-compu-
tation in the model [9]. The present communication investigates the minimal
number of speeds so that accumulations or Turing computations are possible
(starting from a �nite con�guration). Four meta-signals of di�erent speeds are
enough to make an accumulation as depicted in Fig. 1(a). Four speeds and 15
meta-signals are enough to compute [7].

In this communication, only the number of di�erent speeds is considered and
in particular the case of three speeds. One speed does not allow any collision (see
Fig. 1(b)). With two speeds, the number of collisions is �nite and signals have
to follow a regular grid which has no accumulation (see Fig. 1(c)). Three-speed
signal machines with rational speeds and rational initial positions always enter
a cyclic behavior with no accumulation and limited computing capability. But if
an irrational ratio between distances in the initial con�guration is allowed, then
accumulations are possible as well as any Turing computation.



State of the art. Signal machines are one of the unconventional models of com-
putation dealing with Euclidean geometry together with Euclidean abstract ma-
chines [10, 11], Piecewise Constant Derivatives systems [12] and colored universes
[13].

Signal machines were originally introduced as a continuous counterpart of
(discrete) cellular automata to provide a context for the underlying Euclidean
(continuous) reasoning often found in the literature as well as to propose an
abstract formalization of the concept of signal [14�16].

Accumulations provide a powerful tool to accelerate a computation, to do
hyper-computation and analog computation [9]. Fractals can be generated and
their construction modi�ed so as to achieve massive parallelism and the capa-
bility to solve e�ciently NSPACE-complete problems (Q-SAT in [17]).

In [8], the present author and colleagues already proved that irrational ra-
tio between speeds or between initial distances is needed in order to have an
accumulation with three speeds. They exhibit a geometrical implantation of
the Euclid algorithm inside the computation. If all ratios are rational then this
algorithm stops (generating a non-accumulating mesh) otherwise it goes on in-
de�nitely provoking the accumulation. They also cover the case of an irrational
ratio between speeds which is not addressed here.

Contribution. If all the ratios are rational, then some global regularmesh emerges.
The signals have to be on that mesh which does not have any accumulation point.
Moreover, being on this mesh ensures that the collisions have to be ultimately
periodic so that the dynamics is ultimately cyclic and computing capability is
limited. (The behavior is called cyclic and not periodic since at the con�guration
level, there is no periodicity.)

Using the Golden ratio between distances makes it possible to draw a fractal
which accumulates. Because of self-similarity, ensuring one repetition step is
enough.

With three speeds, it is straightforward to simulate a Turing machine on a
bounded tape. But even though the tape remains �nite, it cannot be bounded in
the general case. From the fractal construction, a scheme is extracted to extend
the tape on demand and get the full Turing computing power.

Outline. Section 2 provides all the de�nitions. Section 3 shows that in the rational
case the dynamics is trapped into a mesh that does not allow any accumulation
and restrain computing capability. Section 4 shows how to get an accumulation
with non-rational ratio between distances. Section 5 provides the simulation of
any Turing machine in such a case. Conclusion, remarks and perspectives are
gathered in Sect. 6.

2 De�nitions

This communication deals only with �nite con�gurations so all de�nitions are
restrained to this case.



A signal machine collects the de�nitions of available meta-signals, their
speeds (positive for rightward signals and negative for leftward ones) and their
collision rules. For example, the machine to generate Fig. 1(a) is composed of the
following meta-signals (with speed): le ( 12 ), zig (4), zag (−4), and ri (- 12 ). There
are only two collision rules:{

le, zag
}
−→

{
le, zig

}
and

{
zig, ri

}
−→

{
zag, ri

}
.

It might happen that exactly three (or more) meta-signals meet. In such a
case, collision rules involving three (or more) meta-signals are used. There can
be any number of meta-signals in the range of a collision rule, as long as their
speeds di�er (i.e. they are not parallel).

De�nition 1 (Signal machine) A Signal machine, (M,S,R), is de�ned by:
M is a �nite set of meta-signals, S is a function from meta-signals to real num-
bers, assigning speeds, and R is a deterministic set of collision rules. A collision
rule is written ρ = ρ− → ρ+ where ρ− and ρ+ are sets of meta-signals of di�erent
speeds, and ρ− must have at least two meta-signals. The set of collision, rules,
R is deterministic: ρ 6= ρ′ implies that ρ− 6= ρ′−.

A con�guration is a function from the real line (space) into the set of meta-
signals and collision rules plus one extra value � (nothing there). There should
be �nitely many non-� locations.

De�nition 2 (Con�guration) A con�guration, c, is a function from the real
line into meta-signals, rules, and the value � (let V = M ∪ R ∪ {�} so that
c : R→ V ) such that |c−1(M ∪R)| <∞.

If there is a signal of speed s at x, then, unless it enters a collision before,
after a duration ∆t, its position is x+ s·∆t. At a collision, all incoming signals
are immediately replaced by outgoing signals in the following con�gurations
according to collision rules.

De�nition 3 (Sequence of collision times) Considering a con�guration, c,
the time to the next collision, ∆(c), is equal to the minimum of the positive real
numbers d such that:

∃x1, x2 ∈ R, x1 6= x2,∃µ1, µ2 ∈M

x1 + d·S(µ1) = x2 + d·S(µ2) ,
c(x1) = µ1 ∨ (c(x1) = ρ− → ρ+ ∧ µ1 ∈ ρ+) ,
c(x2) = µ2 ∨ (c(x2) = ρ− → ρ+ ∧ µ2 ∈ ρ+) .

It is +∞ if there is no such d. The sequence of collision times is de�ned by:
t0 = 0, tn+1 = tn +∆(ctn) where ct denote the con�guration at time t.

This sequence is �nite if there is an n such that ∆(ctn) = +∞. Otherwise,
since it is non-decreasing, it admits a limit. If the sequence is �nite or its limit
is in�nite, then the whole space-time diagram is de�ned. Otherwise, there is an
accumulation and the limit con�guration is left unde�ned.

De�nition 4 (Dynamics between collisions) For t′ between t and t+∆(ct),
the con�guration at t′ is de�ned as follows. Signals are set: ct′(x

′) = µ i� ct(x) =
µ∨(ct(x) = ρ− → ρ+∧µ ∈ ρ+) where x = x′+(t−t′)·S(µ). (There is no collision
to set.) It is � everywhere else.



De�nition 5 (Dynamics at a collision time) For the con�guration at t′ =
t +∆(ct), collisions are set �rst: ct′(x

′) = ρ− → ρ+ i� for all µ ∈ ρ−, ct(xµ) =
µ∨(ct(xµ) = ρ− → ρ+∧µ ∈ ρ+) where xµ = x′+(t−t′)·S(µ). Then meta-signals
are set (where there is not already a collision). It is � everywhere else.

A space-time diagram is the collection of consecutive con�gurations which
forms a two dimensional picture. In the space-time diagram in Fig. 1(a) the
sequence of collision times is given by the collisions of zig on ri, then zag on le,
then zig on ri... This sequence accumulates on top of the space-time diagram.

De�nition 6 (Rational signal machine) A signal machine is rational if all
speeds are rational numbers and any non-� position in any initial con�guration
must also be a rational number.

Since the position of collisions are solutions of systems of rational linear
equations, they are rational. (Coordinates of accumulation may be non-rational
[18].)

De�nition 7 (Rational-like) A signal machine is rational-like if its speeds
are rational up to a coe�cient. (There is no restriction on possible initial con-
�guration.) A con�guration is rational-like if all the ratios between distances
between signals are rational.

Linear transformation. It is possible to linearly change the speed of the meta-
signals or the positions in the initial con�guration. As long as the coe�cient
is positive, the dynamics is not changed. This comes from the absence of any
absolute origin or scale. This is not formally proved (this was done, e.g., in [19,
Chap. 5]), but exempli�ed by the space-time diagrams in Fig. 2.

A linear transformation with a positive ratio of all the positions in the initial
con�guration only corresponds to changing the spatial origin and the space scale
(Fig. 2(a)), time scale has to be changed accordingly.

A linear transformation with a positive ratio of all the speeds of the signal
machine results in a change in the scale of time (but not of space, Fig. 2(b)).
The term added corresponds to a drift, i.e. a slant in the time axis (Fig. 2(c)).

(a) Initial positions
divided by 2.

(b) Speeds multiplied by 2. (c) Speeds multiplied by 2
plus 1.

Fig. 2. Linear transformations on the space-time diagram of Fig. 1(a).



Only locations are a�ected. The existence of a collision as well as the com-
puting capability does not depend on linear transformations with positive ratio.

Normalization. When considering a �nite set of real numbers, there is always a
unique linear transformation with positive ratio that maps the two lowest values
in the set to 0 and 1. We call this a 0-1-normalization.

If all ratios between distances in a con�guration are rational then its 0-1-
normalization has only signals at rational coordinates: with O and I the signals
with new coordinate 0 and 1, a signal at position M have coordinate OM/OI
which is rational since non-degenerated linear operators preserve ratio.

That ratios between distances are rational is both a su�cient and necessary
condition to rescale into Q. Up to normalization, the dynamics of a rational-like
signal machine on a rational-like con�guration is the one of a rational signal
machine.

3 Rational 3-speed signal machines

If speeds are rational up to a coe�cient, then their 0-1-normalization results in
rational speeds. The 0-1-normalized speeds are 0, 1, and (a rational value greater
than 1) 1+p/q (with p, q ∈ N, 1 ≤ p, q and relatively prime). They are linearly
transformed into −q, 0 and p.

The 0-1-normalized initial con�guration is scaled so that all (signal) positions
are natural numbers. The extreme positions are 0 and n.

De�nition 8 ((p, q, n)-mesh) The (p, q, n)-mesh corresponds to the union of
the following half-lines of R× R+:

� Vv: x = v/(p+q) where v ∈ {0, 1, 2, . . . , n(p+q)},
� Ll: x ≤ n, and x+ q.t = l/p where l ∈ {0, 1, 2, . . . } and
� Rr: 0 ≤ x and x− p.t = r/q where r ∈ {. . . ,−1, 0, 1, 2, . . . , (n.q)}.
Figure 3 shows the display of such a mesh. Half-lines Vv are vertical, Ll have

a negative slope and are dotted and Rr have a positive slope and are dashed.

0 1 2 3

Fig. 3. (3, 2, 3)-mesh.

A mesh has only Ll half-lines when x < 0 and only Rr half-lines when n < x.
When 0 ≤ x ≤ n, then all three kinds of lines are present and each every point



of intersection is incident upon a line of each type. Moreover, there is a line of
each kind starting at positions (x, 0) when x ∈ {0, 1, 2, ..., n}.

Lemma 1. During the computation of a rational machine with speeds −q, 0 and

p from an initial con�guration with no signal outside of {0, 1, 2, ..., n}, there is

no signal outside the mesh (p, q, n).

This is true because: initially signals are on the mesh on a half-line with the
same speed/slope (all are issued from coordinates in {0, 1, 2, ..., n}); if a signal is
on such half-lines, it remains upon it until it participates in a collision; and new
signals appear only in collisions, collisions can only happen at line crossings and
all three kinds of lines go on from there.

If the computation would lead to an accumulation, then this accumulation
should also be on the mesh. But the mesh has no accumulation.

The mesh is time periodic in the region 0 ≤ x ≤ n and the computation
in this part does not receive anything from the outside. When considering the
con�gurations at time where lines intersect on x = 0, the mesh is exactly the
same. On 0 ≤ x ≤ n, these con�gurations can be described by a �xed length
string on meta-signals and collision rules. Since this alphabet is �nite (and the
system is deterministic), this eventually enters a cycle.

Outside of the region 0 ≤ x ≤ n, the mesh is also ultimately time-periodic.
No collision happens there and the output signals also eventually enter a cycle.
Rational 3-speed signal machines always enter a cyclic behavior. Transient time
and cycle duration can be computed from the initial con�guration and machine.
These bounds prevent Turing-universality.

Lemma 2. Rational 3-speed signal machines cannot produce accumulation and

are not Turing-universal.

This also holds for rational-like machines on rational-like initial con�gura-
tions.

4 Accumulation with the Golden ratio

Using the Golden ratio, it is possible to generate the accumulating fractal in
Fig. 4(a). The signal machine is directly read from the picture as depicted in
Fig. 4(b). The signal machine is rational-like but not rational since the initial
con�guration is not.

The initial con�guration is not part of the fractal cycle since we prefer to
have all signals but one parallel. The distance between cell and seed is taken to
be one. The exact position of right between cell and seed is not important. To
position border, ϕ has to be given a value so that the fractal is generated, i.e.

the ratio of the distance of the three last signals is preserved.
As indicated in Fig. 4(b), the �rst ratio is ϕ

1 . To compute the next ratio, the
distance between the third cell and border has to be 1 because of the presence of
the parallelogram (with left and right sides) and the parallelism of the cell and
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(b) Fractal construction

Fig. 4. Accumulating with three speeds and an irrational position.

border signals. Thus the other distance has to be ϕ−1. The second ratio is 1
ϕ−1 .

By equaling these ratios, ϕ is 1+
√
5

2 , the Golden ratio.
The construction then repeats forever. The ratio is preserved and the fractal

is generated.

Lemma 3. A 3-speed signal machine started on an irrational con�guration can

generate an accumulation, even when all speeds are rational.

In fact, this is for any non-rational ratio. Moreover, any non-rational ratio
between speeds can also be �transferred� into distances so that an accumulation
can be produced [8].

5 Computing with the Golden ratio

It is possible to start simulating a Turing machine with a rational 3-speed signal
machine. Null speed signals are used to encode the cells of the tape. Each one
encodes a symbol of the tape (# is the blank symbol). The head is encoded by
a sequence of signals that record the state and move left or right (with the two
other speeds). Each time it collides on a �symbol� signal, it updates the cell and
the state and then goes left or right. This is done according to the transition
table of the Turing machine. The meta-signals and collision rules are given on
Fig. 5. An example of this simulation is given on the lower half of Fig. 6.

The tape is �nite but not bounded. Starting from a �nite con�guration, the
representation of the tape should be enlargeable. The fractal presented in pre-
vious section allows one to generate an unbounded sequence of sites (purposely
named cell) to simulate the tape of a Turing machine. It is not fully generated
to avoid an accumulation. A new cell is generated only when the tape needs
enlargement.

An enlargement can be seen on the upper half of Fig. 6(b). It is started when
a rightward state-encoding signal (q0 in the �gure) reaches the border signal,
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Fig. 5. Basic encoding of a Turing machine.
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Fig. 6. Computing with three speeds and an irrational position.

this means that the head is looking for a cell that does not exist yet. Signal
border is replaced by a motionless signal encoding the state (q0 in the �gure)
and preserving the position of border. Simultaneously, an enlarge signal is sent
on the left to create the new cell.



This creation uses the same parallelogram construction as before (dotted
signals left and right) and closed on top by q0. The lower right is used to restore
border and set q0 on movement. The latter, instead of colliding with a symbol
signal, collides with the upper right. The collision happens as if it were on the
blank symbol. The needed meta-signals and collision rules are given in Fig. 7.
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Fig. 7. Extra encoding to enlarge the simulation.

6 Conclusion and perspectives

With three speeds, it is possible to accumulate only if there is an irrational ratio
between initial positions or between speeds (see [8] for speeds).

The number of meta-signals for the Turing-machine simulation with the
Golden ratio is 1 for each symbol plus 3 for each state plus 4. With the small uni-
versal Turing machines listed in [3], a Turing-universal 25-meta-signal 3-speed
signal machine using a Golden ratio distance can be constructed.

With a Golden ratio location, undecidable problems arise. Directly from clas-
sical computability theory, to have only �nitely many collisions (or to enter a
cyclic behavior) is not decidable. In the simulation of a Turing machine, if the
head goes on the right each time, then an accumulation is generated. For an ac-
cumulation to happen, the head would have to explore all the cells on the right
which is also not decidable. (In the general case, forecasting an accumulation is
Σ0

2 -complete [20].)

An irrational ratio is an important piece of information (it could encode the
halting problem). We conjecture that it is possible to use it as an oracle.



In [9], accumulations are used in order to hyper-compute, with an irrational
ratio, computations and accumulations become possible, we conjecture that it is
possible to solve the halting problem and even to climb the �nite levels of the
arithmetic hierarchy with three speeds and the Golden ratio.

Signal machines are know to be able to do analog computations [9] with real
numbers encoded in distances. Up to what extent is analog computation possible
with three speeds?
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