Ways to Compute in Euclidean Frameworks

Jérôme Durand-Lose

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, Orléans, FRANCE

June 2017 - UCNC 2017 - Fayetteville, AR, USA

Euclidean Geometry

Key ingredient of the dynamics

Dependence from initial positions

Localization is meaningful

Results are geometrical

Outline

- Compass and Rule (analog)
- Mondrian Automata (hybrid)
- Piece-wise Constant Derivative (hybrid)
- Signal Machines (hybrid)
- Intrinsic Universality among Signal Machines

Not addressed (too well known)

- Tile Assemble Systems (discrete)
- Cellular Automata (discrete)

- ① Compass and Rule (Huckenbeck, 1989, 1991)
- Mondrian Automata (Jacopini and Sontacchi, 1990)
- Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

Geometrical Construction Machine

Space: \mathbb{R}^2

- 2-dimensional Euclidean space
- figure constructions

Point

Variables and automaton

Creation Operators

• circle out of 3 points

Creation Operators

- circle out of 3 points
- line out of 2 points E

E Possible error

Creation Operators

- circle out of 3 points
- line out of 2 points E
- point as intersection of 2 lines E

E Possible error

Creation Operators

- circle out of 3 points
- line out of 2 points E
- point as intersection of 2 lines E
- point as intersection of 2 circles E N

E Possible error

N Non-deterministic

Creation Operators

- circle out of 3 points
- line out of 2 points E
- point as intersection of 2 lines E
- point as intersection of 2 circles E N
 different from a point E (N)

E Possible error

N Non-deterministic

Creation Operators

- circle out of 3 points
- line out of 2 points E
- point as intersection of 2 lines E
- point as intersection of 2 circles E N different from a point E (N)
- point as intersection of a circle and a line E N
 different from point E (N)
- E Possible error
- N Non-deterministic

Other Operations

branch If a point is in a set \mathcal{A} (oracle) output Write a point, a ligne or a circle termination End

Computation Success

- no branch with Error
- all branches
 - end with End
 - have the same output (→ result)

```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))

2: c_2 \leftarrow Circle ( center B, radius d(A,B))

3: p_1 \leftarrow Intersection ( c_1, c_2)

4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2)

6: d_2 \leftarrow Line ( A, B)

7: p_3 \leftarrow Intersection ( d_1, d_2)

8: Write p_3

9: End
```

A B

```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))
2: c_2 \leftarrow Circle ( center B, radius d(A,B))
3: p_1 \leftarrow Intersection ( c_1, c_2)
4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1
5: d_1 \leftarrow Line ( p_1, p_2)
6: d_2 \leftarrow Line ( A, B)
7: p_3 \leftarrow Intersection ( d_1, d_2)
8: Write p_3
9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))

2: c_2 \leftarrow Circle ( center B, radius d(A,B))

3: p_1 \leftarrow Intersection ( c_1, c_2)

4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2)

6: d_2 \leftarrow Line ( A, B)

7: p_3 \leftarrow Intersection ( d_1, d_2)

8: Write p_3

9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B) )

2: c_2 \leftarrow Circle ( center B, radius d(A,B) )

3: p_1 \leftarrow Intersection ( c_1, c_2 )

4: p_2 \leftarrow Intersection ( c_1, c_2 ) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2 )

6: d_2 \leftarrow Line ( A, B )

7: p_3 \leftarrow Intersection ( d_1, d_2 )

8: Write p_3

9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))

2: c_2 \leftarrow Circle ( center B, radius d(A,B))

3: p_1 \leftarrow Intersection ( c_1, c_2)

4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2)

6: d_2 \leftarrow Line ( A, B)

7: p_3 \leftarrow Intersection ( d_1, d_2)

8: Write p_3

9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))

2: c_2 \leftarrow Circle ( center B, radius d(A,B))

3: p_1 \leftarrow Intersection ( c_1, c_2)

4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2)

6: d_2 \leftarrow Line ( A, B)

7: p_3 \leftarrow Intersection ( d_1, d_2)

8: Write p_3

9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B) )

2: c_2 \leftarrow Circle ( center B, radius d(A,B) )

3: p_1 \leftarrow Intersection ( c_1, c_2 )

4: p_2 \leftarrow Intersection ( c_1, c_2 ) different from p_1

5: d_1 \leftarrow Line ( p_1, p_2 )

6: d_2 \leftarrow Line ( A, B )

7: p_3 \leftarrow Intersection ( d_1, d_2 )

8: Write p_3

9: End
```



```
1: c_1 \leftarrow Circle ( center A, radius d(A,B))
2: c_2 \leftarrow Circle ( center B, radius d(A,B))
3: p_1 \leftarrow Intersection ( c_1, c_2)
4: p_2 \leftarrow Intersection ( c_1, c_2) different from p_1
5: d_1 \leftarrow Line ( p_1, p_2)
6: d_2 \leftarrow Line ( A, B)
7: p_3 \leftarrow Intersection ( d_1, d_2)
8: Write p_3
9: End
```


- $\begin{array}{l} 1\colon c_1 \leftarrow \mathsf{Circle} \ (\ \mathsf{center}\ \mathsf{A},\ \mathsf{radius}\ \textit{d}(\mathsf{A},\mathsf{B})\) \\ 2\colon c_2 \leftarrow \mathsf{Circle} \ (\ \mathsf{center}\ \mathsf{B},\ \mathsf{radius}\ \textit{d}(\mathsf{A},\mathsf{B})\) \\ 3\colon \mathsf{p}_1 \leftarrow \mathsf{Intersection} \ (\ c_1,\ c_2\) \\ 4\colon \mathsf{p}_2 \leftarrow \mathsf{Intersection} \ (\ c_1,\ c_2\)\ \mathsf{different}\ \mathsf{from}\ \mathsf{p}_1 \\ 5\colon \mathsf{d}_1 \leftarrow \mathsf{Line} \ (\ \mathsf{p}_1,\ \mathsf{p}_2\) \\ \end{array}$
- 6: d₂← Line (A, B)
- 7: $p_3 \leftarrow Intersection (d_1, d_2)$
- 8: Write p₃
- 9: End

- 1: $c_1 \leftarrow Circle$ (center A, radius d(A,B))
- 2: $c_2 \leftarrow Circle$ (center B, radius d(A,B))
- 3: $p_1 \leftarrow Intersection (c_1, c_2)$
- 4: $p_2 \leftarrow$ Intersection (c_1 , c_2) different from p_1
- 5: $d_1 \leftarrow Line (p_1, p_2)$
- 6: $d_2 \leftarrow Line (A, B)$
- 7: $p_3 \leftarrow Intersection (d_1, d_2)$
- 8: Write p₃
- 9: End

Two Branches

- success
- same output

Problem

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

*B

Problem

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

2: d← Line (A, B)

3: $c \leftarrow Circle$ (center B, radius d(A,B))

4: E← Intersection (c, d) different from A

5: Write E

Problem

6: End

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

2: d← Line (A, B)
3: c← Circle (center B, radius d(A,B))
4: E← Intersection (c, d) different from A
5: Write E

Problem

6: End

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

```
2: d← Line ( A, B )
3: c← Circle ( center B, radius d(A,B) )
4: E← Intersection ( c, d ) different from A
5: Write E
```

c A B

Problem

6: End

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

```
2: d← Line ( A, B )
3: c← Circle ( center B, radius d(A,B) )
4: E← Intersection ( c, d ) different from A
5: Write E
```


Problem

Input A and B: 2 distinct points

Result E such that $\overrightarrow{AE} = 2\overrightarrow{AB}$

```
2: d← Line ( A, B )
```

- 3: $c \leftarrow Circle$ (center B, radius d(A,B))
- 4: $E \leftarrow Intersection (c, d) different from A$
- 5: Write E
- 6: End

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

4: M← *MIDDLE* (B, C)

5: E ← DOUBLE VECTOR (A, M)

6: $d \leftarrow Line (C, \overline{E})$

7: Write d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

4: M← *MIDDLE* (B, C)

5: E ← DOUBLE VECTOR (A, M)

6: d ← Line (C, E)

7: Write d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

4: M← MIDDLE (B, C)

5: E ← DOUBLE VECTOR (A, M)

6: $d \leftarrow Line (C, \overline{E})$

7: Write d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

4: M← *MIDDLE* (B, C)

5: E ← DOUBLE VECTOR (A, M)

6: d ← Line (C, E)

7: Write d

Problem

Input A, B and C: 3 distinct points

Result d such that AB is parallel to d and C belongs to d

4: M← MIDDLE (B, C)

5: E ← DOUBLE VECTOR (A, M)

6: d ← Line (C, E)

7: Write d

- initial coordinates and integers
- addition, subtraction, multiplication and division

- initial coordinates and integers
- addition, subtraction, multiplication and division

- initial coordinates and integers
- addition, subtraction, multiplication and division

- initial coordinates and integers
- addition, subtraction, multiplication and division

- initial coordinates and integers
- addition, subtraction, multiplication and division

Compute with O, I, J With Branching and $\mathcal{A} = \{O\}$

Turing Universal

2-counter automata simulation

More Generally

- As before, but piece-wise
- Frontiers are algebraic curves/surfaces with integer coefficients

 $\sqrt{2}$ cannot be generated

- ① Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

Spatial / Static aspect

Each Position (in \mathbb{R}^d)

- a state→ a color
- Finite number of colors

Uniformity

- same rules everywhere
- same color⇒ sameneighborhood

What Can be Generated?

- Trivial extension of neighborhood
 Simple composition neighborhood
 Constrained composition neighborhood

What Can be Generated?

- Trivial extension of neighborhood
- Simple composition neighborhood
- Constrained composition neighborhood
 Globally impossible

Temporal / Dynamic Aspects

Speed Limit (c)

information propagation

Space-time Cone

- dependence
- influence

Temporal / Dynamic Aspects

Speed Limit (c)

information propagation

Space-time Cone

- dependence
- influence

Uniformity (past cones)

- Same bases
 - ⇒ Same above in cone

Temporal / Dynamic Aspects

Speed Limit (c)

information propagation

Space-time Cone

- dependence
- influence

Uniformity (past cones)

- Same bases
 - \Rightarrow Same above in cone

Reversibility

Same backwards

(Turing) Computing

(Reversible) Turing Machine

b b a b # q_f ^ b b a b # | b | b | a | b | # | q_f | b b a b # a b #

Computing with Real Numbers

(Reversible linear-BSS)

- addition, subtraction
- multiplication by a constant
- test de sign, branch

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

Partition of Space

• Polyhedral regions

Partition of Space

Polyhedral regions

Each Region

 Constant derivative

Partition of Space

Polyhedral regions

Each Region

 Constant derivative

Dynamics

 Follow the trajectory from a point

Partition of Space

Polyhedral regions

Each Region

Constant derivative

Dynamics

 Follow the trajectory from a point

Accumulation

Zeno effect

Wires for Analog Information

Wires for Analog Information

In 3D wires can be merged

(Turing)-Computation in Dimension 4

Encoding of a TM Configuration

- tape (m_l, s, m_r) : $l = (0.m_l)_{|\Sigma|}$ and $r = (0.sm_r)_{|\Sigma|}$
- state: height / level

Primitives for $\Sigma = \{0, 1\}$

Branching on letter

Stack 1

Dimension 3

• managing the other side of the tape (m_l)

Dimension 4

- connection between levels
- fusion of dimension 2 paths

Climbing up the Arithmetical Hierarchy

Hierarchy

- Σ_0 : problems expressible as $\phi(x_1, x_2, ..., x_n)$ where ϕ is a (total) recursive predicate
- Σ_d : problems expressible as $\exists x_1 \forall x_2 \exists x_3 \dots \phi(x_1, x_2, ..., x_n)$ with d alternating quantifiers

Zeno Effect Use

Homogenization by the definition of the definiti

d+2 dimensions to decide Σ_d

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- Mondrian Automata (Jacopini and Sontacchi, 1990)
- Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
 - Introduction and Definition
 - Space-Time Malleability
 - Construction and Use of fractals
- Intrinsically Universal Family of Signal Machines

Cellular Automata: signal use

Firing Squad Synchronization (Goto, 1966)

• Cellular Automata: UC[NC] 2011 Tutorial by N. Ollinger

Introduction and Definition

CA: Conception with signals

Fischer (1965)

CA: Analyzing with Signals

Signals

- Signal (meta-signal)
- Collision (rule)

Vocabulary and Example: Find the Middle

Meta-signals (speed) M (0) div (3) hi (1) lo (3)

Meta-signals (speed) M (0) div (3) hi (1) lo (3)

back

(-3)

Meta-signals (speed) M (0) div (3) hi (1) lo (3) back (-3)

Another Example

Name	Speed
μ_1	1
μ_2	-1/2
μ_{3}	3
$\mu_{\mathtt{4}}$	0

Collision rules

$$\left\{ \begin{array}{l} \left\{ \mu_{1}, \mu_{2} \right\} \rightarrow \left\{ \mu_{2}, \mu_{1}, \mu_{3} \right\} \\ \left\{ \mu_{3}, \mu_{4} \right\} \rightarrow \left\{ \mu_{2} \right\} \\ \left\{ \mu_{4}, \mu_{2} \right\} \rightarrow \left\{ \mu_{2}, \mu_{4} \right\} \\ \end{array}$$

Modify the initial configuration to add another signal U

Name	Speed
Add, Rem	1/3
A, E	1
U, M	0
Ŕ	3
Ŕ	-3

Collision rules

$$\begin{split} & \{\mathsf{Add},\mathsf{M}\,\} \to \{\,\mathsf{M},\mathsf{A},\,\overrightarrow{\mathsf{R}}\,\} \\ & \{\,\overrightarrow{\mathsf{R}},\mathsf{M}\,\} \to \{\,\overleftarrow{\mathsf{R}},\mathsf{M}\,\} \\ & \{\,\mathsf{A},\,\overleftarrow{\mathsf{R}}\,\} \to \{\,\mathsf{U}\,\} \\ & \{\,\overrightarrow{\mathsf{R}},\mathsf{U}\,\} \to \{\,\overleftarrow{\mathsf{R}},\mathsf{U}\,\} \\ & \{\mathsf{Rem},\mathsf{M}\,\} \to \{\,\mathsf{M},\mathsf{E}\,\} \\ & \{\,\mathsf{E},\mathsf{U}\,\} \to \{\,\} \end{split}$$

Name	Speed
Add, Rem	1/3
A, E	1
U, M	0
Ŕ	3
Ŕ	-3

Collision rules

Space

Modify the initial configuration to remove the other signal U

Collision rules

Add a rule so that no signal extends on the right (when there is no U)

Turing Machine b b a b # b b a b # *q_f* b b a b # *q_f* b b a b # b b a # b b # ă a

a b #

Simulation

Rational machines

- speeds $\in \mathbb{Q}$
- ullet initial positions $\in \mathbb{Q}$
- ullet \Rightarrow collision coordinates $\in \mathbb{Q}$
- exact simulation on computer/TM

Undecidability

- finite number de collisions
- meta-signal appereance
- use of a rule
- disappearing of all signals
- involvement of a signal in any collision
- extension on the side, etc.

Exercise

A new *cell* is always added at the same distance on the right.

Head signals have speed 1 and -1.

 $\overrightarrow{\#}$ has speed 1.

 $\stackrel{\longleftarrow}{\#}$ and $\stackrel{\longrightarrow}{\#}$ have oposite speed.

What are the speed of $\stackrel{\leftarrow}{\#}$ and $\stackrel{\rightarrow}{\#}$?

Recognize a backward consruction to check the result.

Exerci<u>se</u>

How to change the speed so that the distance is halved each time?

This way the ribbon remains in a bounded space.

Computing with Real Numbers

Characterization Out of Accumulation: lin-BSS

- addition, subtraction
- multiplication by a constant
- test de sign, branch

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
 - Introduction and Definition
 - Space-Time Malleability
 - Construction and Use of fractals
- Intrinsically Universal Family of Signal Machines

Contraction

Contraction

Iterated Contraction

Consequences

Folding Space

- Any computation initiated on a finite potion of space can be folded in a finite portion of space-time
- \bullet A "bijective correspondence" between an unbounded part of \mathbb{R}^2 and a bounded part

Two Time Scales

- continuous time: finite duration
- discrete time (collisions): infinity of moments

Black Hole Model: Decide the Halting Problem (and Above)

- (Turing)-computation intricated but any output leaves free
- outside, one waits for the result
- after a known bounded time, either an end signal was received or there were no end.

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
 - Introduction and Definition
 - Space-Time Malleability
 - Construction and Use of fractals
- Intrinsically Universal Family of Signal Machines

Ways to Compute in Euclidean Frameworks
Signal Machines

Construction and Use of fractals

Fractal Generation

Construction and Use of fractals

Fractal Generation

How to limit a fractal construction?

• counters embedded in meta-signals (ad hoc and not generic enough).

Fractal Generation

How to limit a fractal construction?

- counters embedded in meta-signals (ad hoc and not generic enough).
- propagation orders to produce one more level (for 10 levels, 10 orders)

Quantified Boolean Formula Satisfaction

QSAT

 $\bullet \exists x_1 \forall x_2 \forall x_3 x_1 \land (\neg x_2 \lor x_3)$

Duchier et al. (2011)

Evaluating the Formula

- x_1 true
- x_2 false
- x₃ true

Construction and Use of fractals

Collecting the Results

Complexity

- constant duration
- quadratic depth
- exponential width

Generic Machine for QSAT (Duchier et al., 2012)

- formula encoded in the initial configuration
- constant duration
- cubic depth
- exponential width

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- Mondrian Automata (Jacopini and Sontacchi, 1990)
- Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

Intrinsic Universality

Being able to simulate any other dynamical system of the its class.

Cellular Automata

- regular (Albert and Čulik II, 1987; Mazoyer and Rapaport, 1998; Ollinger, 2001)
- reversible (Durand-Lose, 1997)

Tile Assembly Systems

- possible at T=2 and above (Woods, 2013)
- impossible at T=1 (Meunier et al., 2014)

Simulation for Signal Machines

Signal Machine Simulation

 $\mathcal{U}_{\mathcal{S}}$ simulates \mathcal{M} if there is function from the configurations of \mathcal{M} to the ones of $\mathcal{U}_{\mathcal{S}}$ s.t. the space-time issued from the image always mimics the original one.

Join work [Submitted]

Florent Becker, LIFO, U. Orléans Mohammad-Hadi Foroughmand-Araabi, Sharif U. T., Tehran, Iran Sama Goliaei, University of Tehran, Tehran, Iran

Theorem

- For any finite set of real numbers S, there is a signal machine U_S , that can simulate any machine whose speeds belong to S.
- The set of $\mathcal{U}_{\mathcal{S}}$ where \mathcal{S} ranges over finite sets of real numbers is an intrinsically universal family of signal machines.

Rest of this part

Let $\mathcal S$ be any finite set of real numbers, let $\mathcal M$ be any signal machine whose speeds belongs to $\mathcal S$, $\mathcal U_{\mathcal S}$ is progressively constructed as simulation is presented.

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

Macro-Signal

- ullet Meta-signal of ${\mathcal M}$ identified with numbers
- Unary encoding of numbers

Global scheme

When Support Zones Meet

- provide a delay
- 2 test if macro-collision is appropriate and what macro-signals are involved
- if OK
 - start the macro-collision

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

Whole Preparation (cropped on both side)

Shrinking Unit

Shrink

Testing for Other main Signals

Detecting Potential Overlaps

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- 2 Mondrian Automata (Jacopini and Sontacchi, 1990)
- 3 Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines
 - Concept and Definition
 - Global Scheme
 - Shrink and Test
 - Macro-Collision

Removing Unused Tables and Sending ids to Table

Collision Rules Encoding

One rule after the other

Comparison of id's in the if-part of a Rule

Rule Selection

Generating the Output

- 1 Compass and Rule (Huckenbeck, 1989, 1991)
- Mondrian Automata (Jacopini and Sontacchi, 1990)
- Piece-wise Constant Derivative (Asarin et al., 1995; Bournez, 1999)
- 4 Signal Machines
- 5 Intrinsically Universal Family of Signal Machines

Theorem

For any finite set of real numbers S, there is a signal machine U_S , that can simulate any machine whose speeds belong to S.

Theorem

The set of $\mathcal{U}_{\mathcal{S}}$ where \mathcal{S} ranges over finite sets of real numbers is an intrinsically universal family of signal machines.

- Very rich setting
- Many models

Use of simple primitives

- parallel lines
- finding the middle
- Classical computation
- Analog computation

Continuity of space and time + idealization

Hyper-computation

Thank you for your attention (and your participation)

- Albert, J. and Čulik II, K. (1987). A Simple Universal Cellular Automaton and its One-Way and Totalistic Version. *Complex Systems*, 1:1–16.
- Asarin, E., Maler, O., and Pnueli, A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. *Theoret Comp Sci*, 138(1):35–65.
- Bournez, O. (1999). Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. *Theoret Comp Sci*, 210(1):21–71.
- Das, R., Crutchfield, J. P., Mitchell, M., and Hanson, J. E. (1995). Evolving globally synchronized cellular automata. In Eshelman, L. J., editor, *International Conference on Genetic Algorithms '95*, pages 336–343. Morgan Kaufmann.
- Duchier, D., Durand-Lose, J., and Senot, M. (2011). Solving Q-SAT in bounded space and time by geometrical computation. In Ganchev, H., Löwe, B., Normann, D., Soskov, I., and Soskova, M., editors, *Models of computability in contecxt, 7th Int. Conf. Computability in Europe (CiE '11) (abstracts and handout booklet)*, pages 76–86. St. Kliment Ohridski University Press, Sofia University.
- Duchier, D., Durand-Lose, J., and Senot, M. (2012). Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants. In

- Agrawal, M., Cooper, B. S., and Li, A., editors, *Theory and Applications of Models of Computations (TAMC '12)*, number 7287 in LNCS, pages 435–447. Springer.
- Durand-Lose, J. (1997). Intrinsic Universality of a 1-Dimensional Reversible Cellular Automaton. In *STACS 1997*, number 1200 in LNCS, pages 439–450. Springer.
- Fischer, P. C. (1965). Generation of primes by a one-dimensional real-time iterative array. *J ACM*, 12(3):388–394.
- Goto, E. (1966). Otomaton ni kansuru pazuru [Puzzles on automata]. In Kitagawa, T., editor, *Jōhōkagaku eno michi [The Road to information science]*, pages 67–92. Kyoristu Shuppan Publishing Co., Tokyo.
- Huckenbeck, U. (1989). Euclidian geometry in terms of automata theory. *Theoret Comp Sci*, 68(1):71–87.
- Huckenbeck, U. (1991). A result about the power of geometric oracle machines. *Theoret Comp Sci*, 88(2):231–251.
- Jacopini, G. and Sontacchi, G. (1990). Reversible parallel computation: an evolving space-model. *Theoret Comp Sci*, 73(1):1–46.
- Mazoyer, J. and Rapaport, I. (1998). Inducing an Order on Cellular Automata by a Grouping Operation. In 15th Annual Symposium on

- Theoretical Aspects of Computer Science (STACS 1998), volume 1373 of LNCS, pages 116–127. Springer.
- Meunier, P., Patitz, M. J., Summers, S. M., Theyssier, G., Winslow, A., and Woods, D. (2014). Intrinsic Universality in Tile Self-Assembly Requires Cooperation. In Chekuri, C., editor, 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, pages 752–771. SIAM.
- Ollinger, N. (2001). Two-States Bilinear Intrinsically Universal Cellular Automata. In *FCT '01*, number 2138 in LNCS, pages 369–399. Springer.
- Woods, D. (2013). Intrinsic Universality and the Computational Power of Self-Assembly. In Neary, T. and Cook, M., editors, *Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland*, volume 128 of *EPTCS*, pages 16–22.