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Ways to Compute in Euclidean Frameworks

Euclidean Geometry

Key ingredient of the dynamics J
Dependence from initial positions )
Localization is meaningful ]
Results are geometrical J
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Ways to Compute in Euclidean Frameworks

Outline

Compass and Rule (analog)

Mondrian Automata (hybrid)
Piece-wise Constant Derivative (hybrid)
Signal Machines (hybrid)

Intrinsic Universality among Signal Machines

Not addressed (too well known)

o Tile Assemble Systems (discrete)

o Cellular Automata (discrete)
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Ways to Compute in Euclidean Frameworks
Compass and Rule

@ Compass and Rule (Huckenbeck, 1989, 1991)
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Geometrical Construction Machine

@ 2-dimensional Euclidean space

e figure constructions

Stight Line

P2
. P
Py
P, r Ps

o*“———e

v

@ Variables and automaton )

5/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points
@ point as intersection of 2 lines

@ point as intersection of 2 circles E N
different from a point £ (N)

@ point as intersection of a circle and a line E N
different from point £ (N)

N Non-deterministic
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (2/2)

Other Operations

branch If a point is in a set A (oracle)
output Write a point, a ligne or a circle

termination End

Computation Success

@ no branch with Error
@ all branches

o end with End
o have the same output (~ result)
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

c1 ¢ Circle ( center A, radius d(A,B) )

1:
2
3
4:
5:
6.
7
8
9

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

1: ¢3¢ Circle ( center A, radius d(A,B) )
2: co+ Circle ( center B, radius d(A,B) )
Bt a1

© R YD
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

1: ¢3¢ Circle ( center A, radius d(A,B) )
2: co+ Circle ( center B, radius d(A,B) ) 2
3: p14 Intersection ( c1, c2 ) a

© R YD
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

R Y @

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;

C2

C1

C2

¢
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Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

C2

C1

C2

¢
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )
: cp4— Circle ( center B, radius d(A,B) )
: p1¢ Intersection ( c1, c2 ) a
: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

C2

di

4
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Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

: Write p3

C2

© 00 ~NO OB WN
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Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )
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C2
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

: Write p3

: End 5

“‘
a

C2

O 00 ~NO OB WN

0
N

@ success

@ same output ‘.
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB
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Compass and Rule
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Input A and B: 2 distinct points
Result E such that AE = 2AB

d;
d« Line (A, B)

2:
3:
4:
5.
6
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Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

di
2: d<Line (A, B)
3: ¢« Circle ( center B, radius d(A,B) ) E
4: C
5: A
6:
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Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d
2: d<Line (A, B)
3: ¢« Circle ( center B, radius d(A,B) ) E
4: E< Intersection ( ¢, d ) different from A c
5: Write E A
6:
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Ways to Compute in Euclidean Frameworks

Compass and Rule

OB WN

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d
: d<Line (A, B)
: ¢+ Circle ( center B, radius d(A,B) ) E
: E<— Intersection ( c, d ) different from A c
: Write E A
: End
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E d
C, E
B
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E d
C P — N =
W
B
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE ( B, C) C T
6: |
|
| B
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Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M+ MIDDLE ( B, C) c ’E
5. E<~ DOUBLE_VECTOR (A, M) /”//*//RX/
6: o
7 /
8: A B
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d
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Exercise: Parallel Line Passing through a Point

Problem

Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE (B, C) c
5. E+- DOUBLE_VECTOR (A, M) Y
6: d«Line (C, E) .
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE (B, C) /C/E/
5. E+- DOUBLE_VECTOR (A, M)
6: d« Line (C, E) M
7: Write d _’////’r’///////////’E;,,’/
8: End A
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division

M<X> 0 a ath b a+b
y 2

J Mx(g J

ol | ‘ ol I a b
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Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, |, J With Branching and A = {0}

Turing Universal
2-counter automata simulation

More Generally

@ As before, but piece-wise

o Frontiers are algebraic curves/surfaces with integer coefficients

V/2 cannot be generated J
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Ways to Compute in Euclidean Frameworks
Mondrian Automata

© Mondrian Automata (Jacopini and Sontacchi, 1990)
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Ways to Compute in Euclidean Frameworks
Mondrian Automata

Spatial / Static aspect

Each Posi

@ a state
~> a color

72777777
4555555500
P
05255525
055555555
7 27277774

@ Finite number of
colors

@ same rules
everywhere

@ same color (a) Colored space (b) Local constraints

v

= same
neighborhood
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Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

at Can be Generated

e e
a4 N 4 N
4 \ 4 \
{ 1
\ \

\ 4 \ 4
e 4 N v
= -~
4 N 7 N
’ N £ \
i 1
\ \

\ 4 \ /
~ 4 N .
P — o
4 N 4 N
4 w \

1 {
\ \
\ /N {
~ 4 (e .
~ = <1~




Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood
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Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood

@ Simple composition neighborhood

o Constrained composition neighborhood
@ Globally impossible




Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

t+4«”’

time

!\ /!
J \

16 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

Uniformity (past cones)
@ Same bases
= Same above in cone

16 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

Uniformity (past cones)
@ Same bases
= Same above in cone

Reversibility X N - ]
@ Same backwards
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Ways to Compute in Euclidean Frameworks

Mondrian Automata

(Turing) Computing

Reversible) Turing Machine

N

al
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Ways to Compute in Euclidean Frameworks

Mondrian Automata

Computing with Real Numbers

Addition (value = distance)

base val .. base val
S~ 7
@[;61‘ S
PR Satd
- Ll
L7 -4~ gowno
8 -4~ downst
B 15 -8
- base val val base
(Reversible linear-BSS)
@ addition, subtraction
o multiplication by a constant
@ test de sign, branch
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Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

e Piece-wise Constant Derivative (Asarin et al., 1995; Bournez,
1999)
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Hybride Dynamical System

Partition of Space

@ Polyhedral regions
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Piece-wise Constant Derivative

Hybride Dynamical System

Partition of Space

@ Polyhedral regions

Each Region

@ Constant
derivative

I \

Dynamics

@ Follow the
trajectory from a
point

Accumulation

@ Zeno effect ’
20/70
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Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

© Can you make a point enter a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?
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Piece-wise Constant Derivative
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Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Wires for Analog Information

In 3D wires can be merged
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Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

(Turing)-Computation in Dimension 4

Encoding of a TM Configuration
o tape (m,s,m;): | = (0.my)x| and r = (0.sm,) 5

o state: height / level

primitives for T = 0,1 |

@ managing the other side
of the tape (my)

1

@ connection between
levels

@ fusion of dimension 2
paths

Branching on letter

23/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Climbing up the Arithmetical Hierarchy

Hierarchy
@ Y,: problems expressible as ¢(xi, x2, ..., X,)
where ¢ is a (total) recursive predicate
@ Y ,: problems expressible as Ix;Vxo3x3 . .. d(x1, X2, ..., Xp)
with d alternating quantifiers

4

Zeno Effect Use

I\ 7 y=1

Original System

ian

(Bournez, 1999, fig. 10 p.12)

d + 2 dimensions to decide ¥4
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Signal Machines

@ Signal Machines
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Signal Machines

Introduction and Definition

@ Signal Machines
@ Introduction and Definition
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Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Cellular Automata: signal use

G s - . B P .

B Q Q Q q Q £

1=0 |gs ET;‘: Q Q Q Q E

1 E T Q Q Q E

2 E lal o Q Q E

3 E Qg™ <@ at Q E

‘ £ q [z q ar £

s E Q {\ a1 Q Q FEE

s L Q N rQ E

7 E Q Q ﬂ Q E

s E 44 Fobst | Bt She @ £

9 E un\: E E ',’qz, E

t= %H 3 1 FEE m,: E E \a TEE

1 B A 1S ESEINGE E A EsEst R E

t=3na+2+h / v . Y 2 | wEs B P E | amON\ E LR

2V T24 E E E E E E E E " . . . . . .
3.6 —FAHRA (1=6)

o Cellular Automata: UC[NC] 2011 Tutorial by N. Ollinger ]
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Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

CA: Conception with signals

Fischer (1965)

13t ARRAY ELEMENTS

T T T T !J
o pulses e

b puises ——

¢ pulses --—=
partitions ——

28 /70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

CA: Analyzing with Signals

Das et al. (1995)
0

Time

740

Site 74
(a) Space-time diagram.

Site
(b) Filtered space-time diagram.

29 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Signals
| |
| |
] ]
| |
| |
| | e
] B mn —
=zl § B} :
o § an | \
£ E ® == o N
= H u N | IS N
= o | N | = N
[ B [ - AN
N | ll . N
. N . N
|| || BN | . .
JlE mESSSSn SEE mEE EEw N N
Space (Z) Space (R)

@ Signal (meta-signal)

@ Collision (rule)

30/70
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Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

Meta-signals (speed)
M- (0)

Collision rules
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Introduction and Definition

Vocabulary and Example: Find the Middle

Meta-signals (speed)

M (0)
div.  (3)

Collision rules

o M ‘ M
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Signal Machines
Introduction and Definition

Vocabulary and Example

aw M

- Find the Middle

Meta-signals (speed)

M- (0)
div  (3)
hi (1)
lo  (3)

M Collision rules
{ div, M }—={ M, hi, lo }
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Vocabulary and Example: Find the Middle

Meta-signals (speed)

M Collision rules

{div, M} = { M, hi, lo }
{lo, M }— { back, M }

31/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

aw M

Meta-signals (speed)

M Collision rules
{div, M } = { M, hi, lo }
{lo, M }— { back, M }
{ hi, back } - { M}
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Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Another Example

Rt

Time

Collision rules

{pa,p2} = {po, puns s }
{pa, pa} — {p2}
{pa,p2} — {2, pa }

32/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
! u
R 3 M

R -3

Time

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Modify the initial configuration to add another signal U J
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Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
R 3
R -3

Time

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Modify the initial configuration to remove the other signal U J
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Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3

A E 1
U, M 0
R 3

R -3

Time

Collision rules
{Add,M} = {M,A, R}
(RoM} = {R,my
(AR} > {U)

{R,Uu} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

R

Add a rule so that no signal extends on the right (when there is no U) J

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

Complex Dynamics
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Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

(Turing-)computation
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Signal Machines

Introduction and Definition

(Turing-)computation

%\ 1 Rational machines

§< 1 @ speeds € QQ

initial positions € Q

o
@ = collision coordinates € Q
o

exact simulation on computer/TM

Undecidability

@ finite number de collisions

meta-signal appereance

use of a rule

disappearing of all signals

involvement of a signal in any collision
extension on the side, etc.

®© ©6 6 6 ¢

35 /70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

(Turing-)computation

Exercise

distance on the right.

Head signals have speed 1 and —1.
?has speed 1.

% and ¥ have oposite speed.

What are the speed of <Fand #?

Recognize a backward consruction to
check the result.

A new cell is always added at the same

35 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

(Turing-)computation

How to change the speed so that the
distance is halved each time?

This way the ribbon remains in a
bounded space.
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Computing with Real Numbers

Addition (value = distance)

base val .. base val
S~ 7
@[;61‘\\\
PR Satd
/r"'—_ e
L7 -4~ gowno
3 .- downst
B 15 -8
- base val val base
Characterization Out of Accumulation: lin-BSS
@ addition, subtraction
@ multiplication by a constant
@ test de sign, branch
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@ Signal Machines

@ Space-Time Malleability
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lterated Contraction

Principe and Example
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Consequences

Folding Space

@ Any computation initiated on a finite potion of space

can be folded in a finite portion of space-time
@ A “bijective correspondence” between an unbounded part of

R? and a bounded part

Two Time Scales
@ continuous time: finite duration
o discrete time (collisions): infinity of moments

| \

Black Hole Model: Decide the Halting Problem (and Above)
@ (Turing)-computation intricated but any output leaves free
@ outside, one waits for the result
@ after a known bounded time,
either an end signal was received or there were no end.

A
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@ Signal Machines

@ Construction and Use of fractals
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Fractal Generation

How to limit a fractal construction?

42/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Construction and Use of fractals

Fractal Generation

How to limit a fractal construction?

@ counters embedded in meta-signals
(ad hoc and not generic enough).
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Fractal Generation

How to limit a fractal construction?

@ counters embedded in meta-signals
(ad hoc and not generic enough).

@ propagation orders to produce one more level
(for 10 levels, 10 orders)
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Quantified Boolean Formula Satisfaction

<
‘%
x

/\
VA
N\

° Ix1VxoVxzxy A (—xa V x3) \ \/ ;
Duchier et al. (2011) \

<

o 1 QSAT formula
~> 1 signal machine
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Evaluating the Formula

cases:
@ Xxj true

e xp false

@ x3 true
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Collecting the Results
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@ constant duration

@ quadratic depth

@ exponential width

Generic Machine for QSAT

(Duchier et al., 2012)

@ formula encoded in the
initial configuration

@ constant duration

@ cubic depth

@ exponential width
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@ Intrinsically Universal Family of Signal Machines
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@ Intrinsically Universal Family of Signal Machines
@ Concept and Definition
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Concept and Definition

Intrinsic Universality
Being able to simulate any other dynamical system of the its class.

Cellular Automata

o regular (Albert and Culik II, 1987; Mazoyer and Rapaport,
1998; Ollinger, 2001)

o reversible (Durand-Lose, 1997)

Tile Assembly Systems

@ possible at T=2 and above (Woods, 2013)
@ impossible at T=1 (Meunier et al., 2014)
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Simulation for Signal Machines

Space-Time Diagram Mimicking

-
E
[ : [
€ €
= & : B
1 . ‘.
space space

Signal Machine Simulation

Us simulates M if there is function from the configurations of M
to the ones of Us s.t. the space-time issued from the image always
mimics the original one.
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Join work [Submitted]

Florent Becker, LIFO, U. Orléans

Mohammad-Hadi Foroughmand-Araabi, Sharif U. T., Tehran, Iran
Sama Goliaei, University of Tehran, Tehran, Iran

Theorem

@ For any finite set of real numbers S, there is a signal machine
Us, that can simulate any machine whose speeds belong to S.

@ The set of Us where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.

Rest of this part
Let S be any finite set of real numbers,
let M be any signal machine whose speeds belongs to S,
Us is progressively constructed as simulation is presented.
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@ Intrinsically Universal Family of Signal Machines

@ Global Scheme
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Global Scheme

@ Unary encoding of numbers

v

L s

o .
§ . k times
[¢) NN NENY]
~’Q -PIIIIIIIII
4~ Mot .
géj IRRRRNNERN; encodlng
—~—
BN NN EY]
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IRy

IR NN
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support zone

Macro-Signal
@ Meta-signal of M identified with numbers
Macro-Signal Structure
i1k: kth signal, ith speed
ll,l,l,lll,l,lllll B B
rirrrrrrnd :
NN RR]
. ;i Collision
: Rules &
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Global scheme

When Support Zones Meet

@ provide a delay

@ test if macro-collision is appropriate and what macro-signals
are involved

@ if OK

@ start the macro-collision
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@ Intrinsically Universal Family of Signal Machines

@ Shrink and Test
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Good (?7) Cases

L [
£ €
=3 =}
By Bl
e 0
& B
space

Bad Case

time

o
o
~
o



Ways to Compute in Euclidean Frameworks
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Shrink and Test

Whole Preparation (cropped on both side)
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Shrinking Unit
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Shrink

,
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Shrink and Test

Testing for Other main Signals
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@ Intrinsically Universal Family of Signal Machines

@ Macro-Collision
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Macro-Collision
Collision Rules Encoding

One rule after the other
Encoding of {3u®, 7u*, gu® } — {243, 4u’ } in the direction i.

Boung

/fule.

s
S
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Q = [T e [T
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g
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Macro-Collision

Comparison of id’s in the if-part of a Rule

N NG
& 3686 36 RAPZ oS oSS,
o PR OEDTOEST (o oy % 2,
B ¢ G@ Io'
Y o,
< 57 L I /(‘,
id n°3 for id n°2 for  id n°2 for %, 9y,
speed 6 speed 5 speed 4 P, "e,b,
S " %0
72
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Macro-Collision

Rule Selection
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Macro-Collision

Generating the Output
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conclusion

For any finite set of real numbers S, there is a signal machine Us,
that can simulate any machine whose speeds belong to S.

Theorem

| A,

The set of Us where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.
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@ Very rich setting

@ Many models

Use of simple primitives

@ parallel lines

@ finding the middle

@ Classical computation

@ Analog computation

Continuity of space and time + idealization

@ Hyper-computation
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