Ways to Compute in Euclidean Frameworks

Ways to Compute in Euclidean Frameworks

Jéréme Durand-Lose

LABORATOIRE
D'INFORMA

u: Laboratoire d'Informatique Fondamentale d’Orléans,
S 1 Université d'Orléans, Orléans, FRANCE
D'ORLEANS

S L€ S

< S
“NE ERTRE e
MARcHAN®

s
e

&:flr NESS Q‘b
1R Nigst®

June 2017 — UCNC 2017 - Fayetteville, AR, USA

1/70



Ways to Compute in Euclidean Frameworks

Euclidean Geometry

Key ingredient of the dynamics J
Dependence from initial positions )
Localization is meaningful ]
Results are geometrical J

2/70



Ways to Compute in Euclidean Frameworks

Outline

Compass and Rule (analog)

Mondrian Automata (hybrid)
Piece-wise Constant Derivative (hybrid)
Signal Machines (hybrid)

Intrinsic Universality among Signal Machines

Not addressed (too well known)

o Tile Assemble Systems (discrete)

o Cellular Automata (discrete)

3/70



Ways to Compute in Euclidean Frameworks
Compass and Rule

@ Compass and Rule (Huckenbeck, 1989, 1991)

4/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Geometrical Construction Machine

@ 2-dimensional Euclidean space

e figure constructions

Stight Line

P2
. P
Py
P, r Ps

o*“———e

v

@ Variables and automaton )

5/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points

@ point as intersection of 2 lines

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points
@ point as intersection of 2 lines

@ point as intersection of 2 circles E N

N Non-deterministic

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points
@ point as intersection of 2 lines

@ point as intersection of 2 circles E N
different from a point £ (N)

N Non-deterministic

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (1/2)

Creation Operators

@ circle out of 3 points

@ line out of 2 points
@ point as intersection of 2 lines

@ point as intersection of 2 circles E N
different from a point £ (N)

@ point as intersection of a circle and a line E N
different from point £ (N)

N Non-deterministic

6/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Dynamics: Program / Automaton (2/2)

Other Operations

branch If a point is in a set A (oracle)
output Write a point, a ligne or a circle

termination End

Computation Success

@ no branch with Error
@ all branches

o end with End
o have the same output (~ result)

7/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

c1 ¢ Circle ( center A, radius d(A,B) )

1:
2
3
4:
5:
6.
7
8
9

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

1: ¢3¢ Circle ( center A, radius d(A,B) )
2: co+ Circle ( center B, radius d(A,B) )
Bt a1

© R YD

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

1: ¢3¢ Circle ( center A, radius d(A,B) )
2: co+ Circle ( center B, radius d(A,B) ) 2
3: p14 Intersection ( c1, c2 ) a

© R YD

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

R Y @

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;

C2

C1

C2

¢

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

C2

C1

C2

¢

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )
: cp4— Circle ( center B, radius d(A,B) )
: p1¢ Intersection ( c1, c2 ) a
: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

C2

di

4

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

C2

o

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

: Write p3

C2

© 00 ~NO OB WN

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

: Write p3

: End 5 4

C2

O 00 ~NO OB WN

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Example: Computing the Middle (of Distinct Points)

: c1¢ Circle ( center A, radius d(A,B) )

: cp4— Circle ( center B, radius d(A,B) )

: p1¢ Intersection ( c1, c2 )

: p2¢+ Intersection ( c3, ¢ ) different from p;
: dy+Line ( p1, p2 )

: dy<Line (A, B)

: p3¢ Intersection ( dy, dp )

: Write p3

: End 5

“‘
a

C2

O 00 ~NO OB WN

0
N

@ success

@ same output ‘.

8/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d;
d« Line (A, B)

2:
3:
4:
5.
6

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

di
2: d<Line (A, B)
3: ¢« Circle ( center B, radius d(A,B) ) E
4: C
5: A
6:

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d
2: d<Line (A, B)
3: ¢« Circle ( center B, radius d(A,B) ) E
4: E< Intersection ( ¢, d ) different from A c
5: A
6:

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d
2: d<Line (A, B)
3: ¢« Circle ( center B, radius d(A,B) ) E
4: E< Intersection ( ¢, d ) different from A c
5: Write E A
6:

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

OB WN

Exercise: Double a (non null) Vector. ..

Problem
Input A and B: 2 distinct points
Result E such that AE = 2AB

d
: d<Line (A, B)
: ¢+ Circle ( center B, radius d(A,B) ) E
: E<— Intersection ( c, d ) different from A c
: Write E A
: End

9/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

E d
C, E
B

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

E d
C P — N =
W
B

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE ( B, C) C T
6: |
|
| B

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M+ MIDDLE ( B, C) c ’E
5. E<~ DOUBLE_VECTOR (A, M) /”//*//RX/
6: o
7 /
8: A B

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M<— MIDDLE ( B, C) C
5. E<~ DOUBLE VECTOR (A, M) M
6: d«Line (C, E) .
7: ’/////”///’/,,,///””//’
8: A B

10/70



Ways to Compute in Euclidean Frameworks
Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem

Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE (B, C) c
5. E+- DOUBLE_VECTOR (A, M) Y
6: d«Line (C, E) .
7: Write d "////"///’,,,///””/’/’
8: A B

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Exercise: Parallel Line Passing through a Point

Problem
Input A, B and C: 3 distinct points
Result d such that AB is parallel to d and C belongs to d

d
4: M« MIDDLE (B, C) /C/E/
5. E+- DOUBLE_VECTOR (A, M)
6: d« Line (C, E) M
7: Write d _’////’r’///////////’E;,,’/
8: End A

10/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division

M<X> 0 a ath b a+b
y 2

J Mx(g J

ol | ‘ ol I a b

11/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division
<°> M<X> 0 S s b atb
y

N wy(3) (5]

0 | (0] |4 b

11/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division
<°> M<X> 0 S s b atb
y

N wy(3) (ws(5)

0 | (0] I N2 b

11/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division
<°> M<X> 0 S s b atb
y

N wy(3) s

0 |

11/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, I, J Without Branching

Everything with coordinates computable from:

@ initial coordinates and integers
@ addition, subtraction, multiplication and division

Addition, multiplication, division
<°> M<X> 0 S s b atb
y

N wy(3) s

0 |

11/70



Ways to Compute in Euclidean Frameworks

Compass and Rule

Compute with O, |, J With Branching and A = {0}

Turing Universal
2-counter automata simulation

More Generally

@ As before, but piece-wise

o Frontiers are algebraic curves/surfaces with integer coefficients

V/2 cannot be generated J

12 /70



Ways to Compute in Euclidean Frameworks
Mondrian Automata

© Mondrian Automata (Jacopini and Sontacchi, 1990)

13/70



Ways to Compute in Euclidean Frameworks
Mondrian Automata

Spatial / Static aspect

Each Posi

@ a state
~> a color

72777777
4555555500
P
05255525
055555555
7 27277774

@ Finite number of
colors

@ same rules
everywhere

@ same color (a) Colored space (b) Local constraints

v

= same
neighborhood

14 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

at Can be Generated

e e
a4 N 4 N
4 \ 4 \
{ 1
\ \

\ 4 \ 4
e 4 N v
= -~
4 N 7 N
’ N £ \
i 1
\ \

\ 4 \ /
~ 4 N .
P — o
4 N 4 N
4 w \

1 {
\ \
\ /N {
~ 4 (e .
~ = <1~




Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood

15/70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood
@ Simple composition neighborhood

15/70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood
@ Simple composition neighborhood
o Constrained composition neighborhood

15/70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Exercice

What Can be Generated?

@ Trivial extension of neighborhood

@ Simple composition neighborhood

o Constrained composition neighborhood
@ Globally impossible




Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

t+4«”’

time

!\ /!
J \

16 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

Uniformity (past cones)
@ Same bases
= Same above in cone

16 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Temporal / Dynamic Aspects

Speed Limit (¢)

@ information propagation

Space-time Cone
@ dependence
@ influence

Uniformity (past cones)
@ Same bases
= Same above in cone

Reversibility X N - ]
@ Same backwards

16 /70




Ways to Compute in Euclidean Frameworks

Mondrian Automata

(Turing) Computing

Reversible) Turing Machine

N

al

17 /70



Ways to Compute in Euclidean Frameworks

Mondrian Automata

Computing with Real Numbers

Addition (value = distance)

base val .. base val
S~ 7
@[;61‘ S
PR Satd
- Ll
L7 -4~ gowno
8 -4~ downst
B 15 -8
- base val val base
(Reversible linear-BSS)
@ addition, subtraction
o multiplication by a constant
@ test de sign, branch

18 /70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

e Piece-wise Constant Derivative (Asarin et al., 1995; Bournez,
1999)

19 /70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Hybride Dynamical System

Partition of Space

@ Polyhedral regions

20/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Hybride Dynamical System

Partition of Space

@ Polyhedral regions

Each Region \

@ Constant

derivative /‘

20/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Hybride Dynamical System

Partition of Space

@ Polyhedral regions

Each Region

@ Constant
derivative

I \

Dynamics

@ Follow the
trajectory from a
point

20/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Hybride Dynamical System

Partition of Space

@ Polyhedral regions

Each Region

@ Constant
derivative

I \

Dynamics

@ Follow the
trajectory from a
point

Accumulation

@ Zeno effect ’
20/70




Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

© Can you make a point enter a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Exercice

© Can you make a cycle?

© Can you make a point enter a cycle?

v,
21/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Wires for Analog Information

22/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Wires for Analog Information

In 3D wires can be merged

22/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

(Turing)-Computation in Dimension 4

Encoding of a TM Configuration
o tape (m,s,m;): | = (0.my)x| and r = (0.sm,) 5

o state: height / level

primitives for T = 0,1 |

@ managing the other side
of the tape (my)

1

@ connection between
levels

@ fusion of dimension 2
paths

Branching on letter

23/70



Ways to Compute in Euclidean Frameworks

Piece-wise Constant Derivative

Climbing up the Arithmetical Hierarchy

Hierarchy
@ Y,: problems expressible as ¢(xi, x2, ..., X,)
where ¢ is a (total) recursive predicate
@ Y ,: problems expressible as Ix;Vxo3x3 . .. d(x1, X2, ..., Xp)
with d alternating quantifiers

4

Zeno Effect Use

I\ 7 y=1

Original System

ian

(Bournez, 1999, fig. 10 p.12)

d + 2 dimensions to decide ¥4

24 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

@ Signal Machines

25 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

@ Signal Machines
@ Introduction and Definition

26 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Cellular Automata: signal use

G s - . B P .

B Q Q Q q Q £

1=0 |gs ET;‘: Q Q Q Q E

1 E T Q Q Q E

2 E lal o Q Q E

3 E Qg™ <@ at Q E

‘ £ q [z q ar £

s E Q {\ a1 Q Q FEE

s L Q N rQ E

7 E Q Q ﬂ Q E

s E 44 Fobst | Bt She @ £

9 E un\: E E ',’qz, E

t= %H 3 1 FEE m,: E E \a TEE

1 B A 1S ESEINGE E A EsEst R E

t=3na+2+h / v . Y 2 | wEs B P E | amON\ E LR

2V T24 E E E E E E E E " . . . . . .
3.6 —FAHRA (1=6)

o Cellular Automata: UC[NC] 2011 Tutorial by N. Ollinger ]

27 /70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

CA: Conception with signals

Fischer (1965)

13t ARRAY ELEMENTS

T T T T !J
o pulses e

b puises ——

¢ pulses --—=
partitions ——

28 /70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

CA: Analyzing with Signals

Das et al. (1995)
0

Time

740

Site 74
(a) Space-time diagram.

Site
(b) Filtered space-time diagram.

29 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Signals
| |
| |
] ]
| |
| |
| | e
] B mn —
=zl § B} :
o § an | \
£ E ® == o N
= H u N | IS N
= o | N | = N
[ B [ - AN
N | ll . N
. N . N
|| || BN | . .
JlE mESSSSn SEE mEE EEw N N
Space (Z) Space (R)

@ Signal (meta-signal)

@ Collision (rule)

30/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

Meta-signals (speed)
M- (0)

Collision rules

31/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

Meta-signals (speed)

M (0)
div.  (3)

Collision rules

o M ‘ M

31/70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

Vocabulary and Example

aw M

- Find the Middle

Meta-signals (speed)

M- (0)
div  (3)
hi (1)
lo  (3)

M Collision rules
{ div, M }—={ M, hi, lo }

31/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

Meta-signals (speed)

M Collision rules

{div, M} = { M, hi, lo }
{lo, M }— { back, M }

31/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

Vocabulary and Example: Find the Middle

aw M

Meta-signals (speed)

M Collision rules
{div, M } = { M, hi, lo }
{lo, M }— { back, M }
{ hi, back } - { M}

31/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Another Example

Rt

Time

Collision rules

{pa,p2} = {po, puns s }
{pa, pa} — {p2}
{pa,p2} — {2, pa }

32/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
! u
R 3 M

R -3

Time

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Modify the initial configuration to add another signal U J

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
R 3
R -3

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Time

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
R 3
R -3

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Time

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3
A, E 1
U M 0
R 3
R -3

Time

Collision rules
{Add,M} = {M,A, R}
(R.M} = {R,m}
(AR} (U}

(R.U} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

Modify the initial configuration to remove the other signal U J

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

Stack Implantation

Name ‘ Speed
Add, Rem 1/3

A E 1
U, M 0
R 3

R -3

Time

Collision rules
{Add,M} = {M,A, R}
(RoM} = {R,my
(AR} > {U)

{R,Uu} = {R,u}
{Rem,M} — {M,E}
{E,U} = {}

R

Add a rule so that no signal extends on the right (when there is no U) J

33/70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

Complex Dynamics

34 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Complex Dynamics

34 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

Complex Dynamics

34 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Introduction and Definition

Complex Dynamics

34 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

(Turing-)computation

35 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Introduction and Definition

(Turing-)computation

%\ 1 Rational machines

§< 1 @ speeds € QQ

initial positions € Q

o
@ = collision coordinates € Q
o

exact simulation on computer/TM

Undecidability

@ finite number de collisions

meta-signal appereance

use of a rule

disappearing of all signals

involvement of a signal in any collision
extension on the side, etc.

®© ©6 6 6 ¢

35 /70



Ways to Compute in Euclidean Frameworks
Signal Machines

Introduction and Definition

(Turing-)computation

Exercise

distance on the right.

Head signals have speed 1 and —1.
?has speed 1.

% and ¥ have oposite speed.

What are the speed of <Fand #?

Recognize a backward consruction to
check the result.

A new cell is always added at the same

35 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

(Turing-)computation

How to change the speed so that the
distance is halved each time?

This way the ribbon remains in a
bounded space.

35 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Introduction and Definition

Computing with Real Numbers

Addition (value = distance)

base val .. base val
S~ 7
@[;61‘\\\
PR Satd
/r"'—_ e
L7 -4~ gowno
3 .- downst
B 15 -8
- base val val base
Characterization Out of Accumulation: lin-BSS
@ addition, subtraction
@ multiplication by a constant
@ test de sign, branch

36 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Space-Time Malleability

@ Signal Machines

@ Space-Time Malleability

37 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Space-Time Malleability

Contraction

Principe

38 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Space-Time Mallea y

Contraction

SETIE

38 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Space-Time Malleability

lterated Contraction

Principe and Example

4

Y

s e oemaiiins

~
~\
i

39 /70



Ways to Compute in Euclidean Frameworks

Signal Machines
Space-Time Malleability

Consequences

Folding Space

@ Any computation initiated on a finite potion of space

can be folded in a finite portion of space-time
@ A “bijective correspondence” between an unbounded part of

R? and a bounded part

Two Time Scales
@ continuous time: finite duration
o discrete time (collisions): infinity of moments

| \

Black Hole Model: Decide the Halting Problem (and Above)
@ (Turing)-computation intricated but any output leaves free
@ outside, one waits for the result
@ after a known bounded time,
either an end signal was received or there were no end.

A

40/70



Ways to Compute in Euclidean Frameworks
Signal Machines
Construction and Use of fractals

@ Signal Machines

@ Construction and Use of fractals

41/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Construction and Use of fractals

Fractal Generation

How to limit a fractal construction?

42/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Construction and Use of fractals

Fractal Generation

How to limit a fractal construction?

@ counters embedded in meta-signals
(ad hoc and not generic enough).

42/70



Ways to Compute in Euclidean Frameworks

Signal Machines

Construction and Use of fractals

Fractal Generation

How to limit a fractal construction?

@ counters embedded in meta-signals
(ad hoc and not generic enough).

@ propagation orders to produce one more level
(for 10 levels, 10 orders)

42 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Construction and Use of fractals

Quantified Boolean Formula Satisfaction

<
‘%
x

/\
VA
N\

° Ix1VxoVxzxy A (—xa V x3) \ \/ ;
Duchier et al. (2011) \

<

o 1 QSAT formula
~> 1 signal machine

43/70



Ways to Compute in Euclidean Frameworks

Signal Machines
Construction and Use of fractals

Evaluating the Formula

cases:
@ Xxj true

e xp false

@ x3 true

44 /70



Ways to Compute in Euclidean Frameworks

Signal Machines

Construction and Use of fractals

Collecting the Results

45 /70



Ways to Compute in Euclidean Frameworks
Signal Machines
Construction and Use of fractals

@ constant duration

@ quadratic depth

@ exponential width

Generic Machine for QSAT

(Duchier et al., 2012)

@ formula encoded in the
initial configuration

@ constant duration

@ cubic depth

@ exponential width

46 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

@ Intrinsically Universal Family of Signal Machines

47 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Concept and Definition

@ Intrinsically Universal Family of Signal Machines
@ Concept and Definition

48 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Concept and Definition

Intrinsic Universality
Being able to simulate any other dynamical system of the its class.

Cellular Automata

o regular (Albert and Culik II, 1987; Mazoyer and Rapaport,
1998; Ollinger, 2001)

o reversible (Durand-Lose, 1997)

Tile Assembly Systems

@ possible at T=2 and above (Woods, 2013)
@ impossible at T=1 (Meunier et al., 2014)

49 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Concept and Definition

Simulation for Signal Machines

Space-Time Diagram Mimicking

-
E
[ : [
€ €
= & : B
1 . ‘.
space space

Signal Machine Simulation

Us simulates M if there is function from the configurations of M
to the ones of Us s.t. the space-time issued from the image always
mimics the original one.

50 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines
Concept and Definition

Join work [Submitted]

Florent Becker, LIFO, U. Orléans

Mohammad-Hadi Foroughmand-Araabi, Sharif U. T., Tehran, Iran
Sama Goliaei, University of Tehran, Tehran, Iran

Theorem

@ For any finite set of real numbers S, there is a signal machine
Us, that can simulate any machine whose speeds belong to S.

@ The set of Us where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.

Rest of this part
Let S be any finite set of real numbers,
let M be any signal machine whose speeds belongs to S,
Us is progressively constructed as simulation is presented.




Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines
Global Scheme

@ Intrinsically Universal Family of Signal Machines

@ Global Scheme

52 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines

Global Scheme

@ Unary encoding of numbers

v

L s

o .
§ . k times
[¢) NN NENY]
~’Q -PIIIIIIIII
4~ Mot .
géj IRRRRNNERN; encodlng
—~—
BN NN EY]

rrrrrrirni

IRy

IR NN

INNNNNNNN]

support zone

Macro-Signal
@ Meta-signal of M identified with numbers
Macro-Signal Structure
i1k: kth signal, ith speed
ll,l,l,lll,l,lllll B B
rirrrrrrnd :
NN RR]
. ;i Collision
: Rules &

53 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines
Global Scheme

Global scheme

When Support Zones Meet

@ provide a delay

@ test if macro-collision is appropriate and what macro-signals
are involved

@ if OK

@ start the macro-collision

54 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines
Shrink and Test

@ Intrinsically Universal Family of Signal Machines

@ Shrink and Test

55 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Shrink and Test

Good (?7) Cases

L [
£ €
=3 =}
By Bl
e 0
& B
space

Bad Case

time

o
o
~
o



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Shrink and Test

Whole Preparation (cropped on both side)

//W

«W///////////////

|

/////////////////////

////

p—

A

57 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines
Shrink and Test

Shrinking Unit

58 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines
Shrink and Test

Shrink

,
1 Y&

59 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines
Shrink and Test

Testing for Other main Signals

60 /70



i
\ 8




Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Macro-Collision

@ Intrinsically Universal Family of Signal Machines

@ Macro-Collision

62 /70






Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines

Macro-Collision
Collision Rules Encoding

One rule after the other
Encoding of {3u®, 7u*, gu® } — {243, 4u’ } in the direction i.

Boung

/fule.

s
S
3 .,ol\ ._Dl\ ._ol\ ..Dl\
Q = [T e [T
; ol oy e
(] Rl Er i B~ 2~
= RN ARN
g
v
64 /70




Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Macro-Collision

Comparison of id’s in the if-part of a Rule

N NG
& 3686 36 RAPZ oS oSS,
o PR OEDTOEST (o oy % 2,
B ¢ G@ Io'
Y o,
< 57 L I /(‘,
id n°3 for id n°2 for  id n°2 for %, 9y,
speed 6 speed 5 speed 4 P, "e,b,
S " %0
72

65 /70



Ways to Compute in Euclidean Frameworks

Intrinsically Universal Family of Signal Machines

Macro-Collision

Rule Selection

66 /70



Ways to Compute in Euclidean Frameworks
Intrinsically Universal Family of Signal Machines

Macro-Collision

Generating the Output

67 /70



Ways to Compute in Euclidean Frameworks

conclusion

68 /70



Ways to Compute in Euclidean Frameworks
conclusion

For any finite set of real numbers S, there is a signal machine Us,
that can simulate any machine whose speeds belong to S.

Theorem

| A,

The set of Us where S ranges over finite sets of real numbers
is an intrinsically universal family of signal machines.

69 /70



Ways to Compute in Euclidean Frameworks
conclusion

@ Very rich setting

@ Many models

Use of simple primitives

@ parallel lines

@ finding the middle

@ Classical computation

@ Analog computation

Continuity of space and time + idealization

@ Hyper-computation

70/70



Thank you for your attention

and your participation
(and your particip

71/70



Ways to Compute in Euclidean Frameworks
References

Albert, J. and Culik II, K. (1987). A Simple Universal Cellular Automaton
and its One-Way and Totalistic Version. Complex Systems, 1:1-16.

Asarin, E., Maler, O., and Pnueli, A. (1995). Reachability analysis of
dynamical systems having piecewise-constant derivatives. Theoret
Comp Sci, 138(1):35-65.

Bournez, 0. (1999). Achilles and the Tortoise climbing up the
hyper-arithmetical hierarchy. Theoret Comp Sci, 210(1):21-71.

Das, R., Crutchfield, J. P., Mitchell, M., and Hanson, J. E. (1995).
Evolving globally synchronized cellular automata. In Eshelman, L. J.,
editor, International Conference on Genetic Algorithms '95, pages
336-343. Morgan Kaufmann.

Duchier, D., Durand-Lose, J., and Senot, M. (2011). Solving Q-SAT in
bounded space and time by geometrical computation. In Ganchev, H.,
Lowe, B., Normann, D., Soskov, I., and Soskova, M., editors, Models
of computability in contecxt, 7th Int. Conf. Computability in Europe
(CiE '11) (abstracts and handout booklet), pages 76-86. St. Kliment
Ohridski University Press, Sofia University.

Duchier, D., Durand-Lose, J., and Senot, M. (2012). Computing in the

fractal cloud: modular generic solvers for SAT and Q-SAT variants. In
71/70



Ways to Compute in Euclidean Frameworks
References

Agrawal, M., Cooper, B. S., and Li, A., editors, Theory and
Applications of Models of Computations (TAMC '12), number 7287 in
LNCS, pages 435-447. Springer.

Durand-Lose, J. (1997). Intrinsic Universality of a 1-Dimensional
Reversible Cellular Automaton. In STACS 1997, number 1200 in
LNCS, pages 439-450. Springer.

Fischer, P. C. (1965). Generation of primes by a one-dimensional
real-time iterative array. J ACM, 12(3):388-394.

Goto, E. (1966). Otomaton ni kansuru pazuru [Puzzles on automata]. In
Kitagawa, T., editor, Johokagaku eno michi [The Road to information
science], pages 67-92. Kyoristu Shuppan Publishing Co., Tokyo.

Huckenbeck, U. (1989). Euclidian geometry in terms of automata theory.
Theoret Comp Sci, 68(1):71-87.

Huckenbeck, U. (1991). A result about the power of geometric oracle
machines. Theoret Comp Sci, 88(2):231-251.

Jacopini, G. and Sontacchi, G. (1990). Reversible parallel computation:
an evolving space-model. Theoret Comp Sci, 73(1):1-46.

Mazoyer, J. and Rapaport, |. (1998). Inducing an Order on Cellular

Automata by a Grouping Operation. In 15th Annual Symposium on
71/70



Ways to Compute in Euclidean Frameworks
conclusion

Theoretical Aspects of Computer Science (STACS 1998), volume 1373
of LNCS, pages 116-127. Springer.

Meunier, P., Patitz, M. J., Summers, S. M., Theyssier, G., Winslow, A.,
and Woods, D. (2014). Intrinsic Universality in Tile Self-Assembly
Requires Cooperation. In Chekuri, C., editor, 25th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, pages 752-771. SIAM.

Ollinger, N. (2001). Two-States Bilinear Intrinsically Universal Cellular
Automata. In FCT '01, number 2138 in LNCS, pages 369-399.
Springer.

Woods, D. (2013). Intrinsic Universality and the Computational Power of
Self-Assembly. In Neary, T. and Cook, M., editors, Proceedings
Machines, Computations and Universality 2013, MCU 2013, Ziirich,
Switzerland, volume 128 of EPTCS, pages 16-22.

71/70



	Compass and Rule huckenbeck89tcs,huckenbeck91tcs
	Mondrian Automata jacopini+sontacchi90
	Piece-wise Constant Derivative asarin+maler+pnueli95tcs,bournez99tcs
	Signal Machines
	Introduction and Definition
	Space-Time Malleability
	Construction and Use of fractals

	Intrinsically Universal Family of Signal Machines
	Concept and Definition
	Global Scheme
	Shrink and Test
	Macro-Collision


