Florent Becker, Tom Besson, Jérome Durand-Lose, Aurélien Emmanuel, Mohammad-Hadi Foroughmand-Araabi, Sama Goliaei, and
Shahrzad Heydarshahi. Abstract geometrical computation 10: An intrinsically universal family of signal machines. ACM Trans.
Comput. Theory, 13(1):1-31, 2021. doi: 10.1145/3442359. arXiv 1804.09018.

Abstract Geometrical Computation 10:
An Intrinsically Universal Family of Signal Machines*

Florent Becker! Tom Besson'! Jérome Durand-Lose! 2 Aurélien Emmanuel®

Mohammad-Hadi Foroughmand-Araabi 3 Sama Goliaei* Shahrzad Heydarshahit
March 23, 2023

!Univ. Orléans, INSA Centre Val de Loire, LIFO, France {florent.becker, jerome.durand-lose}@univ-orleans.fr
2LIX, CNRS-Inria-Ecole Polytechnique, France
3Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran foroughmand@sharif.ir
“Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran sgoliaei@ut.ac.ir

Abstract

Signal machines form an abstract and idealised model of collision computing. Based on dimensionless
signals moving on the real line, they model particle/signal dynamics in Cellular Automata. Each particle,
or signal, moves at constant speed in continuous time and space. When signals meet, they get replaced
by other signals. A signal machine defines the types of available signals, their speeds and the rules for
replacement in collision.

A signal machine A simulates another one B if all the space-time diagrams of B can be generated
from space-time diagrams of A by removing some signals and renaming other signals according to local
information. Given any finite set of speeds S, we construct a signal machine that is able to simulate any
signal machine whose speeds belong to S. Each signal is simulated by a macro-signal, a ray of parallel
signals. Each macro-signal has a main signal located exactly where the simulated signal would be, as
well as auxiliary signals which encode its id and the collision rules of the simulated machine.

The simulation of a collision, a macro-collision, consists of two phases. In the first phase, macro-signals
are shrunk, then the macro-signals involved in the collision are identified and it is ensured that no other
macro-signal comes too close. If some do, the process is aborted and the macro-signals are shrunk, so that
the correct macro-collision will eventually be restarted and successfully initiated. Otherwise, the second
phase starts: the appropriate collision rule is found and new macro-signals are generated accordingly.

Considering all finite set of speeds S and their corresponding simulators provides an intrinsically
universal family of signal machines.

Key-Words

Abstract Geometrical Computation; Collision computing; Intrinsic universality; Signal machine; Sim-
ulation

1 Introduction

Signal Machines (SM) arose as a continuous abstraction of Cellular Automata (CA) |[Durand-Lose, [2008].
In dimension one, the dynamics of Cellular Automata are often described as signals interacting in collisions
resulting in the generation of new signals. Signals store and transmit information to start a process, to

*The authors are thankful to the Franco-Iranian PHC Gundishapur 2017 number 38071PC “Dynamique des machines a
signaux” for funding this research.

synchronise, etc. The use of signals in the context of CA is widespread in the literature: collision computing
[Adamatzky, 2002|, gliders Jin and Chen! [2016], solitons [Jakubowski et al., 1996} 2000, 2017, |Siwak, 2001,
particles [Boccara et all 1991, [Mitchell, (1996, [Hordijk et al., 1998|, Turing-computation [Lindgren and
Nordahl, 1990, Cook, 2004], synchronisation [Varshavsky et al., 1970, |Yunes| 2007], geometrical constructions
Cook, [2004], signals [Mazoyer and Terrier, |1999, Delorme and Mazoyer, 2002, etc.

In signal machines, signals are dimensionless points moving on a 1-dimensional Euclidean space in con-
tinuous time. They have uniform movement and thus draw line segments on space-time diagrams. Each
signal is an instance of a meta-signal among a finite given set of meta-signals. As soon as two or more signals
meet, a collision happens: incoming signals are instantly replaced by outgoing signals according to collision
rules, depending on the meta-signals of the incoming signals. In-between collisions, signals propagate at
some uniform speed depending on their meta-signal.

A signal machine is defined by a finite set of meta-signals, a function assigning a speed to each meta-
signal (negative for leftward), and a set of collision rules. A collision rule associates a set of at least two
meta-signals of different speeds (incoming) with another set of meta-signals of different speeds (outgoing).
Collision rules are deterministic: a set appears at most once as the incoming part of a collision rule.

In any configuration, there are finitely many signals and collisions located at distinct places on the
real line. The aggregation of the configurations reachable from some (initial) configuration forms a two
dimensional space-time diagram like the one in Fig.[Ta] in which the traces of signals are line segments.
Signals corresponding to the same meta-signal have the same speed: their traces are parallel segments (like
the dotted ps). Collisions provide a discrete time scale and a directed acyclic graph structure inside each
space-time diagram. This emphasises the hybrid aspect of SM: continuous steps separated by discrete steps.

Signal machines are known to be able to compute by simulating Turing machines and even to hyper-
compute [Durand-Lose, 2012]. As an analog model of computation they correspond exactly to the linear
BSS model [Blum et al.| [1989) [Durand-Lose 2007].

As with any computing dynamical system, it is natural to ask whether there is a signal machine which
is able to simulate all signal machines. Intrinsic universality (being able to simulate any device of its own
kind) is an important property, since it means to represent all machines and to exhibit all the behaviours
available in the class. In computer science, the existence of (intrinsically) universal Turing machines is the
cornerstone of computability theory. Many computing systems have intrinsically universal instances: the
(full) BSS model, Cellular Automata (CA) [Albert and Culik IT, {1987, [Mazoyer and Rapaport, 1998, Ollinger
2001} 2003, |Goles Ch. et all |2011], reversible CA [Durand-Lose, |1995], quantum CA [Arrigh and Grattage
2012, some tile assembly models at temperature 2 [Doty et al., 2010, [Woods, [2013], etc. Some tile assembly
models at temperature 1 [Meunier et al., [2014] or causal graph dynamics [Martiel and Martin| [2015] admit
infinite intrinsically universal families but no single intrinsically universal instance.

One key characteristic of intrinsic universality is that it is expected to simulate according to the model.
Transitive simulations across models are not enough: simulating a TM that can simulate any rational signal
machine totally discards relevant aspects of the models such as directed acyclic graph representation, relative
location, spatial positioning, energy levels, etc.

It should be noted that although instances of signal-based systems with Turing-computation capability
are very common in the literature [Lindgren and Nordahl, |1990, |Cookl 2004], to our knowledge, the present
paper provides the first result about intrinsic universality in a purely signal-based continuous system.

For Cellular Automata, simulation and intrinsic universality can be defined with an operation of grouping
on space-time diagrams |Mazoyer and Rapaport| [1998], Ollinger| [2003]. This operation consists of creating a
space-time diagram from another one by applying a local function on blocks of the former. Because Cellular
Automata are discrete, it is possible to consider the domain of this local function to be finite.

With signal machines, because space is continuous and there is no canonical scale within a diagram,
decoding a space-time diagram is done by uniformly applying a local decoding function on each point of each
configuration of the diagram, rather than having grouping and blocks. The notion of locality for the decoding
function of the space-time diagram has to be defined by stating that the decoding function should only look
at a uniformly-bounded amount of signals around a collision. Because signal machines lack the discrete
time-steps of Cellular Automata, a special handling of the initial configuration is necessary, somewhat like

time
NN
LHa
L
time

~

SR

) space space
(a) simulated space-time dia- (b) simulating space-time dia-
gram gram

Figure 1: Simulation scheme.

with self-assembling systems |Doty et al.|[[2012].

Having defined a fitting concept of simulation, the present paper provides, for any finite set of speeds S,
a signal machine capable of simulating all signal machines which only use speeds in S.

In a simulation by one of our universal signal machines, each signal of the simulated SM is replaced by a
ray of signals (shaded in Fig. called a macro-signal. Each macro-signal has a non-zero width and contains
a _main’ signal (black in the middle) which is exactly positioned as the simulated signal. The meta-signal
(dot, dash or thick in Fig.[la]) is encoded within the macro-signal (greyed zone), as illustrated in Fig.[Ib)
which is then used by the decoding function to recover the meta-signal.

Each macro-signal encodes its identity in unary together with the list of all the collision rules of the
simulated signal machine. Notice that at any time, the amount of information in the macro-signal is bounded.
Macro-collisions are handled locally.

The main challenge is that macro-signals and macro-collisions have non-zero width and might overlap and
disturb one another. Figure[?] illustrates this problem. In Fig.[2a] all three present macro-signals rightfully
interact whereas in Fig.[2b] the leftmost one should not participate. In the same spirit, once a collision
resolution is started, other signals should be far away enough not to intersect the zone needed for its
resolution.

To cope with this, as soon as the borders of two macro-signals touch, both are shrunk in order to “delay”
the macro-collision resolution (right part in Figs. and . This delay is to be understood relative to
the width of the input macro-signals: the time of the collision is not changed, but after shrinking the input
signals, it becomes a larger multiple of the width of each input signal. This delay is used to check which
macro-signals exactly enter the macro-collision and to ensure that non-participating macro-signals are far
away enough. This checking identifies macro-signals participating in the ongoing collision and ensures that
no other signal may collide with control signals, not before the collision nor after a while after collision. This
zone in which no other signal might enter is called the safety zone.

time
time

(a) all in one collision (b) messing macro-signals get isolated

Figure 2: The effect of shrinking (on right of each case).

If any constrain is not satisfied, the macro-collision aborts; nothing happens but the macro-signals have
been shrunk and thus relatively spaced. Later on, testing will be restarted as these thinner macro-signals
touch again. Eventually all correct macro-collisions will happen.

If all constraints are satisfied, the macro-collision is resolved. This is done by gathering information of id’s

of all participating macro-signals and finding the appropriate collision rule. After actual collision between
_main~ signals, according to the selected collision rule, macro-signals are replaced by new macro-signals

representing output signals of the simulated SM.

The different phases and their relative duration in a successful macro-collision are presented in Fig.[3]
where percentages are taken relative to the duration from the collision of ;border-right and jborder—left to the
exact location of the collision, i.e. the meeting of imainm and jmainm. These proportions are arbitrary, the
only condition is that the macro-collision resolution is started before the signals ;border-right and ;border-left
met again. The duration of the shrinking phase (10 %) is fixed. The duration of the test and check phase is
at most 20 %, for success as well as failure. It is ensured that aborting or disposal is carried out before any

two present macro-signals meet again (and initiate a different macro-collision).

output

»border-left
% Main?
A border—right

Selecting the collision rule

Applying Id’s onto collision rules resolution (<80 %)

information disposal
and id gathering

shrink (10 %) test and check (<20 %)

Figure 3: Phases of a successful macro-collision.

This way the constructed signal machine is able to simulate any signal machine with speeds included in
a given set. By varying this set, an intrinsically universal family of signal machines is obtained.

All definitions are gathered in Sect.2] The encoding is detailed in Sect.[3] Macro-collision resolution is
explained in Sect.[4} the testing prior to it is found in Sect.[5] Section[f] provides some simulation examples.

Conclusion, remarks and perspectives are gathered in Sect.[7}

2 Definitions
A signal machine regroups the definitions of its meta-signals and their dynamics: rewriting rules at collisions
and constant speed in-between.

Definition 1. A signal machine (SM) A is a triplet (M, S, R) such that: M is a finite set of meta-signals;
S : M — R is the speed function (each meta-signal has a constant speed); and R is a finite set of collision
rules which are denoted by p~ — p* where p~ and p* are sets of meta-signals of distinct speeds. Each p~

must have at least two meta-signals. R is deterministic: all p~ are different.

Let V be the set M URU{®@}. A (A-)configuration c, is a map from R to V, that is from the points of
the real line to either a meta-signal, a rule or the value @ (indicating that there is nothing there), with only
finitely many non-@ locations in any configuration.

A signal machine evolution is defined in terms of dynamics. If there is a signal of speed s at x, then
after a duration At its position is x + s-At, unless it enters a collision before. At a collision, all incoming
signals are instantly replaced according to rules by outgoing signals in the following configurations. This is

formalised as follows.

To simplify notations, the relation issued from, x C M x V, is defined to be true only in the following
cases:

o X i, Vu € M and
e 1 X p, Vp € M such that u € pt.
The relation x means “is equal to (some meta-signal) or belongs to the output of (a collision)”.

Definition 2 (Dynamics). Considering a configuration c, the time to the next collision, A(c), is equal to
the minimum of the positive real numbers d such that:

21+ d-S(u) = 22 + d-S(p2)
Frq, 20 € R, 3y, e € M Apg X ¢(xq)
A g X c(z2)

It is +o0 if there is no such a d.

Let ¢; be the configuration at time t.

For ¢ (t < t' < t+A(e)), the configuration at ¢’ is defined as follows. First, signals are set according
to ey (x) = p iff px ¢p (x + (¢—t')-S(u)). There is no collision to set (¢’ is before the next collision) thus no
ambiguity. The rest is ©@.

For the configuration at ¢ 4+ A(cy), collisions are set first: ¢y a(e,)(z) = p~ — p™ where p~ = {pu €
M| px c(x — Ale)-S(p)) }. Note that, in a configuration points are assigned to signals, collision rules, or
empty set. Here, the collision point is assigned to the collision rule. Then meta-signals are set (with above
condition) where there is not already a collision, and finally @ everywhere else.

The dynamics are uniform in both space and time. Since configurations are finite, the infimum is non-zero
and is reached.

A space-time diagram of A is the aggregation of configurations as times elapses, that is, a function from
R™T into the set of configurations of A. It forms a two dimensional picture (time is always elapsing upwards
in the figures). It is denoted A or (A4, c) to emphasise the signal machine and the initial configuration.

2.1 Simulations among signal machines

In this subsection, we define formally what the sentence “signal machine A simulates signal machine B”
entails.

Local functions on configurations First, let us define how to recover a configuration of a signal machine
from a configuration of another one—a putative simulator.

Let A be a signal machine, and C be the set of all its configurations. Let C* = {c € C|¢(0) # @ }. Let
¢ € C*, symb(c) is the bi-infinite word defined by: for all n € Z, symb(c),, is the n-th non-@ value in c,
counting from position 0 in both directions. For example, symb(c)g = ¢(0) and symb(c)_; is the first non-©
value leftward from position 0. Pose symb(c),, = L if ¢ does not have enough non-©@ values.

Let f be a function from C to some set F. The function f is local if the following hold:

e there is fy € F such that when ¢(0) = @, f(¢) = fo,
e there is a function f on bi-infinite words such that f(c¢) = f(symb(c)) when ¢ € C*, and
e there is n € N such that f only depends on the n symbols around 0 in its input word.

In the analogy with Cellular Automata, local functions will play a role similar to that of grouping functions.

Signal machine simulation Let A and B be two signal machines; subscripts are used to identify the
machine an element belongs to. Let interp be a local function from the configurations of B into V4 such that
interp,, = @ 4. For a configuration b of B, we define the configuration interp®(b) by interp”(b)(z) to be value of
interp™ on the configuration b shifted by —z, i.e. by centering it at position position z. Schematically, interp
interprets sequences of signals centered around position 0 and interp” uses it (composed with translations)
to rebuild whole configurations of the simulated signal machine.

A representation function is a function repr from (M 4UR 4) to Cg, such that the support of repr(-) is always
included in the interval [—1,1]. Let 2 be any position and d be any positive number, we denote repr(-, z, d)
the configuration repr(-) scaled by 1/3d and shifted by z; its support is included in [x—d/3,2+d/3]. One such
function will be used for encoding the signals and collisions making up the initial configuration. This function
yields a configuration for each signal or collision. For a configuration a, let d,(x) = min{|d||a(z + d) #
@ Ad #0}. Then, we note repr*(a) for the union of the repr(a(x),x,d,(x)) for a(x) # @. Note that because
of these translations and scalings, there are no collisions between the different repr(-).

Definition 3 (Simulation between signal machines). Let A = (M4, S4,R4) and B = (Mg, Sp, Ri) be
two signal machines. Let interp be a local function from the configurations of B into V4. Let repr be a
representation function.
For a diagram A = (A, a) of A, let B, = (B,repr*(a)) be the diagram of B on initial configuration repr*
(a). Then B simulates A if:
Va,Vt > 0,interp™ (B, (t)) = A(t) .

The reader familiar with simulations and intrinsic universality in Cellular Automata may wonder what
purpose the repr function serves. In Cellular Automata, there is a time grouping as well as a space grouping:
when some CA B simulates a CA A, there is a k such that for all 4, the configuration of B at time k - i
represents the configuration of A at time ¢, and indeed, any configuration of B seen at a time multiple of
k can be used as an initial configuration for simulating the corresponding configuration of A. In a signal
machine, having such a periodicity would require the spacing of any auxiliary signals in b to be uniform. This
in turn would require that there be a positive lower bound to the distance between two signals, uniformly
over configurations of A, which cannot be the case. Instead, a simulator uses repr to get an encoding of
each signal and collision at time 0. A similar distinction is necessary in the definition of simulation for
self-assembling systems Doty et al.| [2012], for the same reason of asynchronicity.

The following theorem comes as a sanity check of the definition of simulation. Its proof, while straight-
forward will allow us to explain how each part of the definition comes into play in more complex proofs.

Lemma 4. For any signal machine M, M simulates M.

Proof. First, the definition of simulation calls for the interp function. This function indicates which signal
of M (as the simulatee) is represented by a given local configuration of M (as the simulator). This only
depends on the signal at that very point, so define interp by: interp(b) = b(0).

Counsider some position z and a configuration b, and examine interp*(b)(z). By definition, interp* (b(z)) =
(y — b(y + x))(0) = b(x). Thus, each meta-signal represents itself locally by interp, and this extends to the
level of configurations where interp*(b(x)) = b(z).

Second, the repr function needs to be defined. For this, set that any meta-signal is represented by a
copy of itself in an otherwise empty configuration. That is, for any meta-signal u, set repr(u)(0) = p, and
repr(u)(y) = @ for y # 0. Then, as above, we then have for any z, repr*(a)(z) = a(x).

Finally, let A, = (A,repr*(a)). Then for each ¢ > 0 and each a we have interp™(A,(t)) = Ay(t)
(A, repr*(a)) = (A, a).

Example 5. Let A = (M4,54,R4) and B = (Mg, Sp, Rs) be two signal machines such that M4 =

({pr po, ps} {S(a) = =1, 8(u2) = S(us) = 1.}, Ra = {pa = {pa, e} — {pstt{ps = {pa, s} — {n2}})
and Mp = ({pa st} {S(a) = =1,S(ws) = 1}, Re = {pc : {tta, o} — {up}}). We want to show that B
simulates A. Informally, this holds by collapsing po and p3 into one signal, and observing that this yields

the meta-signals speeds and collision rules of B.

o

We define two functions interp and repr to turn this intuition into an instance of the formal definition of
simulation.

We want that for all diagrams A of A | interp™(A)(z,t) = pq if A(z,t) = pq, interp™(A)(z,t) = pp if
A(z,t) = po or uz, and interp™ (A)(z,t) = p if Alz,t) € {p4,p5}-

We take repr(pq)(z) = p1 if © = 0, otherwise @; repr(up)(z) = po if © = 0, otherwise @; repr(p.)(z) = pa
if x = 0, otherwise @.

Also, interp(a) = @ if a(0) = @, interp(a) = pq if a(0) = w1, interp(a) = up if a(0) = po, interp(a) = py if
a(0) = us, interp(a) = p¢ if a(0) = p4 and interp(a) = p. if a(0) = ps.

If A is a space-time diagram of A, then interp*(A) is a space-time diagram of B, because the collisions
are preserved by interp®.

Also, for each s, interp*(A) is a space-time diagram of A and has initial configuration s.

So interp*(A;) = B, and we have our simulation.

2.2 Intrinsically universal machines

Definition 6 (S-(intrinsic) universality). Let S be a set of speeds. A signal machine Us = (My, Sy, Ry),
is S-universal if, for any A with speeds in S, there is a local function interp 4 and a representation function
repr 4 such that Us simulates A through interp 4 and repr 4.

For the rest of the paper, we fix S = {s1,...,s,} C R a set of speeds, with s; < ... < s, and provide
the construction of an S-universal machine Us. Tts set of speeds, its set of meta-signals and its rules only
depend on S. The functions interp 4, and repr will be defined along with the construction of Us. By default,
interp 4 () is undefined; in the following, we will list the cases where interp 4(z) is defined. The number of
signals that interp 4 actually reads is bounded for each A. The definition of repr will be given in Sect.[3.2]

In the rest of the paper, not all collision rules of intrinsically undefined SM are explicitly defined. They
can be found online in the simulation. For a set of meta-signals s which is not explicitly defined as the input
of a collision rule, a collision rule p; is implicitly defined thus:

o if [s| =2, then p% =pTs =5
e if there is a unique explicit collision rule p such that p~ C s, then p5 = s, and p¥, = pt U (s\ p7),

o if, for all set of rules {p1, ..., pr} such that |, o, p7i = 5, Uj<;<p 7 is the same set pT, then p75 = s
and pfy = p*,

e otherwise p; is undefined.

In other words, unlisted rules with two inputs are blank, they output the same signals as in input. Unlisted
rules can also be the “superposition” of one meta-signal in both input and output of a defined collision
rule (this covers the case when a defined collision happens exactly on some irrelevant signal). It might also
happen that two or more unrelated collisions happen at the same position and share some input and output
signal or that two consecutive collisions become synchronous. The definition of the corresponding collision
rules is straightforward from the defined collision rules and can be considered as limit cases, in the sense that
a small perturbation of the input configuration gets rid of them. They are not listed to avoid unnecessary
listings of collision rules.

3 Encoding of signals and signal machines

3.1 Meta-signal notation

In the rest of the paper the names of Us-meta-signals are organised around a base name—in sans-serif font—
decorated with parameters:
,based or bhased .

A signal noted abaseg7 is instantiated for speed s, € S, and its actual speed is s,. A signal noted bbaseg7
is instantiated for speed s, € S, but its actual speed is not sy, but some other speed, generally computed

from b, c and d. We use _base? or ~base! when the actual value of the parameter is not relevant. A signal

noted baseii belongs to a family that is not parametrized by speeds in S. For example, lmainw and Zmainw

are different meta-signals of respective speeds s; and sp but with the same meaning, with respect to s; and
so respectively.
Parameters ¢ and d are used to hold a finite amount of information.

3.2 Encoding of signals and the repr and interp functions

Let ;u° be any meta-signal of 4. The integer ¢ indicates that the speed of ;u? speed is s; and o (0 < o) is
its index in some numbering of the meta-signals of A of speed s;.

We define repr(;17) as a so-called macro-signal, i.e. a configuration with finite support, delimited by two
parallel signals, here ;border-left and ;border-right. The space used by a macro-signal is called its support
zone.

The configuration repr(;1%) contains the following signals in the following order:

;border-left (;id)? imain@ i<rules encoding> ,border-right .

The left part is thus made of ¢ parallel signals of speed s; encoding ¢ in unary.
The relative position of signals of repr(;1”) are defined with ;border-left at —1 — Sits

Srapid

, ;border-right at

1-— S;i:, imain@ at 0, and other signals regularly spaced between them (before the rescaling and translation

done by repr*; the value of § is given in section ; sM@ is the maximum absolute value of speeds of S and
5P is a very fast speed defined in section The reason for this choice is explained in section

The value of repr on collisions (rather than signals) is defined in Sect.

All the rules of A are encoded between imainw and ;border-right, one after the other. Each rule (to be
read from the right) is encoded as a then-part followed by an if-part:

;rule-bound (;then;)* --- (;then)* ,rule-middle (;if;)* --- (if,)* ,rule-bound .

Let pmax be the collision rule of A where pr,,. is the set of all meta-signals with maximum id for each
speed. The encoding of pmax has to appear in the rules. This is a technicality to ensure a correct decoding
later one.

The number of ,if; signals between ;rule-middle and ,rule-bound corresponds to the index of the A-meta-
signal of speed s; which is expected as input by this rule (or zero for no s;-speed meta-signal). Then, the
number of ;then; between ,rule-bound and ;rule-middle corresponds to the index of the .A-meta-signal of speed
s; which is output by this rule. Figure[d] provides an example of a rule encoding.

Figure 4: Encoding of the rule {su!, 7u*, su®} — {2p?, 4u' } in the direction i.

All the needed meta-signals are defined in Fig. Later in the construction, the empty set in imainw is
replaced by a subset of [1,n] to store the directions to output after a collision.

Let w be the maximum number of signals in repr(;u?) for ;u° a signal of A. The function interp looks at
at most n.(w 4 2) non-@ values on each side. Except for the symbol at the center of the configuration (i.e. ¢
(0)), whenever a collision rule is encountered, interp virtually replaces it by its input signals, in the reverse
order of their speeds: it effectively simulates the configuration at time ¢ — e for small enough e. Thus, from
now on, we define interp according to signals only (except for ¢(0)).

Meta-signal speed Meta-signal speed

Vie[l,n], ,border-left Si Vi€e[1,n], ,rule-bound Sq
Vie[1,n], ;id Si Vi, le[1,n], ;then; Si
Vie[1,n], VEC[1,n], imainE s Vie[l,n], ,rule-middle s;
Vi€[1,n], ,border-right s; Vi, le1,n], ;i Si

Figure 5: Meta-signals for encoding.

We now define its value on some configurations, according to this section. This definition will be completed
in later sections, as more meta-signals and collisions of Us are defined. First, interp(c) is defined to be ;u7 if
¢(0) is imainw, and the closest signals to 0 are in a configuration that is compatible with the neighbourhood
of main in repr(;u?). This only depends on the to signals closest to 0 on each side. When this is the case,
we say that the configuration is clean at 0. A configuration c is clean at position z if its translation by —x
is clean at 0. For a configuration ¢ which is clean at x, we define width(c, z) to be width of the macro-signal
at z, that is the distance between the signals _border-left ;border-right- closest to 0.

4 Macro-collision resolution

In the rest of the paper, we define a set of meta-signals and rules to deal with collisions in .A. The simulation
of a collision has two phases: a check phase, which is presented in Sect.[f] and a resolution phase which is
presented in this section. The simplest space-time diagrams with at least one collision are the ones with
exactly one collision, and all signals in the starting configuration are inputs of that collision. This section
presents the sufficient machinery for dealing with this case, and Sect.[5] completes it in order to be able to
deal with a fully general diagram.

The resolution of a macro-collision is done in four consecutive stages as illustrated in Fig.[3}

Information disposal and id gathering (Sect.[4.1]). Useless signals are removed (e.g. the encoding of
the collision rules is kept in the leftmost macro-signal and deleted in all other incoming macro-signals).
The id number of each macro-signal is sent to the copy of the encoded rules in the leftmost macro-signal.

Applying id’s onto collision rules (Sect.[4.2)). For each speed involved in the collision, the id number
signals try to mark the same number in each collision rule if-part. In every rule, if the numbers do not
match, the rule is marked failed or an unmarked signal will remain.

Selecting the collision rule (Sect.|4.3). A signal crosses the rule encoding looking for a rule where all
signals are marked and failed is not present. When such a rule is found, its then-part is sent on the
left as the id’s to broadcast. It also collects the slopes for the outputs and stores them onto the _main®
signal.

Output (Sect.|4.4]). Macro-signals are broadcast in each output direction. Each of them has on the left
the id numbers and on the right a clean table of collision rules.

Let p be a collision rule of A, let j = ig < i1 < ... < 4,~|—1 = i be the integers such that these are
exactly the indices of the speeds in p~. Let a be a configuration of A4 whose signals are exactly one of each
meta-signal in p~ and the positions z;, < z;;,... < Ti of these signals are such that they all meet at
some point (z,t).

Let V' be a configuration which is clean at every zy, and 6 = max({width(a,zy)lk € {z;,...,z;}})).
Define b to be ¥, with an additional signal “’check-ok at position z. = (z; + ;,)/2. We say that b is a
§-width checked configuration for a. The “Jcheck-ok signal acts as a witness that the configuration is locally
good. This configuration must coincide with b on a wide enough region around x —and thus, also, for a long
enough time. The parameter § must additionally be small enough with respect to t, as will be defined in

Sect.[Bl

In the rest of this section, we give subsets Mu::shecked and Ruf:shecked of signals and collision rules of Us
(depending only on S). The machine gk ensures that, if § is small enough, there is §, with §, < K.§ for
afixed 0 < K and t+ 9, < t/, the configuration B(¢') is such that interp”(B(¢')) = A(¢'), and for any position
x such that B(¢')(z) # @, B(t') is clean at = (and has width width(z;)).

4.1 Useless information disposal and id gathering

We describe the signals and collision rules of Ug"***¢ through its behaviour on §-width checked configurations.
The signals and rules are then listed in full.
The list of rules of the leftmost macro-signal is used to find the corresponding rule to apply. All _id’s are
sent onto this list to operate the rule selection. The rule lists in other macro-signals are just discarded.
This is done as in Fig.@ Figure@ depicts the signals that drive the dynamics (*/check-ok then collect?

then readygJ) while there is an actual diagram in Fig.

i border-right

(b) example

Figure 6: Removing unused lists and sending ids to the decision making area.

Signal *Jcheck-ok initiates the process. It first goes on the left to make the id of the leftmost macro-signal
act on the rules. It bounces on ;border-left to become collect]. Signal collect] crosses the whole configuration
and bounces (and erases) the ;border-right (rightmost) to become ready?. The latter will select and apply
the rule. _

Before turning to collect], signal Jcheck-ok turns each ,id (for i only) into cross-back-ok; which heads
right for the rule list. Together, these cross-back-ok; signals encode the id of the macro-signal of speed index
i. In Fig.[6] this corresponds to the signals on the bottom left that are changed to fast right-bounds signals.

While crossing the configuration, collect! erases all the surounding signals of collaborating macro-signals.
It turns each ,id (for j < k <) into cross-ok; which heads left for the rule list. Together, the cross-ok,,
signals encode the id of the macro-signal of speed index k. In Fig.[6] this corresponds to the remaining signals
of each macro-signals, which are changed to fast left-bounds signals.

All the needed meta-signals and collision rules are defined in Fig.[]] The constant 40 is arbitrary. It
ensures that the delays in Fig.[3| are respected.

The function interp is refined to take account of these new signals and rules. As before, the value of
interp(b) is @ if b(0) is not some kmainw. It always ignores collect! and “Icheck-ok. If there is a collect!
before the first _border-left to the left, it looks to the left until the first imainw (for the same value of 7). If
there is a ;border-right before the , border-left, then it counts any cross-ok,, before that ;border-right as a ,id.

Likewise, it also counts any cross-back-ok; to the right of imainw as a ;id.

10

Parameter Value Vi, j€[1, n], <3, {;id, “J check-ok } — { "I check-ok, cross-back-ok;}

max

s = 'g[ﬁixl] s3] Vi, j€[1,n], j<i, {;border-left, “ check-ok } — { ;border-left, collectg}
i n . X . i i
grapid _ 40.gmax Vi, j, k€[1,n], j<k<i, {collect!, ,border-left } — { collect’}

Vi, j, k€1, n], j<k<i, ~{collect?, ,id } — { cross-ok,, collect]}
Vi, j, k€[1,n], j<k<i, {collect], ,border-right } — { collect!}
Vi, j, k€[1,n], j<k<i, {collect], ,rule-bound } — { collect]}
Vi, j, k€1, n], j<k<i, {collectg7 rule-middle } — { collectz}

Meta-signal speed
Vi, j€[1,n], j<i, *Icheck-ok —srpid

VZ,]E[[l,?l]], 7<q, collect; srapfd Vi, j, k,1€[1, n], j<k<i, {collect], ,if, } — { collect? }
Vi€[1,n], cross-back-ok; P w5 5k le[1,n], j<k<i, {collect], ,then, } — { collect] }
Vi€[l,n], cross-ok, —smPid Vi, je[1,n], j<i, {collect!, ;border-right } — { ready?}

Figure 7: Meta-signals and collisions rules for disposal.

4.2 Applying id’s onto rules

The beam of cross-back-ok; signals acts on every if-part of the rules and tries to cross-out the same number of
if;. Travelling rightward, each meet ;rule-middle before the if-part of the rule. It gets activated as cross-back;.
On meeting if;, they are both deactivated and becomes cross-back-ok; and ;if-ok;. This is illustrated on Fig.[§]
where dotted lines indicate deactivation and dashed ones indicate failure.

If the numbers do not match, a mark is left on the rule. If the cross-back-ok; are too few, then at least
one (activated) if; remains as in Fig.[8al If the cross-back-ok; are in excess, then at least one (activated)
cross-back; reaches the ;rule-bound on the right. It turns it into ,rule-bound-fail to indicate failure of the rule
as in Fig.[8d Signal cross-back; is always deactivated on leaving the rule (on ;rule-bound or ;rule-bound-fail).
Signals cross-back-ok; are destroyed after the last rule (on ;border-right). The left of Fig. displays a real
application of cross-back-ok; on the rules.

Figure 8: Comparison of id’s in the if-part of a rule for cross-back;.

For every other present speed s (7 < k < i), the beam of cross-ok, signals acts on every if-part of the
rules similarly and tries to cross-out the same number of ,if,. The difference is that they enter each rule from
the right: cross-ok,, are activated (into cross;,) by ,rule-bound and mark the excess (of cross;) on ;rule-middle
(as ;rule-middle-fail). Signals cross-ok,/cross, are destroyed after the last rule (on .main” after activation by
the last closing ,rule-bound).

Figure[9] depicts the process with equality on speed number 4, too few on speed 6 and too much on speed
5. Figure[Gh] displays a real application of id’s onto rules.

For every speed index m not involved in the macro-collision, ,if,, are unaffected and thus remain active.
Altogether, if the if-part of a rule does not match the incoming macro-signals, then at least one ,if, remains
or ,rule-middle is replaced by ,rule-middle-fail or the left ,rule-bound is replaced by ;rule-bound-fail.

All the meta-signals and collision rules needed for the application are detailed in Fig.[10]

As above, the function interp has to be refined to take these new meta-signal and rules into account. It
still yields @ if the configuration is not centred on a “main?. If it is centred on kmainw, then it needs to
recover the identity corresponding to that main signal. This is done by counting any cross-ok,, and cross,, as

11

\&
'\66

S b
N P %
speed 6 speed 5 speed 4 g eeo,
id 3 id 2 id 2 ° e
Figure 9: Comparison of id’s in the if-part of a rule.
Vie[[1, n], {cross-back-ok;, ;rule-middle } — { ;rule-middle, cross-back;}
. Vie[1, n], {cross-back;, if, } — { ;if-ok;, cross-back-ok, }

. Meta-signal Szeﬁd Vie[1, n], { cross-back;, irule—b:)unc; }—=A E:ross—lback—oki, irule—éound—fail}
Vi€[1,n], cross-back, s"eP) Vi€ [1, n], {cross-back;, ,rule-bound-fail } — { cross-back-ok;, ,rule-bound-fail }
Vie[1, n], cross; — grapid Vi€[1, n], {cross-back-ok;, ;border-right } — { ;border-right}

Vi, l€[1,n], ;if-ok, Si Vie[1, n], {,;rule-bound, cross-ok; } — { cross,, ;rule-bound}
vie[1, 1], irule-middle-fail 8 Vzi, ke[l,n], k<z:, <_{,in‘,€7 cross,, } — { cross-ok,,, ilf—okk]:)
Vie[Ln], ;rule-bound-fail s; Vi, ke[1,n], k<i, {;rule-middle, cross; } — { cross-ok,,, ;rule-middle-fail }

v » b ° Vi, ke[1,n], k<i, {;rule-middle-fail, cross;, } — { cross-ok,,, ;rule-middle-fail }

Vi, ke[1,n], k<i, {imainw, cross;, } — { ;main?}

Figure 10: Meta-signals and collisions rules for applying id’s to rules.

a ,id (or cross-back-ok; and cross-back; when k is ¢). This count is completed by counting the ,if-ok;, in the
section encoding pmax. This yields the correct value since the ids of the input signals in ppax are maximal.

4.3 Selecting the rule

After all of the cross-back-ok; and cross-ok;, have operated on the list, since the simulated machine is deter-
ministic at most one of the rules has no ,if; left and no ,rule-bound-fail nor ,rule-middle-fail. This rule is the
one corresponding to the collision that is being simulated. (If there is no rule, then the output is empty:
macro-signals just annihilate together.)

When the rule is found two things have to be done: (a) extracting a copy of the then part of the rule,
and (b) recording the output speeds.

This is carried out by the ready? coming from the right. When it meets some ,if; or ;rule-bound-fail or
;rule-middle-fail, it becomes ready—nog). Tt is reactivated (i.e. turned back to ready?) on meeting ,rule-bound.
It is still active only after crossing the correct if-part.

Activated in the correct then-part, ready? makes a slower copy to be sent on the left and stores the index
of the ;then;. The output indices are collected in a set in the exponent part of ready?, becoming readyZE where
E is the subset of [1,n] collecting the indices of all out-speed. This subset is updated each time a ;then;
is met when active. It is preserved by activation/deactivation and transmitted to imainw (that becomes
;main®).

Extracting a copy of the then-part is done as it is shown in Figure[l1] The copy goes to the left to cross
imainE. They are then made parallel to Z.mainE by a faster signal ready”. To generate it ready? emits ready!

on meeting ;border-right. On meeting imainE, ready’ is changed to ready? that sets on position all _id’s and

12

disappears on meeting ;border-left.

border-left
;border-right

i

main?

I

3

X

n, &
;then,

(a) scheme (b) example
Figure 11: Rule selection.

All the needed meta-signals and collision rules are defined in Fig.[12]

vi€[1,n], VEC[1, n], {;rule-bound-fail, ready” } — { ready-noZ, ,rule-bound-fail }

o

Meta-signal speed vi€[l, n], VEC[1, n], i readyi}—){ready-noiE,) _
el vl et el YECDL Gt) g it
vie[l,n], VEC[1,n], ready—nofE —grapid velt vie 1’ >l bord N N Y di‘” dy(i”)i avl. border-righ

eadyl —s’apid/Z i€[1, n], {;bor er—rlgwt7 ready; } — { ready;, ready", ;border-right }
r . Vie[l, n], VEC[1,n], main?, ready? } — { ,main®
dy? rapid i i i

ready” s Vvie[l,n], VEC[1,n], {;main? ready' } — { ready?, ;main®}

Vi lell id 7 rapid v v

% €[1,n], ld-copy; -8 Vie[1, n], {;border-left, ready® } — { ;border-left}
Vi, 1€[[1,n], ;id-select; Si Vi, le[1,n], VEC[1,n], {;then,, ready” } — { readyE o {l}, id-copy!, ,then;}
Vi, le[1,n], VEC[1,n], {id-copy?, ready® } — { ready”, ,id-select; }

Figure 12: Meta-signals and collisions rules for selecting the collision rule.

As above, the function interp has to be refined to take these new meta-signal and rules into account. It
suffices to have interp ignore the new signals from this section, since they leave the signals used previously
by interp unaffected.

4.4 Setting the output macro-signals

Figure depicts how the output macro-signals are generated. When imainE and jmainw (and all collabo-

rating main signals) meet, then fast-left” and fast-right” are sent and lmainw

E.
On the left, fast-left” sends each id-select; signal on the right direction as ,id. Then on reaching
;border-left, it emits one ;border-left for each ! of E and disappears. Similarly, on the right, fast-right” sends
a clean copy of the rules on each speed [of E. Finally, on reaching ;border-right, it emits one ;border-right
for each [of ¥ and disappears.
If the simulated intersection happens at (0,0) with ,border-left at (—1 —

are generated for every [of

si+smax

e, 0) and ;border-right at
(1- ”;7“::“70), fast-left” and ;,border-left intersect at (—1 — ST 1), while fast—rightE and ;border-right

Srapid 7 grapid
max 1

intersect at (1 — S, s). At time —Lg, each outgoing ;main” will be at position

Si
This proves that main signals will remain about in the middle of their borders (specifically, at position

%‘z:x if the borders are at —1 and +1), and that the right part of macro-signals remains no bigger than

the left part. It ensures all id—copyf cross ready?® before ;border-left.

After a while (given explicitly in Sect.7 all the initiated macro-signals are separated and ready for
macro-collision.

Knowing how the output of a macro-collision is set, we are ready to provide the value of repr on a collision

13

4

(a) scheme (b) example

(,1,

Figure 13: Generating the output of a macro-collision.

p, as advertised in Sect.[3:2}
,border-left ;<output id encoding> ptF i <rules encoding> ;border-right .
The collision pF is:
{;main®}cp U {;main®} — {;main®};cp U {fast-left”, fast-right”}

With F the set of indices of speeds different from s; of input meta-signals (of p~). The output ids (of pT)
are encoded in unary with ;id-select; signals. The rules are tainted with failures marks and ;if-ok,, signals, as
they would be, had the ids of p~ been applied to them, so that interp can recognise p. The signal ,border-left,

;border-right and p™¥ are placed respectively at positions —1 — Sts™ g s and 0.

srapd srapid

All the needed meta-signals and collision rules are defined in Fig.

Meta-signal speed
VEC[1,n], fast-left? —grapid_ gmax
VEC[1,n], fast-right” gsrapid_gmax

Vie[l,n], VEC[1,n], FC[1,: — 1], |F| # 0, {lmainw}LEFU{imainE }— {lmainw Vie pU{fast-left? | fast-right®}
Vie[l,n], VEC[1,n], {;border-left, fast-left” } — { border-left;c i}
Vi, le[1,n], VEC[1,n], IEE, {,id-select;, fast-left” }—{ fast-left? ;id}

Vie[1,n], VEC[1,n], {fast-right®, ,rule-bound } — { ;rule-bound };¢ pU{ fast-right”}
vi€[1,n], VEC[1, n], {fast-right”, ;rule-bound-fail } — { ;rule-bound }; g U{ fast-right® }
vi€[1,n], VEC[1,n], {fast-right”, ,rule-middle } — { rule-middle };c pU{ fast-right”}
vi€[1,n], VEC[1, n], {fast-right”, ,rule-middle-fail } — { ;rule-middle },¢ zU{ fast-right}

Vi, me[1,n], VEC[1, n], {fast-right®, if, . } — {,if,, hie 5U{ fast-right®}
Vi, me[1,n], VEC[1, n], {fast-right® ,if-ok,, } — {,if,, }1c sU{ fast-right®}
Vi,me[l,n], VEC[1,n], {fast—rightE7 ;then, b — {then, }hiepU{ fast—rightE}

vi€[1,n], VEC[1,n], {fast-right®, ;border-right } — { border-right;c & }

Figure 14: Meta-signals and collisions rules for the output.

An exact 3-signal collision simulation is depicted in Figure[l5]
Let Z/lghec"Ed be the signal machine defined by the above signals and collision rules, instantiated for all
possible values of 7 and j in S. The above arguments constitute the proof of the following lemma.

Lemma 7. Let p be a collision rule of A, and let a be a configuration of A whose signals are exactly p~
and the positions of these signals are such that they all meet at some point (x,t). Then for small enough 9,
let b be a 6-width checked configuration for a. Let A and B be the respective space-time diagrams of (a,.A)
and (b,U*ed). There is 6, (depending on &) such that for t' > t + 8,, the configuration B(t') satisfies
interp(B(t')) = A(¥'), and for any position x such that B(t')(x) # @, B(t') is clean at x.

14

= N

NN

Figure 15: Exact 3-signal collision with whole preparation.

We now refine the interp function in accordance with this section. If there is no fast-left” or fast-right”
signal, then no change is needed. Otherwise, if the centre of the configuration is a collision between _main?
signals, both the input and the outputs of that collision have to be determined. This can be done by looking
at the signals between Z-mainm and ;border-right, where one of the rules has been selected. After the collision,
the identity of an outgoing lmain@ signal can be gathered from the ;id right of fast-left” . and the ;id-select;
left of fast-left”.

With this refinement of interp*, the above construction gives a “conditional simulation” for configurations
with one exact collision, as stated in the following lemma.

Lemma 8. Let p be a collision rule of A, and let a be a configuration of A whose signals are exactly p~ and
the positions of these signals are such that they all meet at some point (x,t). Then for small enough §, let b
be a d-width checked configuration for a. Let A and B be the respective space-time diagrams of a and b. We
have that for any t' > 0,

interp* (B(t')) = A(t) .

Let p be a collision rule of A, and let a be a configuration of A whose signals are exactly p~ and the
positions of these signals are such that they all meet at the point (0,1). Then for small enough J, let b be
a 0-width checked configuration for a, and B the associated space-time diagram. Define repr(p) to be the

configuration of B at time 1, rescaled and translated so that ;border-left is at —1 — 5;27;?:3, ,border-right is at
1 o 57‘+Sm3)(

=@, and thus the collision of the “main® is at 0.

4.5 Towards simulating a collision in a larger diagram

More generally, this construction works for the simulation of a collision when all the participating signals
are identified and no other disturbing macro-signal is near.

Lemma 9. Let Us' = (Myg, Sys, Rus) be a signal machine which contains the meta-signals and rules of
I/{gh“ked, where for every rule pys € Ryg with an input signal of speed larger than s™, any input signal
belonging to L[gheCkEd 1s also in its output.

15

Let p be a collision rule of A, and let a be a configuration of A whose signals are exactly p~ and the
positions of these signals are such that they all meet at some point (x,t). Let A be the associated space-time
diagram.

Then for small enough 6, let b be a d-width checked configuration for a. There are W, §, and W' such
that for any initial configuration byg of Us' which coincides with b on a width W around x, after a time
t + 0o, by coincides on a width W' with a configuration buger such that:

interp” (bagter) = A(t + 5)

batter 15 clean at every position of a signal in A(t + 0,), and any such position is at distance less than W'
from x.

Proof. This follows from Lem.lﬂ For any value of §, note W = s™#* (¢t 4+ 4,) + 25. Suppose b coincides with
a d-width checked configuration b, ;), on a width W around z at time 0, then at time ¢ + 4, it coincides
with b on a width ¢ around z at time ¢ + §,. O

Section[] will deal with ensuring a locally §-width checked configuration before each macro-collision, with
0 small enough with respect to the delay before the collision. This means the following must be ensured:

1. the width of each macro-signal is small enough with respect to the time remaining before the support
zones meet,

2. any macro-signal that is not part of the collision is sufficiently away to not interfere,
3. all _main® signals intersect at the same location, where the simulated collision takes place,

4. a signal “Jcheck-ok is arriving on the leftmost macro-signal (index i) and j is the speed index of the
rightmost one. It witnesses that the resolution presented in this section is ready to start.

5 Preparing for macro-collision

We now define the rest of the signals and collisions of Us. Again, we explain first how correct diagrams
work, then list explicitly the meta-signals and collision rules.

What is needed from Us is to make sure that before every collision of A, there is a d-width checked
configuration for the inputs of that configuration, for small enough §. This is done through the following
phases:

detection of a potential macro-collision when some ;border-right and ,border-left meet,

shrinking (Sect.[5.1]). This is done by an elementary shrinking gadget, and checks appropriate sizing of
width of macro-signals of both sides,

testing around (Sect.[5.2)). This which ensures a safety zone around the macro-collision. This is done by
checking whether any unexpected disturbing signal enters the zone, and

check participating macro-signals (Sect.[5.3)). Through checking actual position of signals around, the
list of speeds of actual participating signals in the ongoing macro-collision is acquired.

The bottom half of Figure[15| shows the full testing and information gathering before resolving a macro-
collision. The last two phases may fail. In such a case, the whole process is cancelled to be eventually
restarted later. In the rest of this section, only the positive cases are presented. Failure cases are not fully
detailed although diagrams and examples are provided.

Detection phase The detection phase is only one collision: any collision between a ;border-right and

wborder-left sends a collection of signals: ishrink-bottomB®™, “shrink-topis™, “*shrink-test, ¥shrink-top{*, and

kshrink—bottomlﬁmh, which initiate the shrinking phase.

16

Shrinking and width checking Shrinking is done by an elementary and widely used gadget in signal
machines. To ensure every controlling signal we will send for future uses passes through all the participating
meta-signals and comes back in a reasonable time, we ensure that the width of the left-most participating
macro-signal is the larger one, among all participating macro-signals. Comparing width of two meta-signals
is done by sending a signal from middle and waiting for the echoes. The echo that arrives first indicates the
thinner macro-signal.

Testing for safety zone A zone around any (potential) macro-collision is considered to not contain any
disrupting signal. This property helps to ensure that no other signal may have collision with the detected
meta-signals during the process of handling an ongoing macro-collision. The zone is surrounded by four
borders. The existence of disturbing signals in the safety-zone is checked by sending some signals at two
bottom borders and testing for any unexpected collision. Any unexpected collision cancels the process. The
two other borders have a high absolute slope, thus, no other signal may cross those.

Checking participating meta-signals Once a potential macro-collision is detected, since all speeds of
macro-signals are of a fixed set (S), for the ongoing macro-collision, all other potentially present macro-
signals could be detected. In order to check their existence, some welcoming signals (“*check-intersect™) are
sent to the positions we expect for other meta-signals’s lmainw to be present at. Any encounter of lmainw
without the corresponding welcoming signal violates the condition of safety-zone. In this case, the process
is aborted. Note that, the macro-signals are already shrunk, and next collision would be processed with

thinner macro-signals and, thus with a smaller safety-zone.

5.1 Shrinking for delay and separating macro-signals

In order to gain some delay macro-signals are shrunk so that either the macro-collision as presented above is
processed or aborted. Aborting is just not to go to the main step; the shrunk macro-signals are operational
and can restart a macro-collision.

Figure[I6hH] provides an example of the shrinking process. It is started in the middle where the support
zones meet. Shrinking processes are always initiated from the frontier and each half of a macro-signal is
shrunk independently; this is done in order to handle concurrent shrinking on the same macro-signal.

Shrinking parallel signals is an application of proportion as illustrated in Fig.[I6al The thick signals
control the shrinking while the dotted ones undergo it. Basic geometry shows that the relative position
of the intersection of the dotted signals on the segments [ag, bg] then [ay, b;] then [ag,b;] then [as,bo] are
identical. Thus they are shrunk with the same relative positions and order.

(a) elementary shrinking (b) shrink and check relative widths

Figure 16: Shrinking.

The elementary shrinking process is quite a usual primitive of signal machines |Durand-Lose| [2006} 2009,
it is not developed more in this article. Figure[I7]details the signal scheme to handle the multiple shrinkings.
Process of handling macro-collision requires sending some controlling signals through all the macro-
signals and gets back in a reasonable time. By ensuring that the width of the left-most macro-signal is the
largest among all participating macro-signals, the width of all potential participating macro-signals could be

17

border-left

;border-left

=
o

The nameless signal i

he centre is | shrink-test-ok

Figure 17: Scheme to shrink and check relative widths.

limited. A gadget in the middle of Figs. and ensures that left macro-signal is wider than the right
one. This is done by sending some “*shrink-test signal when borders meet. This signal has speed average
of z»mainQ and kmainw. The “shrink-bottomp’™ and *shrink-bottom;°™" bounce on z»mainq} and kmainw. If the
two macro-collision would have the same width, then the echos ishrink-test® and *shrink-test" would arrive
simultaneously. If the left macro is larger, then *shrink-test" arrives first.

Otherwise, if “shrink-test® arrives first, the right macro-signal is shrunk again and the process is cancelled,
to be restarted later when the support zones meet anew, this time with a now-thinner right macro-signal.
Figure[I§ depicts the case where the right macro-signal is larger than the left one.

In case a new shrink is started when one is already going on, a new signal *shrink-delayed, (resp.
kshrink-delayedg) is sent from the collision with ¥shrink-top, (resp. Fshrink-topg) so that it will collide with
pborder-left (resp. ,border-right) to do the shrink after. This is not detailed in the paper, meta-signals and
collision rules and the special cases later on are omitted.

The used meta-signals and collision rules are defined in Figs. [[9) and 20]

The interp function has to be refined to take the content of this section in account. For this, it is enough
to count any Fshrink-id as if it were a .id, and ignore the other meta-signals of this section. Note that the
number of additional signals accounted for by this section for one collision is bounded, therefore interp is

indeed defined locally.

5.2 Testing isolation on both sides

It must be ensured that the macro-collision will happen far away enough from any other macro-collision
or macro-signals. The outside signals to consider are of two kinds: probe signals (the ones used here and
in the next sub-section) and the one that delimits macro-signals and macro-collisions. Probe signals are
only testing for the presence of other signals; they are not interacting with any other signals nor collisions,
so there is no use to bother with them. The delimiting ones have their speed in [—s™, s™] (s™* is the
maximum absolute value of any speed in §), so that it is enough to consider only extreme speed on both
side.

Figure[2I]shows the extent of the safety zone: all the preparation and the resolution is restrained inside it.
This large area can be guaranteed from the positions of imainw and kmainw (right next to imainw), provided
the macro-signals have not met yet, so that their width is bounded by the distances between _main®. The
extreme points on top of the collisions are when output macro-signals are separating one from the other as
the point Cy, for macro-signals of speed s,,, and $,,41 in Fig.2I} To ensure a large enough safety zone, it
will be delimited by four points: Zr, Zy, Zr and Zp such that:

18

; border-right

Bl

El
aBu-1epiod

LyeI-epiod

(a) scheme

Parameter Value
rapid
ssh rink _ s
2

Meta-signal speed

Vi€[1,n], *shrink-bottom, s;+3sshrink
Vi€[[1, n], *shrink-bottomPoth 5, 4-3sshrink
Vi€[1,n], ishrink-bottomg s;—3s"rink
Vi€[[1, n], *shrink-bottomBth s; —3sshrink
Vie[[1,n],
Vie[[1,n],
Vvie[l,n],
vie[l,n],
vie[1,],
Vie[l, n],

ishrink—topL Si+sshrink
ishrink-top{sst s;+sshrink
‘shrink-topg 5;—gShrink
ishrink-topl™t s; —sshrink
ishrink—backl_ 5;—3gshrink
ighrink—backR 8;+3shrink

.........

vie[1,n],

(b) example

Figure 18: Shrink and check relative width of two neighbouring support zones.

Meta-signal
*shrink-id

speed
Si+sshrink

Vi€[1, n], *shrink-rule-bound s;—sshink
Vi€[1, n], “shrink-rule-middle s;—sshink

Vi, 1€[1,n], ishrink-if s;—gshrink

Vi, I€[1,n], ‘’shrink-then! s5;—shrink
vie[l,n], “shrink-testt s; —3shrink
vie[l,n], ishrink-test? s;+3gshrink

Vi, k€[1,n], k<i, “Fshrink-test sitsk

Vie[l,n], ,shrink-test-ok i
Vie[1,n], ;shrink-test-fail si
Vi€ 1, n], shrink-order 5;4sshrink
Vi€[1,n], itest-start 5;—sshrink

Figure 19: Meta-signals for shrinking.

1. all Cp, (1 < m < n) are in the zone,

5. Zp, and Zg can be reached by signals from Zp.

2. the slope of segment from Zj, to Z correspond to the speed s

19

max

)

3. the slope of segment from Zg to Zp correspond to the speed —s™®,

4. 75, and Zg are low/early enough so that the whole macro-collision is wholly inside the area, and

First, the position of Zp is the one where imainw and “test-start meet. The position of Zr is computed
from this position and the position of the simulated collision, that is the intersection of imain@ and ;main
To compute the speed to get to the right positions, a coordinate system is introduced where these points
have coordinates (—s;, —1) and (0,0) respectively. We take 4s™®* as the width of the left macro-signal as it
is an upper bound of it and induces upper bounds on the C,,.

test i,k

both i
Vi, k€[1,n], k<i, {,border-right, , border-left } — { ssir:;i tzz;tgs:rj & sf:n::rll:)nolj:t?nﬁb"th shrink-test, }
vie[1, n], {*shrink-bottom*™", .id } — { *shrink-id, *shrink-bottom*"}
Vie[1, n], {*shrink-bottom, , ;id } — { “shrink-id, “shrink-bottom, }
vie[1,n], {*shrink-id, *shrink-back, } — { ishrink—backl_, ;id}
Vie[l, n], {*shrink-bottom2™" . rule-bound } — { “shrink-rule-bound,‘shrink-bottom*"}
Vie[1, n], {*shrink-bottomp, rule-bound } — { “shrink-rule-bound,*shrink-bottomg }
Vie[1, n], {*shrink-rule-bound,*shrink-backg } — { “shrink-backg,; rule-bound }
Vie[1,n], {*shrink-bottomg*™", rule-middle } — { *shrink-rule-middle,’shrink-bottom3™*" }
Vie[l, n], {*shrink- bottomR,irule—middIe } — { *shrink-rule-middle,*shrink-bottomg }
vie[1, n], {?shrink-rule-middle,shrink-backg, } — { *shrink-backg, ; rule-middle }
Vi€ [1,n], {*shrink- bottomb“h Aif, 3 — { 'shrink-if’ % shrink-bottom5°" }
Vie[l, n], - { shrlnk‘ bottomg,,if; } — { /‘ishrink—ifl,ishrink—bottomR}
Vvie[l, n], {"shrink- if! “shrink-backg } — { “shrink-backg,;if; }
Vie[l,n], {?shrink- bottombOth sthen; } — { “shrink-then,?shrink-bottom&* }
Vie[1, n], {*shrink- bottomR,ithenL } — { “shrink-then’, *shrink-bottomg }
Vie[1, n], {ishrink then! Vshrink—backR }—{ ishrink—backR,ithenl}
Vie[l, n], {* shrmk bottomb°th, main® } — { “shrink- back , 1main s 'shrink bottom }
Vie[l,n], {; mam “shrink- bottomborh } — { *shrink-bottomg, , maln “shrink-backg }
Vi€ [1, n], {*shrink-bottomP°*", mam “shrink- bottombOth } — { “shrink-back , 1mam s shrlnk backg }
Vie[1, n], {lshrlnk bottom,, ; main 0y g shrmk back,, ; main?}
Vie[1, n], {; main®, “shrink- bottomg } — { ; main” “shrink-backg }
vie[1, n], {,border-right, *shrink-bottomg } — { “shrink- top,_, “shrink-bottom, }
Vie[1, n], {Ishrmk bottom,, ;border-right } — {* shnnk bottomg, “shrink-topg }
Vie[1, n], {1shr|nk bottom, , Imaln@ =4 main®, “shrink- back }
Vie[l,n], {"shrink-top, “shrink-back, } — { ;border- Ieft}
Vie[1, n], {Zshrlnk backg, “shrink-topg } — { ; border—rlght}
Vie[1, n], {shrink-top[™", “shrink-back, } — { “shrink-test", ; border-left }
Vie[l,n], {*shrink-backg, *shrink-top™" } — { Zborder—rlght “shrink-test™ }
Vi, ke[1,n], k<i, {¥¥shrink-test, ®shrink- 1:estL } — { . shrink-test-ok }
Vi, ke[1,n], k<i, {?shrink-testR, kshrinkftestfok } — { “test-start }
Vi, ke[1,n], k<i, {?shrink-test®, “¥shrink-test, ¥shrink-test" } — { “test-start }
Vi, ke[1,n], k<i, {7shrink-test®, “Fshrink-test } — { ;shrink-test-fail }
Vi, k€1, n], k<i, {,shrink-test-fail, ®shrink-test" } — { ®shrink-order}
Vvie[l, n], {'ishrink—order7 ;border-left } — { “shrink-bottom?®", ‘shrink-top, }

Figure 20: Collision rules for shrinking and test relative width.

Thanks to the choice of relative width of each half of each macro-signal, the point Oy and Og have co-

: _ max max _ 25 _ max max 8" _ 25m
ordinates (dfoL = —25M — 25 S,ap,d,toL = T) and (To, = 2™ — 2™ o 1o, = |- The point
i = max__Sm+1 4o _As™
C,, has coordinates (xm =z0, +4s Sm“_sm,tm =10, + sm+1—sm)'

We take, as coordinates of Zr:
Zr (xp =0, tr =2max{t, |1 <m<n})

So that, at time max{ t,,}, all the signals are separated and still within the safe zone.

By setting the point Z;, and Zg to be to be on the line t = ¢ — 1 for a sufficiently small positive ¢, they
have coordinates (z;, = —s™(tr —¢),tp, = e — 1) and (zg = s™*(tr —¢),tg =€ — 1).

It is enough to ensure that no signal (except for probing ones) enters through the bottom of the safety
zone since their speeds prevent them from entering from the other two sides. The scheme to send signals to
Zr, and Zp is depicted in Fig.[22]

After the shrinking, pairs of fast enough signals are issued on both side so that they meet on the extreme
points: ‘test-left and “Ftest-left-up on the left and ‘test-right and ‘test-right-up on the right. The signals
itest-left, “test-right and ‘test-right-up are issued from ;main” while “*test-left-up and “*test-right” (later to
become i'ktest—rightj) are issued from the collision between kmainw and “test-right at U™".

On the left, after crossing ;border-left, if signal ‘test-left meets nothing before “*test-left-up then it returns
as itest left-ok (and “*test-left-up is destroyed). When ‘test-left-ok meet ;main’, then the later turns into

;mainy.. to record the success on left. Otherwise, anything met on the left is either too close or participates

0

test

in the macro-collision (and ;main” is not the left-most involved). In both cases, the macro-collision should

20

\eft-ok

igest

0 0

The point where ;main” and ; main® meet has coordinate (0,0). For clarity, border signals are not displays.

Figure 22: Testing for the safety zone and identifying the rightmost speed.

be aborted. This is done by coming back as ‘test-left-fail. This signal cancels “*test-left-up and any signal
returning from the right side and disappears thus preventing the macro-collision from being initiated. This
is depicted in Fig.[26) where it can be seen that the process is restarted later with success.

On the right, “test-right tests for obvious non participating macro-signals and collects the index of the
rightmost potentially participating macro-signal (next stage checks whether all potentially participating

signals are rightly positioned). It verifies that jmain@ are in strictly decreasing speed order. It also verifies

0

that a ;main” is reached for any ;border-left encountered by turning into iktest-right-wait’ in between (this

is not indicated in Fig.. The signal “*test-right’ also initiate a shrinking process on each macro-signal on
the right when it meets a ;border-left (to avoid useless macro-collision initialisation).

Signal “*test-right’ updates the least speed index encountered when it meets ;border-left (becoming
i'ktest—right—waitl) with [< 7 and at crossing; main? becomes i'ktest—rightl. When “*test-right’ and “test-right-up
meet, they comes back as ‘test-right-ok’. That way, it brings back the index of the rightmost speed. When

itest-right-ok’ meets imainfekst, the next stage of the macro-collision starts.

21

The signals ‘test-left and ‘test-right-up head straight to Z; and Zg, so that their speed are: ”T"‘S‘

rr+s; (__ test-right-up
and FEFL (= s;

) respectively. The speed of ‘test-right can be anything greater than the speed of
“test-right-up, double that speed (= 2s:""8"*P) for example.

To compute the other speed, some coordinates have to be computed (in particular U**). This is straight-
forward once an appropriate formula is given. If the speeds (a, 8 and s) are given as in Fig. then the

coordinates of the intersection point, M, are:

(70‘7 71)
Figure 23: Computing coordinates.
Thus, the coordinates of U™* are:

Si piok
ZSzest—right—up . Sk’ v —

test-right-u test-right-u
2Si g Pp_ 251‘ g P _

Si

test-right-up
2s; Sk

Ty = —Sk

The used meta-signals and (success) collision rules are defined in Figs. and To be coherent with
Fig. the duration of 2¢ with a start at 8/10 is assured with the value: € =1/16 .

Meta-signal speed

Parameter Yalue —— e ELTM
£ = E ViEHl,n]], itest-right-up Szest-rlght-up
Vie[1,n], S‘;est—right-up — TR+ Si vie[1,n], .itest—ri.ght ' 25;:::i:igh:;up
82 test-right-up Vi, j, k€1, n], j<k<i,) Z*ktest—nghtj . S;i,kt 'ght
Vi, ke[1,n], k<i, thF = fskw Vi, j, k€[1,n], j<k<i,"Ftest-right-wait/ s gk
Vi, ke[1,n], k<i, :E;}k _ Sk.t';]fi Sk Vi, ke[1,n], k<z, i-ktest-left-up %
i Vi, ke[l,n], k<i, ‘test-left-ok siest-lefiback
Vie[1,n], S';e]sct—right — % Vz"je[[LP]L j<i, 1test—right-okﬂ S;est—nght—back
| Rty Vie[l,n], maings Si
vie[1, 1], S;estfright—back _ m Vi, ke[1,n], k<i, .Ztest-left-fail stgeit-l'em;t;b:ckk
15651 — 8 — ap Vi, jEL,n], j<i, ‘testright-fail s b
Vig[1,n], siestlef-back = * vie[1,n], imaln{i_'s';' Si
‘E vie[l,n], maingy” Si

Figure 24: Meta-signals for testing.

5.2.1 Test failure

As depicted on Fig.[26] the test can fail because of the presence of unwanted signals on the left or on the
right. Both cases are briefly presented.

22

{; main?, “test-start } — { “test-left,, main? “test-right-up,’test-right }
‘ {"test-right, ,, main® } — { 1'ktest—left—up7k main? **test-right*}
{"Ftest-right’, ;border-left } — { 'shrink-top,, “"*test-right-wait', 'shrink-bottom{°*"}

vie[l, n],
Vi, ke[1,n], k<1,
Vi, j, k, L€[1, 0], I<j<k<i,

Vi, j, ke[1,n], j<k<i, {¥*test-right-wait? jmainq’ =4, main?, ik test-right? }
Vi, ke[1, n], k<i, { test-left, “Ftest-left-up } — { ‘test-left-ok }
vie[[1,n], {*test-left-ok, ;main® } — {, main®,
Vi, j, ke[1,n], j<k<i, { test-right-up, “"test-right’ } — { “test-right-ok’ }

Vie[1, n], {*test-right-up, “7 test-right-wait’, j main® } — { “test-right-ok/ j main?}

Vi, j€[1,n], j<i, { maint°ekst, ‘test-right-ok? } — { imaino, “J check-up, “Jcheck-?}

Figure 25: Collision rules for testing, success case.

Figure 26: Detection of a signal not participating on the left and on the right.

Figure presents the scheme for failure of test on the left. This happens if “test-left encounters anything:
it is either something that should not be involved and is too close or just that imainw is not the leftmost
macro-signal involved, so that macro-collision has to be aborted to be started by the rightful macro-signal.
Since probe signals are not concerned, the signals that can be met on the left are: lmainm, ready?, ,border-right
or !shrink-topg (for any).

On meeting, ‘test-left bounces back as ‘test-left-fail. It arrives back to ;main® and marks it as mainfl,
When ‘test-right-ok’ meets imainz;';', it is destroyed and imainm is restored; nothing is emitted so that the

macro-collision is aborted. The signal “*test-left-up has to be disposed of; this is done either on ‘test-left-fail

. fail-l
or on ;main; .

lborder—right

Figure 27: Testing for the safety zone, fail on left.

Figure presents the scheme for failure of test on the right. The alternation of “Jtest-right’ and
Z"jtest-right—waitl is not indicated for clarity although they are used to detect failure. The failure might
come from some ;border-left with [too small or from ‘test-right-up meeting “/test-right-wait', i.e. before
;main? is met. In any failure case, “Itest-right’ (or “/test-right-wait') bounces back as ‘test-right-fail. When
‘test-right-fail meets imainf:st, it is destroyed and imainm is restored; nothing is emitted so that the macro-
collision is aborted. The signal “test-right-up has to be disposed, this happens on meeting “test-right-fail.

It might happen that the “test-right-fail arrives before “test-left-ok onto imainw. It might also happen that
there is failure on both side and arrival onto imainm can be in any order. The listed rules do take this into

account.

23

1bOrder-right

z.tes [N

Figure 28: Testing for the safety zone, fail on right.

The used meta-signals and (failure) collision rules are defined in Figs. and The rules in Figure
are divided in three part: fail on left only, fail on right only and additional rules in case fail on both left and
right.

Vi, le[1, n], {,border-right, test-left } — { ,border-right, itest—left—fail}
Vi, l€[1, n], {lshrink—topR, ":test—left }—={ lshrink—tng, ‘test-left-fail }
Vi, l€[1, n], {ready?, “test-left } — { ready;, ‘test-left-fail }
Vi, l€[1, n], { main®, “test-left } — { lmainw, “test-left-fail }
Vvie[1, n], { test-left-fail, “Ftest-left-up } — { "test-left-fail }
vie[1, n], {’testl—left_—fail, i main® } — { i main{:s';‘
Vie[1, n], {; mainii'slgl, K test-left-up } — {; mainz's';‘}
Vvie[1, n], {; main{Z!;', ‘test-right-ok? } — { imainw}
Vi, k,le[1,n], k<i, k<I, {"‘Jtest—rightk, border-left } — { "test-right-fail, ;border-left }
Vi, k,le[1,n], k<i, k<I, {i'jtest—rightk, ’shrink—topL }—={ Utest-right-fail, Lshrink—topl_}

Vi, j, k€1, n], j<k<i, {'itesf.-right-up, i'jte_st—right-waitj }—=A{ ftest—right—fail}
Vi, ke[1, n], k<i, {"test-right-fail, “test-right-up } — { “test-right-fail }

Vie[1, n], {, main®, “test-right-fail } — { , maini:i;;'
Vvie[1, n], {itest—left—c?k, i main{iislg' }—={,;main"}
Vie[1, n], {i>main‘t’:5t, Itest—right—l’fail }—{,main?}
Vvie[1, n], {Ztest—lgft—fgil, i main{‘;'s';' =1 imainw}
Vie[1, n], {; mainf! | itest-right-fail } — { ,main?}

Figure 29: Collision rules for testing, failure cases.

The function interp can be trivially extended for this section by ignoring all of its signals, as they don’t
affect the identity of macro-signals. Again, the number of additional signals accounted for by this section
for one collision is bounded, therefore interp is indeed defined locally.

5.3 Check participating signals

From this point, it is known that the index of involved macro-signals ranges from j to ¢ (included). But it
is not known whether they actually participate in one single macro-collision (the situations in Fig. are not
yet distinguished).

To check this, the two first _main” (imain@ and kmainm) are used to organise meeting points with the
all potential lmainw (I € [j,k —1]). If any appear anywhere except at their assigned meeting point, then
it is known that it will not pass where imainw and kmainw intersect (and the macro-collision aborts). The
meeting points are computed according to the speeds (like in Fig.. This constructions is presented on
Fig. with potential lmainm dashed. The equation is used again to compute the intersection points and
to deduce the speeds.

Signal “Jcheck-? and slower signal “Jcheck-up go on the right. If the first _main® “Jcheck-? meets is
jmainm, then there are only two macro-signals involved, it disappears and lets “/check-up starts the next
stage.

24

(a) scheme

(b) example

Figure 30: Testing the other _main® signals.

Otherwise, Jcheck-? turns to “Jcheck which crosses the configuration until it meets j main? or a mismatch.

iicheck-up cross ymain? at A and branches into several “*check-intersect™. Each time “Jcheck meets some
lmainm, then there should also be the corresponding “*check-intersect’. And the resolution is started.

If any ;main” is met with the wrong “#check-intersect™ (m # I) or without any, “check turns into
i check-fail. This latter cancels all remaining ik check-intersect! and disappears with “*check-intersect’. The
resolution is not started.

The used meta-signals and collision rules are defined in Figs. and The speed of “Jcheck-up has
to be fast enough so that A occurs before “/check intersects any kmain. The position of A and of such
intersections are again obtained using , yielding the necessary speeds of the signals “¥check-intersect?.

Once again, interp simply ignores the new meta-signals and collisions, which are in bounded amount for
each collision.

Altogether, the devices presented in this section yield the following lemma, which states that U correctly
simulates one collision from clean inputs.

Lemma 10. Let p be a collision rule of A, and let a be a configuration of A whose signals are exactly p~
and the positions of these signals are such that they all meet at some point (x,t). Let A be the associated
space-time diagram.

Let b be a configuration such that interp(b) = a, and which is clean at every position of a signal in a.
Then there is a § and t' <t such that B(t') is a d-checked configuration for a.

Parameter Value
101
Tcheck = 7
100 y Meta-signal speed
. 8§ — 8" Vi, je[l,n], j<t “Jcheck-? srapid
VI <k <4, hjg = =g Tcheck ,’].E[[’]]’] J id rapid
srapid — g Vi, j€[1,n], j<i, Jcheck s"ap
s — o (7 oy cpe; (Mbonte)) Vi jeLnl, j<i, “check-up et
= 5 1<k<i hi g+l - lSL-ti'nt]?sed75k-tqhzstart
st i — s™Pid Vi, j€[1,n], j<i, “"check-intersect —t?ﬁtgfsect_tshi-:ga"
Vi, k€1, n], k<i, tSystat = — . . ” . b k.
yke[L,n], ik srapid _ g Vi, j€[1,n], j<i, *Jcheck-fail —srapid

. _ oChk-up
Vi, k€[1,n], k<i, tintersect — %t 5 7
’ e ? ik gchk-up _ Sk

Figure 31: Meta-signals for checking.

25

Vi, j€[1,n], j<i, {"I check-?, malnm}—>{ main®}

Vi, j€[1,n], j<q, {J check-up, Jmam }—){”check ok, Jmalnw}
Vi, j, k€1, n], j<k<i, {”check ?, j,main }~> { kmaln check}
Vi, j, ke[1,n], j<k<i, {"J check-up, kmalnql Y= {¢ kcheck intersect’ };<;<xU {, main?}
Vi, j, k, €1, n], j<I<k<i, {"*check-intersect!, "I check } — { “check }

Vi, j, k, l€[1,n], j<i<k<i, {’kcheck—mtersectl 1Jcheck,lmam }H{lmam0 ”check}
Vi, j, k€[1,n], j<k<i, {**check-intersect’, I check, malnm}—>{”check ok, malnm}

Vi, j, l€[1, n], j<I<q, {" check, lmaln(zl } — { *J check-fail, lmalnw}
Vi, j, k, 1, me[1,n], j<I<k<i,l # m, {*Icheck, ,main?, * kcheck—mtersectm —={ main?, J check-fail }
Vi, j, k, l€[1,n], j<I<k<i, {"I check-fail, “"*check-intersect! } — { “J check-fail }
Vi, j, k, l€[1, n], j<i<k<i, {i'jcheck—fail, “k check-intersect? } — { }
Vi, j, ke[1l,n], j<k<i, {i"jcheck, “k check-intersect? }—{ i'jcheckffail}

Figure 32: Collision rules for checking.

6 Simulation examples

The presented construction works and has been implemented. It has been entirely programmed in an ad hoc
language for signal machines. Given a signal machine, the library generates the corresponding Us together
with a function to translate initial configurations. This has been used to generate all the pictures. Figure[33]
presents a simulation of the dynamics in Fig.[Tal

- 1’//A\“ R

E———NNNN\

/

Figure 33: Space-time diagram of simulation of Fig.

Figure[34] provides different test and check failures before resolving the correct macro-collisions as well as
a 3 macro-signal collision.

Figure[35| represents a space-time diagram with finitely many collisions with no special regularity.

Figure[36| represents a space-time diagram with a simple accumulation on top and its simulation.

Figure[36] is the basis for firing squad synchronisation on Cellular Automaton. On signal machines, since
space and time are continuous, it generates a fractal. The simulation contains more than 100,000 signals. It
has been used as a test for robustness.

7 Conclusion

Altogether, the construction proves the following result.

Theorem 11. For any finite set of real numbers S, there is an S-universal signal machine. The set of Us
where S ranges over finite sets of real numbers is an intrinsically universal family of signal machines.

With the definition of simulation provided in this paper, there does not exist any intrinsically universal
signal machine. Indeed, for a signal machine to be simulated, there should be a simulating signal exactly

26

AN A

/4

Figure 34: Example 1.

\)

Figure 36: Example 3.

>

Figure 35: Example 2.

where a simulated one is: it must have the same speed. Thus, to be able to simulate an arbitrary signal
machine, a universal signal machine should have signals of each of infinitely many speeds. Since every
signal machine has finitely many speeds, there is no intrinsically universal signal machine. On the other
hand, it might work with some other reasonable definition of simulation, maybe considering some kind of
approximation.

27

Figure 37: Example 4.

A signal machine may produce accumulations (infinitely many collisions in a bounded part of the space-
time). The simulation works up to the first accumulation (excluded) where the configuration of the simulated
machine ceases to be defined in Figure|36]

Using macro-signals forces one to deal with width. Hopefully, macro-signals can be made as thin as
needed. Nevertheless, as seen through the paper, it requires a lot of technicalities to deal with that.

In the construction, each macro-signals carries the list of rules associates with it, thus its dynamics, like
a cell carries its DNA. We wonder what might happen and what kind of artefact could be created if some
way to dynamically modify the table were introduced.

References
Andrew Adamatzky, editor. Collision based computing. Springer, 2002.

Jiirgen Albert and Karel Culik II. A simple universal cellular automaton and its one-way and totalistic version.
Complex Systems, 1:1-16, 1987.

Pablo Arrigh and Jonathan Grattage. Partitioned quantum cellular automata are intrinsically universal. Natural
Computing, 11(1):13-22, 2012. doi: 10.1007/s11047-011-9277-6.

28

Lenore Blum, Michael Shub, and Steve Smale. On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21
(1):1-46, 1989.

Nino Boccara, J. Nasser, and Michel Roger. Particle-like structures and interactions in spatio-temporal patterns
generated by one-dimensional deterministic cellular automaton rules. Physical Review A, 44(2):866-875, 1991.

Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15:1-40, 2004.

Marianne Delorme and Jacques Mazoyer. Signals on cellular automata. In Andrew Adamatzky, editor, Collision-based
computing, pages 234-275. Springer, 2002.

David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers, and Damien Woods. Intrinsic universality in self-
assembly. In Jean-Yves Marion and Thomas Schwentick, editors, 27th Int. Symposium on Theoretical Aspects of
Computer Science, (STACS 2010), Nancy, France, volume 5 of LIPIcs, pages 275-286. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2010. doi: 10.4230/LIPIcs.STACS.2010.2461.

David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and Damien Woods. The tile
assembly model is intrinsically universal. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October, 2012, pages 302-310. IEEE Computer Society, 2012. ISBN
978-1-4673-4383-1. doi: 10.1109/FOCS.2012.76.

Jérome Durand-Lose. Reversible cellular automaton able to simulate any other reversible one using partitioning
automata. In LATIN 1995, number 911 in LNCS, pages 230—244. Springer, 1995. doi: 10.1007/3-540-59175-3_92.

Jérome Durand-Lose. Abstract geometrical computation 1: embedding black hole computations with rational
numbers. Fundamenta Informaticae, 74(4):491-510, 2006. URL https://content.iospress.com/articles/
fundamenta-informaticae/fi74-4-07.

Jérome Durand-Lose. Abstract geometrical computation and the linear Blum, Shub and Smale model. In
Barry S. Cooper, Benedikt. Lowe, and Andrea Sorbi, editors, Computation and Logic in the Real World,
3rd Conf. Computability in Europe (CiE 2007), number 4497 in LNCS, pages 238-247. Springer, 2007. doi:
10.1007/978-3-540-73001-9_25.

Jéréme Durand-Lose. The signal point of view: from cellular automata to signal machines. In Bruno Durand, editor,
Journées Automates cellulaires (JAC 2008), pages 238-249, 2008.

Jérome Durand-Lose. Abstract geometrical computation 3: black holes for classical and analog computing. Natural
Computing, 8(3):455-472, 2009. doi: 10.1007/s11047-009-9117-0.

Jéréome Durand-Lose. Abstract geometrical computation 6: a reversible, conservative and rational
based model for black hole computation. International Journal of Unconventional Computing, 8
(1):33-46, 2012. URL http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/

ijuc-volume-8-number-1-2012/ijuc-8-1-p-33-46/.

Eric Goles Ch., Pierre-Etienne Meunier, Ivan Rapaport, and Guillaume Theyssier. Communication complexity and
intrinsic universality in cellular automata. Theoretical Computer Science, 412(1-2):2-21, 2011. doi: 10.1016/j.tcs.
2010.10.005.

Wim Hordijk, James P. Crutchfield, and Melanie Mitchell. Mechanisms of emergent computation in cellular automata.
In A. E. Eiben, Thomas Béck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from
Nature - PPSN V, 5th Int. Conf., Amsterdam, The Netherlands, volume 1498 of LNCS, pages 613—-622. Springer,
1998. doi: 10.1007/BFb0056903.

Mariusz H. Jakubowski, Kenneth Steiglitz, and Richard K. Squier. When can solitons compute? Complex Systems,
10(1):1-21, 1996.

Mariusz H. Jakubowski, Kenneth Steiglitz, and Richard K. Squier. Information transfer between solitary waves in the
saturable Schrodinger equation. In Proceedings from the International Conference on Complex Systems on Unifying
Themes in Complex Systems, pages 281-293, Cambridge, MA, USA, 2000. Perseus Books. ISBN 0-7382-0049-2.
URL http://dl.acm.org/citation.cfm?id=331767.331919.

29

https://content.iospress.com/articles/fundamenta-informaticae/fi74-4-07
https://content.iospress.com/articles/fundamenta-informaticae/fi74-4-07
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-8-number-1-2012/ijuc-8-1-p-33-46/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-8-number-1-2012/ijuc-8-1-p-33-46/
http://dl.acm.org/citation.cfm?id=331767.331919

Mariusz H. Jakubowski, Kenneth Steiglitz, and Richard K. Squier. Computing with classical soliton colli-
sions. In Andrew Adamatzky, editor, Advances in Unconventional Computing wvol. 2: Prototypes, Models
and Algorithms, volume 23 of Emergence, Complexity and Computation, pages 261-295. Springer, 2017. doi:
10.1007/978-3-319-33921-4_12.

Weifeng Jin and Fangyue Chen. Symbolic dynamics of glider guns for some one-dimensional cellular automata.
Nonlinear Dynamics, 86(2):941-952, Oct 2016. ISSN 1573-269X. doi: 10.1007/s11071-016-2935-6.

Kristian Lindgren and Mats G. Nordahl. Universal computation in simple one-dimensional cellular automata. Complex
Systems, 4:299-318, 1990.

Simon Martiel and Bruno Martin. An intrinsically universal family of causal graph dynamics. In Jérome Durand-Lose
and Benedek Nagy, editors, Machines, Computations, and Universality - 7th Int. Conf., Famagusta, North Cyprus,
(MCU 2015), volume 9288 of LNCS, pages 129-148. Springer, 2015. doi: 10.1007/978-3-319-23111-2.9.

Jacques Mazoyer and Ivan Rapaport. Inducing an order on cellular automata by a grouping operation. In 15th Annual
Symposium on Theoretical Aspects of Computer Science (STACS 1998), number 1373 in LNCS, pages 116-127.
Springer, 1998.

Jacques Mazoyer and Véronique Terrier. Signals in one-dimensional cellular automata. Theoretical Computer Science,
217(1):53-80, 1999. doi: 10.1016/S0304-3975(98)00150-9.

Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow, and Damien
Woods. Intrinsic universality in tile self-assembly requires cooperation. In Chandra Chekuri, editor, 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), Portland, Oregon, USA, pages 752-771. SIAM,
2014. doi: 10.1137/1.9781611973402.56.

Melanie Mitchell. Computation in cellular automata: a selected review. In T. Gramss, S. Bornholdt, M. Gross,
M. Mitchell, and T. Pellizzari, editors, Nonstandard Computation, pages 95-140. Weinheim: VCH Verlagsge-
sellschaft, 1996.

Nicolas Ollinger. Two-states bilinear intrinsically universal cellular automata. In Fundamentals of Computation
Theory, 13th International Symposium (FCT 2001), number 2138 in LNCS, pages 369-399. Springer, 2001.

Nicolas Ollinger. The intrinsic universality problem of one-dimensional cellular automata. In 20th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2003), number 2607 in LNCS, pages 632—641. Springer, 2003.

Pawel Siwak. Soliton-like dynamics of filtrons of cycle automata. Inverse Problems, 17:897-918, 2001.

Victor I. Varshavsky, Vyacheslav B. Marakhovsky, and V. A. Peschansky. Synchronization of interacting automata.
Mathematical System Theory, 4(3):212-230, 1970.

Damien Woods. Intrinsic universality and the computational power of self-assembly. In Turlough Neary and Matthew
Cook, editors, Proceedings Machines, Computations and Universality 2018, MCU 2018, Ziirich, Switzerland, vol-
ume 128 of EPTCS, pages 16-22, 2013. doi: 10.4204/EPTCS.128.5.

Jean-Baptiste Yunes. Simple new algorithms which solve the firing squad synchronization problem: a 7-states 4n-
steps solution. In Jérome Durand-Lose and Maurice Margenstern, editors, Machine, Computations and Universality
(MCU 2007), number 4664 in LNCS, pages 316-324. Springer, 2007.

30

Extra material

An archive is available with examples, simulation source and java programs to run it at
http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/AGC_Intrinsic_Univ_SM__FILES.tgz

The jar file needs java version 11 or higher to run.

Contents

1__Introduction
2 Definitions]

2.1 Simulations among signal machines| Lo L
2.2 Intrinsically universal machines| oo

|3__Encoding of signals and signal machines|

3.1 eta-signal notation|o Lo
[3-2 Encoding of signals and the repr and interp TUNCLIONS] v v v v v v v o e e

4__Macro-collision resolution|
4.1 Useless information disposal and id gathering|

A2 N 1d'S ONEO TUIES| . .« . o v v e e e e e e

23 Se ectlng tEe rua ..
[£4Setting the outpul macro-signalyot

.5 owards simulating a collision in a larger diagram| o000

|5 Preparing for macro-collision|

5.1 rinking for delay and separating macro-signals| Lo L L oo oL
D. esting 1solation on both sides|o oL
5.3 eck participating signals|o

16 Simulation examples|

[T_Conclusionl

|A" Table of used symbols|

Figure[37] represents the same initial configuration as Fig.[35] but the speed are 5 times faster. This is used to

check that large speeds are handled correctly.

Figure 38: Example 5.

31

16
17
18
24

26

26

32

http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/AGC_Intrinsic_Univ_SM__FILES.tgz

A Table of used symbols
Table of symbols

Symbol

FNIYartcabxProoc 0 <oV ETnET ome

N
interp
b
interp”
repr
a
repr”
B
Us
My
Su

Definition

Signal machine

Signal machine, other

(finite) Set of speeds

Some meta-signal

Signal machine meta-signal set

Signal machine speed function

Set of rules of a signal machine

Set of all real numbers

Incoming meta-signals of a rule

Some rule of a signal machine

Outgoing meta-signals of a rule

AGC set of extended values

Void (AGC spc value)

Configuration of some signal machine

Speed (usually with a subscript like s1)

Some spatial coordinate

Some duration

Meta-signal present or outgoing from a collision/rule
Time to next collision

Some spatial position

Some temporal position

Some temporal position

Space-time diagram for machine A

The set of configurations of some signal machine
The set of all configurations of A with ¢(0) # @
Function yielding the symbolic representation of a configuration
Set of all integers

Symbol used to complete the definition of the bi-infinite word associated to a configuration

and a position

Set of all natural integers

Local function used for decoding signals in simulation

Some configuration of B

Local function used for decoding whole configurations in simulation

Function used to find a representative of a signal, i.e. encoding it

Some configuration of A

Extension of repr to whole configurations

Space-time diagram for machine B

Signal machine capable of simulating all signal machines using only speed in &
(finite) Set of meta-signals used for simulating all machines with a given speed set
(finite) Set of speeds used for simulating all machines with a given speed set
(finite) Set of collision-rules used for simulating all machines with a given speed set
Number of speeds in S

Meta-signal o of speed s; of A

Index for meta-signal of A

Maximum absolute value of speed

Base speed for Check signals

Maximum width of macro-signals entering a checked macro-collision

Collision with an input signal of each speed, each with maximal id.

Maximum of signals in any value of repr(-)

Some subset of 1..n

32

© 00 0000 WOo WO TITIT~J~JJTODDDDHDHDHIDIOO W

Symbol Definition Page

width Initial width of a macro-signal 9
ygheked Submachine of Us for dealing with checked configurations 10
So Delay between a (macro-)collision and the time when all its outputs are ready and clean 10

m Index for speeds 11

F Some (other) subset of 1..n 14
Us' Some variant of Us 15
Cm Point of intersection of macro-collision on output 18
Zr Point on top of the safety zone 18
Zr, Point on left of the safety zone 18
Zr Point on right of the safety zone 18
7B Point at the bottom of the safety zone 18
stk Base speed for shrinking signals 19

€ Parameter for ensuring a large enough safety zone 20
U* Point used for testing 20
OL Left limit of outputting signals 21
Or Right limit of outputting signals 21
SN Sheed for testing 22
sfzt"ight Speed for testing 22
stestrightbackgpeed for testing 22
stestleft-back gryeed for testing 22
Teheek |check] Maximal relative height between middle and encounter from start 25
sMkup Gpheed for checking _main® positions 25

bibtex entry

@article{becker+besson+durand-lose+emmanuel+foroughmand-araabi+goliaei+heydarshahi2i,
doi = {10.1145/3442359},
arxiv = {https://arxiv.org/abs/1804.09018},
author = {Becker, Florent and
Besson, Tom and
Durand-Lose, J{\’e}r{\"o}me and
Emmanuel, Aur{\’e}lien and
Foroughmand-Araabi, Mohammad-Hadi and
Goliaei, Sama and
Heydarshahi, Shahrzad},
title = {Abstract Geometrical Computation 10: An Intrinsically Universal Family of Signal Machines},
journal = {ACM Trans. Comput. Theoryl},
year = {2021},
volume = {13},
number = {1},
pages = {1--31},
note = {arXiv 1804.09018},
language = {english}

33

	Introduction
	Definitions
	Simulations among signal machines
	Intrinsically universal machines

	Encoding of signals and signal machines
	Meta-signal notation
	Encoding of signals and the and functions

	Macro-collision resolution
	Useless information disposal and id gathering
	Applying id's onto rules
	Selecting the rule
	Setting the output macro-signals
	Towards simulating a collision in a larger diagram

	Preparing for macro-collision
	Shrinking for delay and separating macro-signals
	Testing isolation on both sides
	Test failure

	Check participating signals

	Simulation examples
	Conclusion
	Table of used symbols

