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Introduction

Well-known: Classical recursion (on natural numbers)

Functions from N¥ to N constructed from

@ constant 0 function,

@ successor function

e projections (1)

e composition Comp(g, (h;)1<i<k)

@ recursion f = Rec(g, h) defined by:

f0,y) = &(¥)  and
f(n+1,y) = h(n,f(ny)y)
o (add minimisation to get all recursive functions)

e unfit for symbolic manipulation

@ simple

o relate to arithmetic e complexity blowup
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Recursion on string/words

o ¥ ={aj,ap, - ,ar} @ £ empty word )

Functions from (£*)¥ to ©* constructed from

constant g,

all left concatenation by one letter/symbol ,-(w) = a-w = aw
projections (7})

composition Comp(g, (hi)1<i<k)

(left) recursion f = Rec(g, (ha),cx) defined by:

fle,y) = &(¥) and
VacX, f(a-w,y) = ha(w,f(w,y),y)

@ (what minimisation to get all recursive functions?)
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Observations

1 letter alphabet corresponds to N (in unary)

@ everything matches

r-adic encoding function from ¥* to N

] z:{alaa27“‘ 7al’}
@ () =0
° ay-w,(agx-w)=k+r-(w)

@ division, modulo, multiplication, addition. . .
are primitive recursive (on N)

Since the functions are the same (up to some encoding). ..

@ Why bother?

nnnnn
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Why bother? indeed

@ culture and education stress on numbers, symbols are only to
write sentences with

@ proof by recursion and not induction
(up to introducing measures like depth to do recursion)

Symbols are what is relevant

|

@ in nowadays computations, computers. ..

@ natural numbers are represented by sequences of symbols

Computability. . .

@ is about symbol manipulation

@ not natural numbers

@ The term Recursive is getting replaced by computable
(Soare, 2007)
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State of the art... ancient and number oriented — 1

@ recursion on string, recursion on word,
recursive string-functions, recursive word-functions

@ recursion on representation: representation of natural numbers
by words in shortlex/military order, non-trivial successor
word-function

@ peak in the 1960's

@ Most papers deal with hierarchies and is number-centric

Cook and Kapron (2017)

e m-adic notation of numbers (digits exlude 0) and relations on
weak classes

o primitives {n — 10 n+ i}o<i<o
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State of the art... ancient and number oriented — 2

von Henke et al. (1975)

@ survey on counterparts on words of classical results for
primitive recursion on numbers

o infinite alphabet (Vuckovi, 1970), computation over finite
sequences of numbers encoded by numbers

@ restriction to unitary word-functions is considered in (Asser,
1987; Santean, 1990; Calude and Santean, 1990)

@ the nowhere defined function is added to primitive recursive
word-functions in Khachatryan (2015)
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Complexity measure

Needed

@ formalism defines functions, not evaluation!

@ what is a computation?

o what is the measure?

A

Dynamical computation

@ store every result of evaluation

@ do not recompute

.

Delayed evaluation

@ compute value when need

e call by name
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Complexity classes

Simulation of a Turing machine
@ encoding: state $ read symbol $ word on left $ word on right

@ update in linear time

Class P is the same

@ similar definition

.

@ (one way) simulation of a Turing machine

o (other way) construction of the DAG in quasi-linear time

A

Same for higher classes

e NP (with certificate)
o EXP time. ..
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Strong limitation

@ the output is a suffix of an input

@ paring is not possible anymore!

@ indeed {¢,a,aa} x {¢,a,2a}
has to be mapped one-to-one into {¢, a, aa}

Language decision

o L=1f"1({e})
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Multiple recursion

Multiple recursion

@ usually done with pairing
@ add operator: The (k-+1)-ary functions

(fi)1gigm = Rec™ ((gi)1gi§m ) (ha,i)aez,1§i§m>
are uniquely defined by Vi, 1 < i < m:

file,y) = &(y) and
vae z) f}(a' W,)7) — ha,i(Wufl(W7.)7)a"' 7fm(Wu}’)7Y)

Regular languages

@ decided with this extra operator

@ scheme: one function for each state
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Boolean operators — closure properties

o T identified with )

Ternary operator / test function

o if. = Rec(r}, (74, 77))

v

Conjunction and disjunction

o A'is and. = Comp(ife, (73,73, 7}))

e V is or. =Comp(if., (73,2, 73))

A

Negation — non-¢ argument is needed

o —is Comp(ife, (73, 73,€)) — arity is 2
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Equality test to palindrome decision

1 2
Comp<Rec<id ‘ Wg) ‘ ﬁj) i
Comp | Rec| 73 :g i‘; )
Comp(Rec(id ’ t°l’> ‘ j) 3

o test if on is the reverse of the other!
@ ~~ palindrome test

@ algebraic language, non-ambiguous but not deterministic
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Algebraic languages

@ non-ambiguous, deterministic

@ read aj and stack functions to remove as

nonom nomm
ajaja;” Uajayag

@ ambiguous (non-deterministic)
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Non-algebraic languages

NN . NN M nomqom
ajaja; = ajaa; MNajaya;y

P(n)
n
afa,

with P polynomial with positive coefficients

any boolean combination of the latter ones

o with prefixes and suffixes a3

LABORATORE.

INFORMATIQUE

Bmmmﬂmcmz o
DORLEANS

19/22



On the power of recursive word-functions without concatenation

Conclusion

@ Conclusion

LABORATORE.

INFORMATIQUE

Emwmﬂw[‘m o
DORLEANS

20/22



On the power of recursive word-functions without concatenation
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Results

With concatenation
e computability identical

e complexity compatible (P and above)

Without concatenation
@ decide all rational languages with multiple recursion

@ decide languages with polynomial conditions on exponents /
repetitions
(unary encoding of natural numbers)

.
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Perspectives — concatenation-less

Test identity
Polynomials in many variables, negative coefficients
Regular languages without multiple recursion

All algebraic languages (deterministic, non-ambiguous)

Condition for not computability /decision J
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