On the power of recursive word-functions without concatenation

On the power of recursive word-functions

without concatenation

Jéréme Durand-Lose

%
X
Do Laboratoire d’Informatique Fondamentale d’Orléans ;‘—z‘;
m EA 4022 H
FONAVENTALE Université d'Orléans, Orléans, FRANCE Al
D'ORLEANS V'Qé

August 30h, juillet 2022 — DCFS — Debrecen, Hungary

1/22

On the power of recursive word-functions without concatenation

@ Introduction
© Complexity
© Computing without concatenation

@ Conclusion

LABORATORE.
FORDRVENTALE
DORLEANS

2/22

On the power of recursive word-functions without concatenation

Introduction

@ Introduction

LABORATORE.

INFORMATIQUE

Emwmﬂw[‘m o
DORLEANS

3/22

On the power of recursive word-functions without concatenation

Introduction

Well-known: Classical recursion (on natural numbers)

Functions from N¥ to N constructed from

@ constant 0 function,

@ successor function

e projections (1)

e composition Comp(g, (h;)1<i<k)

@ recursion f = Rec(g, h) defined by:

f0,y) = &(¥) and
f(n+1,y) = h(n,f(ny)y)
o (add minimisation to get all recursive functions)

e unfit for symbolic manipulation

@ simple

o relate to arithmetic e complexity blowup

4/22

On the power of recursive word-functions without concatenation

Introduction

Recursion on string/words

o ¥ ={aj,ap, - ,ar} @ £ empty word)

Functions from (£*)¥ to ©* constructed from

constant g,

all left concatenation by one letter/symbol ,-(w) = a-w = aw
projections (7})

composition Comp(g, (hi)1<i<k)

(left) recursion f = Rec(g, (ha),cx) defined by:

fle,y) = &(¥) and
VacX, f(a-w,y) = ha(w,f(w,y),y)

@ (what minimisation to get all recursive functions?)

On the power of recursive word-functions without concatenation

Introduction

Observations

1 letter alphabet corresponds to N (in unary)

@ everything matches

r-adic encoding function from ¥* to N

] z:{alaa27“‘ 7al’}
@ () =0
° ay-w,(agx-w)=k+r-(w)

@ division, modulo, multiplication, addition. . .
are primitive recursive (on N)

Since the functions are the same (up to some encoding). ..

@ Why bother?

nnnnn
wwwwww

On the power of recursive word-functions without concatenation

Introduction

Why bother? indeed

@ culture and education stress on numbers, symbols are only to
write sentences with

@ proof by recursion and not induction
(up to introducing measures like depth to do recursion)

Symbols are what is relevant

|

@ in nowadays computations, computers. ..

@ natural numbers are represented by sequences of symbols

Computability. . .

@ is about symbol manipulation

@ not natural numbers

@ The term Recursive is getting replaced by computable
(Soare, 2007)

On the power of recursive word-functions without concatenation
Introduction

State of the art... ancient and number oriented — 1

@ recursion on string, recursion on word,
recursive string-functions, recursive word-functions

@ recursion on representation: representation of natural numbers
by words in shortlex/military order, non-trivial successor
word-function

@ peak in the 1960's

@ Most papers deal with hierarchies and is number-centric

Cook and Kapron (2017)

e m-adic notation of numbers (digits exlude 0) and relations on
weak classes

o primitives {n — 10 n+ i}o<i<o

On the power of recursive word-functions without concatenation

Introduction

State of the art... ancient and number oriented — 2

von Henke et al. (1975)

@ survey on counterparts on words of classical results for
primitive recursion on numbers

o infinite alphabet (Vuckovi, 1970), computation over finite
sequences of numbers encoded by numbers

@ restriction to unitary word-functions is considered in (Asser,
1987; Santean, 1990; Calude and Santean, 1990)

@ the nowhere defined function is added to primitive recursive
word-functions in Khachatryan (2015)

9/22

On the power of recursive word-functions without concatenation

Complexity

© Complexity

LABORATORE.

INFORMATIQUE

Emwmﬂw[‘m o
DORLEANS

10/22

On the power of recursive word-functions without concatenation

Complexity

Complexity measure

Needed

@ formalism defines functions, not evaluation!

@ what is a computation?

o what is the measure?

A

Dynamical computation

@ store every result of evaluation

@ do not recompute

.

Delayed evaluation

@ compute value when need

e call by name

On the power of recursive word-functions without concatenation

Complexity

Complexity classes

Simulation of a Turing machine
@ encoding: state $ read symbol $ word on left $ word on right

@ update in linear time

Class P is the same

@ similar definition

.

@ (one way) simulation of a Turing machine

o (other way) construction of the DAG in quasi-linear time

A

Same for higher classes

e NP (with certificate)
o EXP time. ..

On the power of recursive word-functions without concatenation

Computing without concatenation

© Computing without concatenation

LABORATORE.

INFORMATIQUE

Emwmﬂw[‘m o
DORLEANS

13/22

On the power of recursive word-functions without concatenation

Computing without concatenation

Strong limitation

@ the output is a suffix of an input

@ paring is not possible anymore!

@ indeed {¢,a,aa} x {¢,a,2a}
has to be mapped one-to-one into {¢, a, aa}

Language decision

o L=1f"1({e})

TEGRATORE
DINFORMATIQUE
Bommﬂwﬁz o
DORLEANS

14 /22

On the power of recursive word-functions without concatenation

Computing without concatenation

Multiple recursion

Multiple recursion

@ usually done with pairing
@ add operator: The (k-+1)-ary functions

(fi)1gigm = Rec™ ((gi)1gi§m) (ha,i)aez,1§i§m>
are uniquely defined by Vi, 1 < i < m:

file,y) = &(y) and
vae z) f}(a' W,)7) — ha,i(Wufl(W7.)7)a"' 7fm(Wu}’)7Y)

Regular languages

@ decided with this extra operator

@ scheme: one function for each state

15/22

On the power of recursive word-functions without concatenation

Computing without concatenation

Boolean operators — closure properties

o T identified with)

Ternary operator / test function

o if. = Rec(r}, (74, 77))

v

Conjunction and disjunction

o A'is and. = Comp(ife, (73,73, 7}))

e V is or. =Comp(if., (73,2, 73))

A

Negation — non-¢ argument is needed

o —is Comp(ife, (73, 73,€)) — arity is 2

On the power of recursive word-functions without concatenation

Computing without concatenation

Equality test to palindrome decision

1 2
Comp<Rec<id ‘ Wg) ‘ ﬁj) i
Comp | Rec| 73 :g i‘;)
Comp(Rec(id ’ t°l’> ‘ j) 3

o test if on is the reverse of the other!
@ ~~ palindrome test

@ algebraic language, non-ambiguous but not deterministic

On the power of recursive word-functions without concatenation

Computing without concatenation

Algebraic languages

@ non-ambiguous, deterministic

@ read aj and stack functions to remove as

nonom nomm
ajaja;” Uajayag

@ ambiguous (non-deterministic)

LABORATORE.

INFORMATIQUE

Bomﬂsncmz o
DORLEANS

18/22

On the power of recursive word-functions without concatenation

Computing without concatenation

Non-algebraic languages

NN . NN M nomqom
ajaja; = ajaa; MNajaya;y

P(n)
n
afa,

with P polynomial with positive coefficients

any boolean combination of the latter ones

o with prefixes and suffixes a3

LABORATORE.

INFORMATIQUE

Bmmmﬂmcmz o
DORLEANS

19/22

On the power of recursive word-functions without concatenation

Conclusion

@ Conclusion

LABORATORE.

INFORMATIQUE

Emwmﬂw[‘m o
DORLEANS

20/22

On the power of recursive word-functions without concatenation

Conclusion

Results

With concatenation
e computability identical

e complexity compatible (P and above)

Without concatenation
@ decide all rational languages with multiple recursion

@ decide languages with polynomial conditions on exponents /
repetitions
(unary encoding of natural numbers)

.

LABORATORE.
INFORMATIQUE

FORDRVENTALE
DORLEANS

21/22

On the power of recursive word-functions without concatenation

Conclusion

Perspectives — concatenation-less

Test identity
Polynomials in many variables, negative coefficients
Regular languages without multiple recursion

All algebraic languages (deterministic, non-ambiguous)

Condition for not computability /decision J

22/22

On the power of recursive word-functions without concatenation

Conclusion

Asser, G. (1987). Primitive recursive word-functions of one variable. In Borger, E.,
editor, Computation Theory and Logic, In Memory of Dieter Rédding, volume 270
of LNCS, pages 14-19. Springer.

Calude, C. and Santean, L. (1990). On a theorem of giinter asser. Math. Log. Q.,
36(2):143-147.

Cook, S. A. and Kapron, B. M. (2017). A survey of classes of primitive recursive
functions. Electron. Colloquium Comput. Complex., page 1.

Khachatryan, M. H. (2015). On generalized primitive recursive string functions.
Mathematical Problems of Computer Science, 43:42—-46.

Santean, L. (1990). A hierarchy of unary primitive recursive string-functions. In
Dassow, J. and Kelemen, J., editors, Aspects and Prospects of Theoretical
Computer Science, 6th International Meeting of Young Computer Scientists,
Smolenice, Czechoslovakia, November 19-23, 1990, Proceedings, volume 464 of
LNCS, pages 225-233. Springer.

Soare, R. I. (2007). Computability and incomputability. In Cooper, S. B., Léwe, B.,
and Sorbi, A., editors, Computation and Logic in the Real World, Third Conference
on Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings,
volume 4497 of LNCS, pages 705-715. Springer.

von Henke, F. W., Rose, G., Indermark, K., and Weihrauch, K. (1975). On primitive
recursive wordfunctions. Computing, 15(3):217-234.

LABORATORE.
o QU

Vuckovi, V. (1970). Recursive word-functions over infinite alphabets. Mathematical
Logic Quarterly, 13(2):123-138.

FORDRVENTALE
DORLEANS

22/22

	Introduction
	Complexity
	Computing without concatenation
	Conclusion
	References

