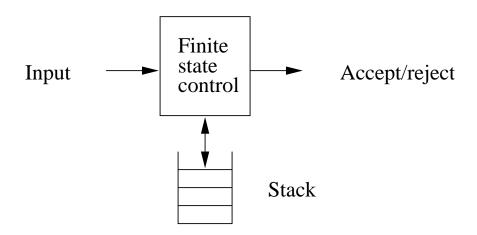
Pushdown Automata

A pushdown automata (PDA) is essentially an ϵ -NFA with a stack.

On a transition the PDA:

- 1. Consumes an input symbol.
- 2. Goes to a new state (or stays in the old).
- 3. Replaces the top of the stack by any string (does nothing, pops the stack, or pushes a string onto the stack)



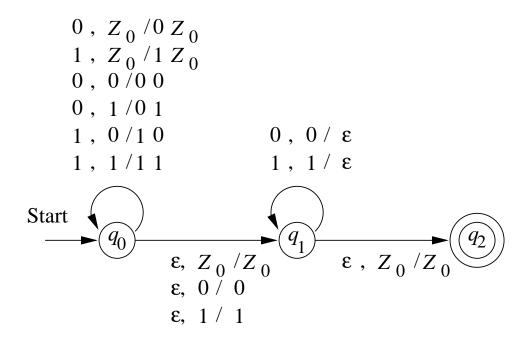
Example: Let's consider

$$L_{wwr} = \{ww^R : w \in \{0, 1\}^*\},\$$

with "grammar" $P \to 0P0, \ P \to 1P1, \ P \to \epsilon$. A PDA for L_{wwr} has tree states, and operates as follows:

- 1. Guess that you are reading w. Stay in state 0, and push the input symbol onto the stack.
- 2. Guess that you're in the middle of ww^R . Go spontanteously to state 1.
- 3. You're now reading the head of w^R . Compare it to the top of the stack. If they match, pop the stack, and remain in state 1. If they don't match, go to sleep.
- 4. If the stack is empty, go to state 2 and accept.

The PDA for L_{wwr} as a transition diagram:



PDA formally

A PDA is a seven-tuple:

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F),$$

where

- Q is a finite set of states,
- \bullet Σ is a finite input alphabet,
- Γ is a finite stack alphabet,
- $\delta: Q \times \Sigma \cup \{\epsilon\} \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$ is the *transition* function,
- q_0 is the start state,
- $Z_0 \in \Gamma$ is the *start symbol* for the stack, and
- $F \subseteq Q$ is the set of accepting states.

Example: The PDA

$$\begin{array}{c} 0\;,\;Z_{\,0}\;/0\;Z_{\,0}\\ 1\;,\;Z_{\,0}\;/1\;Z_{\,0}\\ 0\;,\;0\;/0\;0\\ 0\;,\;1\;/0\;1\\ 1\;,\;0\;/1\;0&0\;,\;0\;/\;\epsilon\\ 1\;,\;1\;/1\;1&1\;,\;1\;/\;\epsilon\\ \\ \\ \text{Start} & q_0 \\ \hline \epsilon\;,\;Z_{\,0}\;/Z_{\,0}\\ \epsilon\;,\;0\;/\;0\\ \epsilon\;,\;0\;/\;0\\ \epsilon\;,\;1\;/\;1\\ \end{array}$$

is actually the seven-tuple

$$P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}),$$

where δ is given by the following table (set brackets missing):

	$0, Z_0$	$1, Z_0$	0,0	0,1	1,0	1,1	ϵ, Z_0	$\epsilon, 0$	$\epsilon, 1$
$\rightarrow q_0$	$q_0, 0Z_0$	$q_0, 1Z_0$	$q_0, 00$	$q_0, 01$	$q_0, 10$	$q_0,11$	q_1, Z_0	$q_1, 0$	$q_1,1$
q_1			q_1,ϵ			q_1,ϵ	q_{2}, Z_{0}		
*q ₂									

Instantaneous Descriptions

A PDA goes from configuration to configuration when consuming input.

To reason about PDA computation, we use instantaneous descriptions of the PDA. An ID is a triple

$$(q, w, \gamma)$$

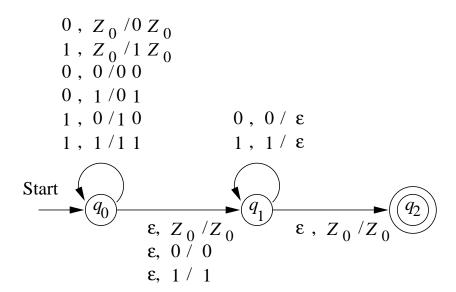
where q is the state, w the remaining input, and γ the stack contents.

Let $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ be a PDA. Then $\forall w\in\Sigma^*,\beta\in\Gamma^*$:

$$(p,\alpha) \in \delta(q,a,X) \Rightarrow (q,aw,X\beta) \vdash (p,w,\alpha\beta).$$

We define \vdash^* to be the reflexive-transitive closure of \vdash .

Example: On input 1111 the PDA



has the following computation sequences:

$$(\ q_0\ ,\ 1111, Z_0\) \\ (\ q_0\ ,\ 1111, 1Z_0\) \\ (\ q_0\ ,\ 1111, 1Z_0\) \\ (\ q_0\ ,\ 11, 11Z_0\) \\ (\ q_1\ ,\ 111, 11Z_0\) \\ (\ q_0\ ,\ 1, 111Z_0\) \\ (\ q_1\ ,\ 11, 11Z_0\) \\ (\ q_0\ ,\ \varepsilon\ , 1111Z_0\) \\ (\ q_1\ ,\ \varepsilon\ , 111Z_0\) \\ (\ q_2\ ,\ \varepsilon\ ,\ Z_0\)$$